The present invention relates to spinal fixation devices, and in particular to a spinal fixation plate that can be used in multiple orientations in a patient's spinal system.
Treatment of some spinal injuries or disorders may involve the use of a spinal fixation element, such as a relatively rigid fixation rod, that is coupled to adjacent vertebrae by attaching the element to various anchoring devices, such as plates, hooks, bolts, wires, or screws. Often two rods are disposed on opposite sides of the spinous process in a substantially parallel relationship. The fixation rods can have a predetermined contour that has been designed according to the properties of the target implantation site, and once installed, the rods hold the vertebrae in a desired spatial relationship, until healing or spinal fusion has taken place, or for some longer period of time. When such surgery is performed in the cervical spine, the proximal ends of the rods are typically molded according to the anatomy of the skull and the cervical spine, and attached to a fixation plate that is implanted in the occiput.
There are currently two types of plates that are typically used in the occiput: a T-shaped plate and a Y-shaped plate. The T-shaped plate is designed to maximize the amount of bone graft that can be disposed between the cervical spine and the foremen magnum. When implanted, its shape requires that it be positioned just below the superior nuchal line. As a result, the rod-to-plate connection occurs at a higher location in the occiput, thus becoming more noticeable to the patient. The Y-shaped plate, on the other hand, is configured to sit below and just inside of the inferior nuchal line. Thus, the rod-to-plate attachment occurs at a lower position in the occiput, thereby providing a low-profile connection that is less noticeable to the user. However, because the area between the cervical spine and the occiput is greatly reduced, the use of bone graft material with the Y-shaped plate is limited.
While these plate constructs have provided a stable technique for occipito-cervical fixation, fixation to the occiput continues to be a challenge. In particular, extreme variability in the thickness of the skull itself can limit the effectiveness of current plates, which must be positioned at a particular location in the occiput, even if such a position is not optimal. As a result, the effectiveness of the plate is largely dependent on the positioning of the holes in the plate, as the fixed hole-hole distances in the plate can make proper insertion of the screws difficult. Other complications associated with any internal fixation device, such as hardware loosening, hardware pull out, and hardware fracture, for example, can also occur.
Accordingly, the present invention advantageously provides a spinal fixation plate that can be placed in various locations in the occiput, thus allowing the plate to be implanted at the thickest bone for increased safety as well as optimal stability.
The present invention provides an implantable spinal fixation plate that is adapted for placement in a variety of locations in the occiput. In an exemplary embodiment, the plate has an elongate central portion with proximal and distal ends that define a longitudinal axis extending therebetween. A first and second thru-bores are formed in the central portion of the plate, and the second thru-bore is preferably positioned distal of the first thru-bore. The plate also includes first and second elongate branch portions that extend from opposed sides of the central portion and that define first and second central axes that are positioned at an angle relative to the longitudinal axis of the central portion. The first and second central axes preferably intersect at an intersection point that is distal to a substantial midpoint of the first thru-bore formed in the central portion, and that is proximal to a substantial midpoint of the second thru-bore formed in the central portion. More preferably, the intersection point is positioned distal to the first thru-bore and proximal to the second thru-bore. The intersection point can also resides along the longitudinal axis of the central portion.
Each branch portion can include at least one thru-bore formed therein, and more preferably each of the first and second branch portions includes a single thru-bore formed therein adjacent to a terminal end thereof. The thru-bore(s) in each of the first and second branch portions can have an oblong shape, or alternatively the thru-bores can have a circular shape. In another embodiment, the thru-bore(s) in each of the first and second branch portions can include a substantially cylindrical member extending therefrom and having threads formed therein.
In another embodiment of the present invention, the central portion and the first and second branch portions extend along a horizontal plane, and the plate includes a bend zone formed between the central portion and each of the first and second branch portions for allowing the first and second branch portions to be positioned at an angle relative to the horizontal plane in which the central portion lies. The bend zone preferably extends along an axis that is substantially parallel to the longitudinal axis of the central portion, and each bend zone can be formed from, for example, at least one channel formed on a surface of the plate. In an exemplary embodiment, each bend zone is in the form of opposed channels formed on opposed surfaces of the plate.
The present invention also provides at least one elongate extension member that is removably matable to the spinal fixation plate and that has a plurality of thru-bores formed therein. In one embodiment, the elongate extension member includes at least two thru-bores, and a clamp member formed thereon for receiving and engaging a spinal fixation element. In another embodiment, the elongate extension member has a central thru-bore formed therein, and first and second thru-bores formed on opposed sides of the central thru-bore. The central thru-bore is adapted to receive a fastening element for removably mating the elongate extension to the first thru-bore in the central portion of the spinal fixation plate. In yet another embodiment, the first and second thru-bores are formed through opposed terminal ends of the elongate extension member, and the opposed terminal ends extend in a plane that is substantially parallel to but spaced apart from a plane defined by a central portion of the extension member that contains the central thru-bore.
