The present invention relates to medical devices, and more particularly to spinal fixation plates for promoting fusion of adjacent vertebral bodies.
Advancing age, as well as injury, can lead to changes in the bones, disks, joints, and ligaments of the spine producing pain from nerve root compression. Under certain circumstances, alleviation of pain can be provided by performing a spinal fusion. This is a procedure that involves joining two or more adjacent vertebrae with a bone fixation device so that they no longer are able to move relative to each other. For a number of known reasons, bone fixation devices are useful for promoting proper healing of injured or damaged vertebral bone segments caused by trauma, tumor growth, or degenerative disc disease. The external fixation devices immobilize the injured bone segments to ensure the proper growth of new osseous tissue between the damaged segments. These types of external bone fixation devices often include internal bracing and instrumentation to stabilize the spinal column to facilitate the efficient healing of the damaged area without deformity or instability, while minimizing any immobilization and post-operative care of the patient.
One such device is a bone fixation plate that is used to immobilize adjacent skeletal parts such as bones. Typically, the fixation plate is a rigid metal or polymeric plate positioned to span bones or bone segments that require immobilization with respect to one another. The plate is fastened to the respective bones, usually with bone screws, so that the plate remains in contact with the bones and fixes them in a desired position. Bone plates can be useful in providing the mechanical support necessary to keep vertebral bodies in proper position and bridge a weakened or diseased area such as when a disc, vertebral body or fragment has been removed.
Such plates have been used to immobilize a variety of bones, including vertebral bodies of the spine. These bone plate systems usually include a rigid bone plate having a plurality of screw openings. The openings are either holes or slots to allow for freedom of screw movement. The bone plate is placed against the damaged vertebral bodies and bone screws are used to secure the bone plate to the spine and optionally to a prosthetic implant positioned between the adjacent vertebrae.
While several types of bone fixation plates exists, there remains a need for improved spinal fixation plates.
The present invention generally provides spinal fixation plates, spinal implants for use with spinal fixation plates, and methods for implanting the same. In one embodiment of the present invention, a spinal fixation plate is provided for maintaining adjacent vertebrae in a fixed position with respect to one another. The fixation plate includes a mid-portion with opposed superior and inferior portions. The superior and inferior portions can each include at least one thru-bore formed therein for receiving a fastening element, and the superior and inferior portions are preferably positioned at an angle with respect to the mid-portion such that, when the plate is positioned in relation to adjacent superior and inferior vertebrae, the superior and inferior portions of the plate are positioned adjacent to the anterior rim of each vertebra. In an exemplary embodiment, the superior and inferior portions are angled in a direction anterior to the anterior face of the mid-portion, and the angle is preferably less than about 15°.
In one exemplary embodiment, the plate can include a posterior curvature formed about a longitudinal axis. As a result, the plate can have a substantially concave posterior face, and the plate can also optionally have a substantially convex anterior face. In another embodiment, the superior and inferior portions of the plate preferably each include first and second thru-bore tabs formed on opposed sides of the longitudinal axis of the plate. When combined with the curvature in the plate, the first and second opposed tabs can be angled toward one another in a posterior direction. In an exemplary embodiment, the angle between a posterior face of the first thru-bore tab and a posterior face of the second thru-bore tab in each of the superior and inferior portions is in the range of about 150° to 180°, and more preferably the angle is about 160°.
In yet another embodiment of the present invention, a spinal fixation plate is provided having a mid-portion and opposed superior and inferior portions extending at an angle with respect to the mid-portion in a direction anterior to an anterior face of the mid-portion. The superior and inferior portions each preferably include first and second thru-bore tabs formed on opposed sides of a longitudinal axis of the plate. The first and second thru-bores tabs are preferably angled toward one another in a posterior direction. The first and second thru-bores tabs in the superior and inferior portions also preferably each include a thru-bore formed therein and adapted to receive a fastening element to mate the plate to adjacent vertebrae. The mid-portion can also optionally be curved about a longitudinal axis, preferably in a posterior direction, such that opposed side edges of the mid-portion are positioned posterior to a posterior face of the mid-portion at the longitudinal axis of the mid-portion. At least a portion of the plate can have a substantially concave posterior face as a result of the curve formed therein. At least a portion of the plate can also optionally have a substantially convex anterior face as a result of the curve formed therein.
The present invention also provides a spinal fixation kit that includes at least one fixation plate and an implant that is adapted to be disposed between adjacent vertebra and that has posterior, anterior, superior, and inferior faces. The fixation plate preferably has a mid-portion with opposed superior and inferior portions that define a plate length that is preferably greater than a height of the implant between the superior and inferior faces. The superior and inferior portions also preferably include first and second opposed thru-bore tabs that extend in a direction anterior to an anterior face of the mid-portion of the fixation plate, and/or that extend at an angle toward one another in a posterior direction. The kit can also include at least one fastening element that is adapted to extend through a thru-bore tab in the superior and inferior portions of the fixation plate to mate the plate to adjacent vertebrae.
