The present invention relates generally to the field of surgery and medical implants, and more particularly, to surgical tools and methods for use in positioning an intervertebral device between vertebral members of a patient.
The human spine is a biomechanical structure with thirty-three vertebral members, and is responsible for protecting the spinal cord, nerve roots and internal organs of the thorax and abdomen. The spine also provides structure support for the body while permitting flexibility of motion. A significant portion of the population will experience back pain at some point in their lives resulting from a spinal condition. The pain may range from general discomfort to disabling pain that immobilizes the individual. Back pain may result from a trauma to the spine, be caused by the natural aging process, or may be the result of a degenerative disease or condition.
Procedures to remedy back problems sometimes require correcting the distance between vertebral members by inserting an intervertebral device (e.g., spacer) between the members. The spacer, which is carefully positioned within the disc space and aligned relative to the vertebral members, is sized to position the vertebral members in a manner to alleviate the patient's back pain.
Further, the intervertebral device is preferably designed to facilitate insertion into a patient. That is, the shape and size of the device are designed to provide for minimal intrusion to a patient during insertion, but still be effective post-insertion to alleviate the pain and provide maximum mobility to the patient. A spinal cavity for receiving the intervertebral device must be prepared prior to inserting the device therein.
Thus, a need exists for enhanced surgical instruments and methods for positioning an intervertebral device between vertebral members of a patient, and for enhanced surgical instruments and methods for preparing a spinal cavity to receive such an intervertebral device.
The present invention provides, in an aspect, a spinal disc replacement surgical instrument which includes a first contacting member positionable along an endplate of a first vertebra. A second contacting member is positionable along an endplate of a second vertebra. The first vertebra and the second vertebra define the spinal cavity. The second contacting member is moveable relative to the first contacting member. A handle assembly is coupled to the first contacting member and the second contacting member. At least one actuating member is positioned between the first and second contacting members. The at least one actuating member is moveable by the hand assembly from a first position, wherein the first and second members include an unexpanded configuration relative to one another for insertion in the spinal cavity, to a second position providing an expanded configuration. The actuating member is configured to displace at least one of the first contacting member and the second contacting member away from each other to move the first contacting member and the second contacting member between the first position and the second position. The first contacting member has a first distal end and the second contacting member has a second distal end. The first end has a first end shape configured to conform to a shape of the first vertebra and the second end has a second end shape configured to conform to a shape of the second vertebra. The first end shape and the second end shape are different shapes.
The present invention provides, in another aspect, a spinal disc replacement surgical instrument which includes a first contacting member positionable along an endplate of a first vertebra. A second contacting member is positionable along an endplate of a second vertebra. The first vertebra and the second vertebra define a spinal cavity. The second contacting member is moveable relative to the first contacting member. The first contacting member is connected to a handle assembly by a first extending arm and the second member is connected to the handle assembly by a second extending arm. An adjustable depth regulator extends from the handle assembly toward the first member and the second member. The adjustable depth regulator is located at least partially longitudinally offset relative to at least one of the first arm and the second arm. The adjustable depth regulator includes at least one stop member positionable in contact with one of the first vertebra and the second vertebra to limit an insertion depth of the first contacting member and the second contacting member in the spinal cavity.
The present invention provides, in a further aspect, a spinal disc replacement surgical instrument which includes a first member positionable along an endplate of a first vertebra and a second member positionable along an endplate of a second vertebra. The first vertebra and the second vertebra define a spinal cavity. The second member is moveable relative to the first member. The first member and the second member are moveable between an unexpanded configuration relative to one another for insertion in the spinal cavity and an expanded configuration relative to one another. The handle assembly includes a distal end coupled to the first member and the second member. The handle assembly includes a proximal end connectable to a releaseable handle. The proximal end includes a handle assembly cavity for receiving an end of the handle and the handle assembly cavity includes an interior surface connectable to the handle. The handle assembly cavity includes an impactable head configured to receive an impact and to transfer the impact to the handle assembly and to at least one of the first contacting member and the second contacting member.