The present invention also provides a spinal fixation kit that includes a spinal fixation plate having an elongate central portion with first and second thru-bores formed therein and positioned along a longitudinal axis thereof, and first and second elongate branch portions that extend from opposed sides of the central portion at a location that is substantially between the first and second thru-bores formed in the central portion. Each branch portion includes at least one thru-bore formed therein. The kit also includes at least one extension plate having a plurality of thru-bores formed therein, and the extension plate is removably matable to the spinal fixation plate.
In yet another embodiment of the present invention, a spinal fixation kit is provided and it includes a spinal fixation plate having at least one thru-bore formed therein and a mating element formed thereon, and at least one extension plate having a plurality of thru-bores formed therein and a complementary mating element formed thereon such that the at least one extension plate is slidably matable with the spinal fixation plate. The mating elements can be, for example, dovetail components.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
The present invention provides a spinal fixation plate that is adapted to be implanted in a variety of positions in the occiput. In general, the plate has a substantially planar configuration and it includes a mid-line or central portion having several thru-bores formed therein, and first and second opposed branch portions that extend from the central portion and that also include at least one thru-bore formed therein. The configuration of the branch portions relative to the central portion, as well as the position of the mid-line thru-bores formed in the central portion in relation to the thru-bore(s) formed in each branch portion, allow the spinal fixation plate to be implanted in a variety of positions in the occiput, thus allowing the optimal implant site to be selected. The configuration also allows a variety of other spinal fixation devices, such as spinal rods, cables, plates, etc. to be attached to the plate in an optimal position.
The thru-bores 14, 16, 18 formed in the central portion 12 of the spinal fixation plate 10 can vary in shape and size, but they are preferably adapted to receive a fastening element, such as a spinal screw, therethrough for securing the plate 10 to bone. In the illustrated embodiments, shown in
Still referring to
In use, the configuration of the branch portions 20, 22 allows the spinal fixation plate 10 to be implanted in various positions in the occiput in place of both of the prior art Y-shaped and T-shaped plates. As will be discussed in more detail below, the branch portions 20, 22 are configured to mate to one or more anchoring assemblies that are effective to mate a spinal fixation element, such as a spinal rod, to the plate 10. The branch portions 20, 22 can also optionally include one or more thru-bore formed therein for receiving a fixation element, such as a spinal screw to further facilitate fixation of the plate 10 to bone.
The shape of the thru-bore 21, 23 formed in each branch portion 20, 22 can also vary depending on the intended use. By way of non-limiting example, each thru-bore 21, 23 can have an oblong or ovular shape, as shown in
Anchoring assemblies are well known in the art, and they are typically used to attach a spinal fixation element, such as a spinal rod, to a spinal fixation plate. By way of non-limiting example, U.S. Pat. No. 6,524,315 of Selvitelli et al. entitled “Orthopaedic Rod/Plate Locking Mechanism,” and U.S. Pat. No. 6,547,790 of Harkey, III et al. entitled “Orthopaedic Rod/Plate Locking Mechanism and Surgical Methods” each describe anchoring assemblies that can be used to mate a spinal fixation rod to a spinal plate. In general, each anchoring assembly includes a rod-receiving feature and a fastening element that is adapted to extend through a thru-bore formed in a spinal fixation plate to mate the anchoring assembly to the spinal fixation plate. A person skilled in the art will appreciate that a variety of anchoring assemblies and other techniques can be used with the present invention to mate a spinal fixation element, such as a spinal rod, to the spinal plate 10. Moreover, the anchoring assembly can be fixedly attached to or integrally formed with the spinal fixation plate 10.
Referring back to
The present invention also provides several extension members that can be used to provide additional thru-bores to the spinal fixation plate 10. The extension members are particularly advantageous in that they allow a surgeon to modify an existing plate, rather than requiring a large inventory of plates having particular configurations. A person skilled in the art will appreciate that the extension members can have a variety of configurations, and that they can be adapted to couple to the central portion 12 of the fixation plate 10, and/or to the branch portions 20, 22 for providing additional mid-line and/or lateral thru-bores. The extension members can also be used in conjunction with one or more anchoring assemblies.
Referring to
As indicated above,
The extension member 60 also includes a clamp mechanism 66 that is coupled to a sidewall 60s of the extension member 60 adjacent to the first thru-bore 62. The clamp mechanism 66 includes a hinged portion 66a defining a pathway 66b extending therethrough for receiving a spinal fixation element, and a top portion 66c having a thru-bore 68 formed therein that is juxtapositioned on the first thru-bore 62 in the extension member 60. In use, as shown in
In a further embodiment, the terminal portions 74, 76 of the extension member 70 can reside in a plane that is substantially parallel to a plane of the central portion 72 such that when the extension member 70 is mated to a spinal fixation plate 10, as shown, the thru-bores 74a, 76a formed in the terminal portions 74, 76 lie in the same plane as the thru-bore 18 formed in the central portion 12 of the plate 10. This allows the terminal portions 74, 76 to be positioned against the bone to which the plate 10 is attached. This can be achieved by forming one or more bends 72a, 72b in the extension member 70 between the central portion 72 and the terminal portions 74, 76. The bends 72a, 72b can also be adapted to allow bendable movement of the terminal portions 74, 76 to allow them to be positioned at an angle relative to the central portion 72 as desired.