The present invention also provides methods for implanting a spinal fixation plate. In one exemplary embodiment, the method can include one or more of the following steps: distracting adjacent vertebrae, removing at least a portion of the disc disposed between the adjacent vertebrae, positioning a spinal implant between the adjacent vertebrae, and positioning a spinal fixation plate adjacent to an anterior face of the spinal implant such the opposed superior and inferior portions of the spinal fixation plate are positioned on the anterior rim of each vertebra. A fastening element can then be inserted through one or more of the thru-bore formed in the spinal fixation plate to attach the spinal fixation plate to the adjacent vertebrae. In an exemplary embodiment, the superior and inferior portions of the spinal fixation plate include longitudinally opposed thru-bores tabs, each having a thru-bore formed therein for receiving a fastening element. The opposed thru-bore tabs in the superior portion are preferably angled toward one another in a posterior direction, and the thru-bore tabs in the inferior portion are also preferably angled toward one another in a posterior direction. The superior and inferior portions of the plate can also be angled in a direction anterior to an anterior face of a mid-portion of the plate, such that the mid-portion of the plate is flush or sub-flush relative to an anterior face of the adjacent vertebrae.
In yet another embodiment of the present invention, a spinal fixation assembly is provided including a fusion cage with posterior, anterior, superior, and inferior faces, and a plate having at least one aperture for receiving a bone screw and being configuration to slidably mate to the fusion cage. In one embodiment, the plate includes a mating element for engaging the cage in an anterior-posterior direction. The mating element can have a variety of configurations, but it preferably takes the form of opposed first and second arms that are adapted to engage the superior and inferior faces of the fusion cage. The first and second arms can be flexible, and preferably extend from the plate and are adapted to seat on the superior and inferior faces of the fusion cage. The superior and inferior faces of the fusion cage can each include an arm-seating recess formed therein for receiving the first and second arms on the plate. These recesses allow the arms to sit flush with the superior and inferior faces when disposed within the arm-seating recesses. In an exemplary embodiment, the first and second arms are adapted to mate with the arm-receiving recesses formed on the fusion cage with an interference fit to temporarily secure the plate to the fusion cage.
In another embodiment, the anterior face of the fusion cage can include at least one bore formed therein, and the mating element can be at least one arm that is adapted to extend into the bore in the fusion cage to mate the plate to the fusion cage. In a preferred embodiment, the anterior face of the fusion cage includes a superior bore and an inferior bore formed therein, and the mating element comprises opposed first and second arms that are adapted to extend into the superior and inferior bores in the fusion cage to mate the plate to the fusion cage.
In another embodiment, the fusion cage includes an intermediate plane that separates the inferior face from the superior face to define an inferior side and a superior side, and the plate includes at least one inferior aperture on the inferior side of the fusion cage and at least one superior aperture on the superior side of the fusion cage. Each aperture in the plate can have a first end having an opening, a second, opposed end, and a sidewall extending therebetween that defines an inner lumen. The first end of each aperture preferably is a generally spherical recess formed in the plate for rotatably seating a head of a bone screw. A split bushing is preferably disposed within each aperture in the plate. Each aperture can optionally include an anti-rotation mechanism effective to prevent each split bushing from rotating within the aperture. The apertures and the split bushings can have a variety of configurations. In one embodiment, the sidewall of each aperture can be concave and each split bushing can include a convex outer surface. Each split bushing can also optionally include a shoulder formed therein that abuts a corresponding shoulder formed within each aperture. In another embodiment, each split bushing can include an inner surface having threads formed thereon that are adapted to mate with corresponding threads formed on a bone screw.
In other aspects, the inferior and superior apertures are disposed in inferior and superior portions. The portions, or tabs, are preferably angled with respect to the fusion cage in a direction anterior to the anterior face of the fusion cage. In an exemplary embodiment, each portion extends in a plane, and each aperture defines a central axis that extends through the aperture at an angle with respect to the plane of the portion in which the aperture is disposed.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
In general, the present invention provides a spinal fixation plate having at least one aperture for receiving a bone screw. The plate is adapted to be attached to adjacent vertebrae to maintain the vertebrae in and fixed position and thereby provide biomechanical stability to the vertebra. The plate can be used in connection with a variety of spinal implants, including inner body fusion devices, fusion cages, bone grafts, artificial discs, or other vertebral implants, and it can optionally be adapted for use in both mating or non-mating relationships with the inner body fusion devices or other vertebral implant.