The present invention provides, in yet another aspect, a method for use in spinal disc replacement which includes positioning a first contact member of a surgical instrument along an endplate of first vertebra. A second contacting member of the surgical instrument is positioned along an endplate of a second vertebra. The first vertebra and the second vertebra define a spinal cavity. The first contacting member is coupled to the second contacting member by a handle assembly of the surgical instrument. At least one actuating member of the surgical instrument is positioned between the first contacting member and the second contacting member. The actuating member is moved from a first position, wherein the first contacting member and the second contacting member include an unexpanded configuration relative to one another for insertion in the spinal cavity, to a second position, wherein the first contacting member and the second contacting member include an expanded configuration relative to one another. The first contacting member has a first distal end and the second contacting member has a second distal end. The first distal end has a first shape configured to conform to a shape of the first vertebra and a second end has a second end shape configured to conform to a shape of the second vertebra. The first end shape and the second end shape are different shapes.
The present invention provides, in yet a further aspect, a method for use in spinal disc replacement which includes positioning a first contacting member of a surgical instrument along an endplate of a first vertebra of a spinal cavity. A second contacting member of the surgical instrument is positioned along an endplate of the second vertebra. The first vertebra and the second vertebra define a spinal cavity. The first contacting member is connected to a handle assembly of the surgical instrument by a first extending arm and the second contacting member is connected to the handle assembly by a second extending arm. An adjustable depth regulator is extended from the handle assembly toward the first contacting member and the second contacting member such that the adjustable depth regulator is located at least partially longitudinally offset relative to at least one of the first arm and the second arm. The adjustable depth regulator is contacted with one of the first vertebra and the second vertebra to limit an insertion depth of the first contacting member and the second contacting member into the spinal cavity.
The present invention provides, in another aspect, a method for use in replacing a spinal disc which includes providing a spinal disc replacement surgical tool having a handle assembly with a distal end coupled to a first contacting member positionable along a endplate of a first vertebra defining a spinal cavity and a second contacting member positionable along an endplate of a second vertebra defining the spinal cavity. The handle assembly includes a proximal end having a handle assembly cavity connectable to a releasable handle. An impactable head in the handle assembly is impacted to cause movement of the surgical tool toward the spinal cavity.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention will be apparent from the following detailed description of preferred embodiments taken in conjunction with the accompanying drawings in which:
In accordance with the principles of the present invention, a spinal disc replacement surgical instrument, and methods for use in implanting a prosthetic disc in a spinal cavity, are provided.
As depicted in
First arm 100 is connected to a first contacting member 110 and second arm 200 is connected a second contacting member 210. Alternatively, each arm and respective contacting member may be formed integral to one another. The members may be formed of plates having opposite faces positionable against endplates of adjacent vertebra (not shown) defining a spinal cavity (not shown) to provide a separation force to the endplates when manipulated with handle assembly 300. Other forms for contacting members 110, 210 are also contemplated, including single blades, U-shaped blades, or other suitable structure for contacting the adjacent vertebral endplate. As depicted in
Also, the different shapes of the front ends (e.g., front ends 117 and 217) allow a user to more readily determine the correct orientation of the tool, i.e., which side (e.g., first contacting member 110) is to be used adjacent an upper vertebra and which slide (e.g., second contacting member 210) is to be used adjacent a lower vertebra. In the example depicted in the figures, a user would know from the square shape of first contacting member 110 that tool 10 is configured to be inserted such that first contacting member 110 is on a top (i.e., superior) side of the tool and is configured to abut an upper vertebra of a spinal cavity. Similarly, the user would know from the rounded or curved shape of second contacting member 210 that tool 10 is configured to be inserted such that second contacting member 210 is on a bottom (i.e., inferior) side of the tool and is configured to abut a lower vertebra of the spinal cavity. Also, the distal ends of the contacting members could be formed of any shape which conforms to the shape of a vertebra which it will abut, or come in close proximity to. For example, it may be necessary to use particular surgical instruments (e.g., tool 10) having contacting members with different shaped ends according to which vertebra in a spinal column needs to be replaced. Further, the contacting members and/or arms may be releasably connectable to each other and/or the remainder of tool 10 to allow such varying shapes and/or thicknesses of the contacting members and/or arms to be utilized.