While a variety of complementary mating features can be used to mate the extension member 80 to the plate 100, in the illustrated embodiment, the complementary mating feature is a dovetail connection having complementary components 88, 133. In particular, the lower surface 81 of the extension member 80 includes a female dovetail 88, and the plate 100 includes a complementary, male dovetail 133. The male dovetail 133 on the plate 100 can be in the form of a chamfer, shown in
In use, the male and female dovetail components 88, 133 are adapted to slidably mate to one another, such that the extension member 80 can be slid onto the distal portion 103 of the central portion 112 of the fixation plate 100, and the middle thru-bore 83 in the extension plate 80 can be aligned with one of the distal thru-bore 118 in the plate 100. The dovetail components 88, 103 can also optionally be dimensioned to provide a frictional or interference fit to fixedly or securely mate the extension member 80 to the fixation plate 100. One of ordinary skill in the art will appreciate that the male and female dovetail members 88, 103 can be reversed, or that the complementary mating feature can have any other form, such as a T-slot. Moreover, the extension member 80 can have a variety of other configurations, and it can be adapted to attach to any portion of a spinal fixation plate.
One of ordinary skill in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
The present application is a divisional of U.S. application Ser. No. 10/830,621 filed on Apr. 23, 2004 and entitled “Spinal Fixation Plates and Plate Extensions,” which is hereby incorporated by reference in its entirety
Number | Name | Date | Kind |
---|---|---|---|
2004182 | Arey | Jun 1935 | A |
3654053 | Toedter | Apr 1972 | A |
4771767 | Steffee | Sep 1988 | A |
4778321 | Okawa | Oct 1988 | A |
4865025 | Buzzi et al. | Sep 1989 | A |
5002542 | Frigg | Mar 1991 | A |
5084048 | Jacob | Jan 1992 | A |
5209752 | Ashman | May 1993 | A |
5344422 | Frigg | Sep 1994 | A |
5360429 | Jeanson et al. | Nov 1994 | A |
5372598 | Luhr et al. | Dec 1994 | A |
5470333 | Ray | Nov 1995 | A |
5507745 | Logroscino et al. | Apr 1996 | A |
5531747 | Ray | Jul 1996 | A |
5575791 | Lin | Nov 1996 | A |
5582612 | Lin | Dec 1996 | A |
5613968 | Lin | Mar 1997 | A |
5667506 | Sutterlin | Sep 1997 | A |
5725528 | Errico | Mar 1998 | A |
5741255 | Krag et al. | Apr 1998 | A |
5888221 | Gelbard | Mar 1999 | A |
5938663 | Petreto | Aug 1999 | A |
5951557 | Luter | Sep 1999 | A |
6050997 | Mullane | Apr 2000 | A |
6063089 | Errico et al. | May 2000 | A |
6106526 | Harms et al. | Aug 2000 | A |
6146382 | Hurlbert | Nov 2000 | A |
6146384 | Lee et al. | Nov 2000 | A |
6197028 | Ray et al. | Mar 2001 | B1 |
6224602 | Hayes | May 2001 | B1 |
6299614 | Kretschmer | Oct 2001 | B1 |
6342055 | Eisermann et al. | Jan 2002 | B1 |
6355038 | Pisharodi | Mar 2002 | B1 |
6375656 | Faure | Apr 2002 | B1 |
6413257 | Lin et al. | Jul 2002 | B1 |
6423064 | Kluger | Jul 2002 | B1 |
6485491 | Farris et al. | Nov 2002 | B1 |
6524315 | Selvitelli et al. | Feb 2003 | B1 |
6547790 | Harkey, III et al. | Apr 2003 | B2 |
6602256 | Hayes | Aug 2003 | B1 |
6641583 | Shluzas et al. | Nov 2003 | B2 |
7232441 | Altarac et al. | Jun 2007 | B2 |
20020188296 | Michelson | Dec 2002 | A1 |
20030036759 | Musso | Feb 2003 | A1 |
20030153913 | Altarac | Aug 2003 | A1 |
20040039385 | Mazda et al. | Feb 2004 | A1 |
20040092947 | Foley | May 2004 | A1 |
20040117016 | Abramson | Jun 2004 | A1 |
20040153070 | Barker et al. | Aug 2004 | A1 |
20040210220 | Tornier | Oct 2004 | A1 |
20050240185 | Boomer et al. | Oct 2005 | A1 |
20050283152 | Lindemann et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
0106939 | Feb 2001 | WO |
0215806 | Feb 2002 | WO |
Entry |
---|
Brochure: Blackstone Medical Inc., “Bottom to Top, Fixation From T3 to Occiput,” Oct. 2003. |
Brochure: Synthes Spine, “The StarLock Components for Use with the CerviFix System Technique Guide”, Oct. 2002. |
Number | Date | Country | |
---|---|---|---|
20100010541 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10830621 | Apr 2004 | US |
Child | 12499287 | US |