As indicated above, the superior and inferior portions 14, 16 are adapted to mate to superior and inferior vertebrae, respectively, and the mid-portion 12 extends therebetween to maintain the vertebrae at a fixed position with respect to one another. Accordingly, the plate 10 preferably includes one or more apertures or thru-bores formed therein for receiving a fastening element, such as a bone screw, to attach the plate 10 to the adjacent vertebrae. In the illustrated exemplary embodiment, each portion 14, 16 includes two thru-bores 20a, 20b, 22a, 22b formed therein. The thru-bores 20a, 20b, 22a, 22b are preferably formed on opposed sides of the longitudinal axis L of the plate 10 such that each of the superior and inferior portions 14, 16 of the plate 10 include first and second opposed thru-bore tabs 15a, 15b, 17a, 17b. The thru-bores 20a, 20b, 22a, 22b can have a variety of configurations, and exemplary configurations will be discussed in more detail with respect to
The superior and inferior portions 14, 16 of the plate 10 can also be adapted to position the thru-bores 20a, 20b, 22a, 22b at a particular location with respect to the adjacent vertebrae. In an exemplary embodiment, the superior and inferior portions 14, 16 can be angled with respect to the mid-portion 12 and more particularly, as best shown in
The angulation of the superior and inferior portions 14, 16 can vary depending on the intended use, but in an exemplary embodiment the angle αT between the anterior surface 14a, 16a of the superior and inferior portions 14, 16 and the anterior surface 12a of the mid-portion 12 is less than about 15°, and more preferably the angle αT is about 10°. A person having ordinary skill in the art will appreciate that the angle αT can be greater than 15°.
The plate 10 can also or alternatively have a curve X, as best shown in
The curve X can also continue through the superior and inferior portions 14, 16 of the plate 10, such that the opposed edges 14c, 14d, 16c, 16d of the superior and inferiors portions 14, 16 are positioned posterior to the posterior faces 14b, 16b thereof. As previously discussed, the superior and inferior portions 14, 16 can also be angled in a direction anterior to the anterior faces 14a, 16a thereof. When the angle αT and the curve X are combined, the opposed thru-bore tabs 15a, 15b, 17a, 17b are not only angled anterior to the anterior face 12a of the mid-portion 12 of the plate 10, but they are also angled toward one another in a posterior direction. While the angle αx, shown in
In use, the plate 10 can be implanted in the lumbar, cervical, or thoracic regions of the patient's spine, and thus the size of the plate 10 will vary depending on the intended use. The plate 10 can also be adapted for use in various surgical approaches, but preferably the plate 10 is adapted for anterior fixation. In an exemplary embodiment, the plate 10 has a length l and/or width w that is adapted for use in the lumbar region of a patient's spine. More preferably, the plate 10 has a length l that is less than a distance between the adjacent vertebrae to which the plate 10 is adapted to be mated to. This allows the superior and inferior portions 14, 16 of the plate 10, and in particular the thru-bore tabs 15a, 15b, 17a, 17b, to be positioned on the anterior rims of the adjacent vertebrae, as previously discussed above. A person skilled in the art will appreciate that the plate 10 can be adapted for a variety of other uses and the configuration of the plate 10 can vary depending on the intended use. Moreover, a variety of plates 10 having various sizes and configurations can be provided as part of a kit, allowing a surgeon to select the appropriate plate 10 based on the intended use.
By way of non-limiting example,
Once the fusion cage is in position, the fixation plate 10, and in particular the posterior surface 12b of the plate 10, can be placed adjacent to the anterior face 32 of the fusion cage 30 to position the superior and inferior portions 14, 16 of the plate 10 against the anterior rims 52a, 54a of the adjacent vertebrae 52, 54. Once positioned against the vertebrae, the plate 10 is preferably not fixedly attached to the fusion cage 30 such that the two components are in a non-mating relationship with one another. In other words, the plate 10 and the fusion cage 30 remain as separate components from one another. One or more bone screws (only two screws 62a, 64 are shown) can then be inserted through the thru-bores 20a, 20b, 22a, 22b in the superior and inferior portions 14, 16 of the plate 10 to secure the plate 10 to the adjacent vertebrae 52, 54. A person skilled in the art will appreciate that various procedures and tools can be used to position the plate 10 against the adjacent vertebrae and to prepare the vertebrae for receiving the bone screws. The plate 10 can also optionally include various features to allow the plate 10 to be coupled to a tool for implanting the plate 10.