A depth adjustment system 400 is connected to handle assembly 300 and second contacting member 210 as depicted in
Upwardly extending portions 412 of connecting member 420 may extend through apertures 212 in second contacting member 210 as depicted in
For example, such a controlling mechanism may include a rotatable knob or thumbwheel 450 having an internal thread (not shown) configured to mate with threads (not shown) on an outer surface of connecting member 420, as depicted in
Thumbwheel 450 and, some or all of, the remainder of depth adjustment system 400 may be offset relative to the remainder of tool 10. For example, thumbwheel 450 may be located laterally relative to a longitudinal axis of handle assembly 300 and/or arms 100 and 200 as depicted in
In the example depicted (see e.g.,
The offset (e.g., lateral) location of adjustment system 400 relative to the arms and the remainder of tool 10 allows ready access to the user. For example, the location of thumbwheel 450 offset from the longitudinal axis of handle assembly 300 and/or arms 100 and 200 allows the user to easily locate thumbwheel 450 and therefore move depth stopper 410 during use. Also, the location of thumbwheel 450 and the remainder of depth adjustment system 400 at least partially offset from a longitudinal axis of tool 10 and arms 100, 200 allow the depth adjustment system 400 to avoid interfering with hinges 302 located at the intersection of the arms and handle assembly 300. The offset nature of depth adjustment system 300 therefore allows the arms to be readily moved relative to handle assembly 300 at the hinges.
A top side 120 of first contacting member 110 and first arm 100 may include a slot 122 configured to receive a keel cutter 500, as depicted in
A proximal end 311 of handle assembly 300 includes a receiving flange 310 having a cavity 315 partially defined by a threaded interior radial surface 320 and having an impactable surface 330, as depicted in
For example, flange 310 may include one or more notches 312 at proximal end 311 of flange 310 configured (e.g., shaped and dimensioned) to receive finger tip(s) of the user. The notches allow the user to avoid having his finger(s) caught between proximal end 311 and another portion of T-handle 340 (e.g., a sleeve connecting portion 314) when an outer sleeve 313 moves toward flange 310 to attach T-handle 340 to flange 310 in the case of a Hudson type connection for example, as will be understood by those skilled in the art. Sleeve connecting portion 314 may connect outer sleeve 313 of T-handle 340 to an inner shaft (not shown) of T-handle 340. Outer sleeve 313 may be spring-loaded such that, when previously retracted relative to the shaft, outer sleeve 313 moves toward flange 310 when released by the user.
Expansion bar 350 may have threads 305 located at a proximal end thereof opposite front end 20 of tool 10. Threads 305 may engage with an inner threaded surface (not shown) of flange 310. Rotation of flange 310 itself or by T-handle 340 thus causes such movement of arms 100 and 200, along with first and second contacting members 110 and 210 via expansion bar 350. For example, flange 310 may be connected to an expansion bar 350, which may be driven forward by rotation of flange 310 by itself or flange 310 and T-handle 340. The movement of bar 350 forward may cause the arms and members to separate from one another as bar 350 contacts arms 100, 200 and/or first and second contacting members 110, 210 to distract the upper and lower vertebras to approximate heights or positions as described above. Movement of bar 350 away from front end 20 by flange 310 may cause or allow the arms and members to move from an expanded position to a collapsed position, for example.
Also, a distraction indicator is coupled to an actuating member such as expansion bar 350, which moves longitudinally therewith to provide an indication of the position of expansion bar 350 relative to first and second contacting members 110, 210 thereby providing an indication of a distance between the inner surfaces or outer surfaces of the members. For example, a distraction indicator, such as distraction height indicia 433 on expansion bar 350 viewable through a window 435 correspond to the distraction height of first and second contacting members 110 and 210 in the posterior end (i.e., front ends 117 and 217) thereof provided by the longitudinal positioning of expansion bar 350 therebetween. The measuring of the distance between the contacting members and thus the vertebra allow the user (e.g., the surgeon) to determine whether the space defined by the vertebra is of an appropriate size to begin the procedure for implanting a prosthetic in the spinal cavity. For example, if a measurement is taken revealing that the spinal cavity is not large enough, the contacting members may be further distracted via the T-handle and expansion bar until an appropriate space between the vertebra is created.
Further, when the T-handle is not attached to the flange, impactable surface 330 (e.g., a rigid head) may be accessed such that the user may impact the impactable surface 330 (e.g., with a hammer) to cause movement of tool 10 into the spinal cavity. More specifically, impactable surface 330 is coupled to first contacting member 110 and second contacting member 210. For example, impactable surface 330 may be connected to expansion bar 350 thereby connecting impactable surface 330, handle assembly, 300, arms 100 and 200, and first and second contacting members 110 and 210. Also, impactable surface 330 may be located entirely within receiving cavity 315. Further, impactable surface 330 may be located within a portion of T-handle 340 when T-handle 340 is received in cavity 315 and/or connected to flange 310. The location of impactable surface 330 within flange 310 allows a user to impact impactable surface 330 itself without the need for a cap to cover flange 310 to avoid damaging the flange. More particularly, instead of placing a cap over flange 310 to drive tool 10 into a spinal cavity, a user may directly impact impactable surface 330 which is located within cavity 315. The integral nature of impactable surface 330 avoids the necessity for a separate cap to protect flange 310 from damage to its internal threads or other portions thereof which may otherwise occur. Further, such integral nature prevents misplacement or loss of such a protective cap. Moreover, the location of impactable surface 330 within cavity 315 allows any impact to the remainder of flange 310 to be avoided due to its central interior location, i.e., away from other surfaces which could potentially by impacted and damaged.
The contacting members (e.g., first contacting member 110 and second contacting member 210) have radial interior surfaces (e.g., first radial interior surface 111) opposite each other, which may include aligning elements such as guide pins 112 located on such interior surface (e.g., interior surface 111) as depicted in
Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3486505 | Morrison | Dec 1969 | A |
5431658 | Moskovich | Jul 1995 | A |
6159215 | Urbahns et al. | Dec 2000 | A |
6478800 | Fraser et al. | Nov 2002 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6652533 | O'Neil | Nov 2003 | B2 |
6929647 | Cohen | Aug 2005 | B2 |
7169152 | Foley et al. | Jan 2007 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7491204 | Marnay et al. | Feb 2009 | B2 |
7547308 | Bertagnoli et al. | Jun 2009 | B2 |
20010005796 | Zdeblick et al. | Jun 2001 | A1 |
20020116009 | Fraser et al. | Aug 2002 | A1 |
20030055503 | O'Neil | Mar 2003 | A1 |
20030225416 | Bonvallet et al. | Dec 2003 | A1 |
20040030387 | Landry et al. | Feb 2004 | A1 |
20040059318 | Zhang et al. | Mar 2004 | A1 |
20040148028 | Ferree et al. | Jul 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040220567 | Eisermann et al. | Nov 2004 | A1 |
20040225295 | Zubok et al. | Nov 2004 | A1 |
20040225366 | Eisermann et al. | Nov 2004 | A1 |
20040249465 | Ferree | Dec 2004 | A1 |
20050004672 | Pafford et al. | Jan 2005 | A1 |
20050010294 | Michelson | Jan 2005 | A1 |
20050027300 | Hawkins et al. | Feb 2005 | A1 |
20050038442 | Freeman | Feb 2005 | A1 |
20050065606 | Jackson | Mar 2005 | A1 |
20050113842 | Bertagnoli et al. | May 2005 | A1 |
20050119665 | Keller | Jun 2005 | A1 |
20050131536 | Eisermann et al. | Jun 2005 | A1 |
20050131543 | Benzel et al. | Jun 2005 | A1 |
20050177173 | Aebi et al. | Aug 2005 | A1 |
20050216085 | Michelson | Sep 2005 | A1 |
20050228500 | Kim et al. | Oct 2005 | A1 |
20060030856 | Drewry et al. | Feb 2006 | A1 |
20060085077 | Cook et al. | Apr 2006 | A1 |
20060200241 | Rothman et al. | Sep 2006 | A1 |
20060287728 | Mokhtar et al. | Dec 2006 | A1 |
20070100347 | Stad et al. | May 2007 | A1 |
20070162040 | Grabowski et al. | Jul 2007 | A1 |
20070233143 | Josse et al. | Oct 2007 | A1 |
20070276370 | Altarac et al. | Nov 2007 | A1 |
20080071279 | Bandeira et al. | Mar 2008 | A1 |
20080132902 | Bertagnoli et al. | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20070191857 A1 | Aug 2007 | US |