Each of the superior and inferior portions 128, 130 of the plate 120 further include at least one aperture 122a-d formed therein for receiving a bone screw to secure the plate 120 to a vertebra. As shown, the superior and inferior portions 128, 130 of the plate 120 each include two apertures 122a, 122b, 122c, 122d formed therein. The apertures 122a-d can have a variety of configurations, and exemplary configurations will be discussed in more detail with respect to
The superior and inferior portions 128, 130 of the plate 120 can also extend at an angle with respect to the mid-portion 126 of the plate 120. In particular, referring to
The mid-portion 126 of the plate 120 can also include a central aperture 132 formed therein. The central aperture 132 is positioned such that it is aligned with a central bore (not shown) formed in the fusion cage 110 when the plate 120 is mated to the cage 110. The central aperture 132 and bore can be effective to receive an insertion tool and/or a fastening element, such as a screw, effective to mate the plate 120 to the fusion cage 110. In one embodiment (not shown), the fastening element can be fixedly, but rotatably disposed within the central aperture 132 of the plate 120, and/or it can be adapted to snap into the central bore in the fusion cage 110. The fastening element can further be adapted to engage the fusion cage 110 upon rotation thereof. A person having ordinary skill in the art will appreciate that a variety of techniques can be used to mate the plate 120 to the fusion cage 110.
Still referring to
The shape of the arms 124a, 124b can also vary, but preferably each arm 124a, 124b is adapted to contour the shape of the fusion cage 110. By way of non-limiting example, where the fusion cage 110 has domed or convex superior and inferior surfaces 102, 104, the arms 124a, 124b are preferably convex to contour the shape of the fusion cage 110. The size of each arm 124a, 124b can vary as well, but preferably each arm 124a, 124b has a length la sufficient to enable the arms 124a, 124b to extend across at least a portion of the superior and inferior surfaces 102, 104 of the fusion cage 110, and a width wa sufficient to allow the arms 124a, 124b to grasp the fusion cage 110.
Each arm 124a, 124b can have a variety of configurations, but preferably the arms 124a, 124b include an engagement element 136a, 136b effective to engage the superior and inferior faces 102, 104 of the fusion cage 110. The engagement element 136a, 136b preferably provides an interference fit to temporarily secure the plate 120 to the fusion cage 110. While the engagement element 136a, 136b can have a variety of configurations, the engagement element 136a, 136b can be, for example, in the form of at least one protrusion formed on an inner surface of each arm 124a, 124b that is adapted to sit in at least one indentation 138 (shown in
Referring now to
A central bore (not shown) can be formed in the anterior face 102 of the fusion cage 110, and it preferably includes threads formed therein for receiving a fastening element, e.g., a screw. The threads are preferably spinal lock threads to provide a secure connection between the plate and the cage. First and second transverse elements 140, 142 can join the posterior face 106 to the anterior face 108, and a guide path 144 for receiving an insertion tool can extend across the superior and inferior faces 102, 104 between the posterior and anterior faces 106, 108.
Fusion cage 110 further includes an arm-seating recess formed in each of the superior and inferior surfaces 102, 104 for receiving the arms 124a, 124b formed on the plate 120. The recesses can be formed in the guide path 144, or more preferably the guide path 144 can form arm-seating recesses, as is shown in
The fusion cage 110 can optionally include a number of bone engaging surface features 146 formed on the superior and inferior surfaces 102, 104 to facilitate the secure mounting of the cage 110 between adjacent vertebrae. The bone engaging surface features 146 can be present on the entire surface area of the superior and inferior surfaces 102, 104, or optionally, selected regions of the superior and inferior surfaces 102, 104 can be free of surfaces features 146. The bone engaging surface features 146 can have a variety of shapes, but are preferably in the form of wedge-shaped ridges that extend is a direction transverse to the posterior 106 and anterior 108 faces of the fusion cage 110. Each bone engaging surface feature 146 includes a posterior side wall 148 and an anterior side wall 149, which meet at a peak 150. The side walls 148, 149 of each surface feature 146 can be angled or sloped to facilitate insertion of the cage 110 between adjacent vertebrae and to assist in preventing the fusion cage 110 from becoming dislodged. The size of the surface features 146 can also vary but preferably the surface features 146 have a size sufficient to cause each surface feature 146 to engage and penetrate the adjacent vertebrae. It will be understood that while ridges 146 have been shown in a preferred embodiment, it is contemplated that there are a variety of structures which could provide a surface for effective engagement with the vertebral bodies to limit expulsion from the disc space.
In use, the adjacent vertebrae are prepared and distracted and the fusion cage 110 is placed therebetween, as previously described above. Once the fusion cage 110 is in position, the fixation plate 120 can be placed adjacent to the anterior face 108 of the fusion cage 110 to position the superior and inferior portions 128, 130 of the plate 110 against the anterior rims of the adjacent vertebrae. The plate 120 is then preferably mated to the anterior face 108 of the fusion cage 110 by positioning the arms 124a, 124b between the superior and inferior surfaces 102, 104 of the fusion cage 110 and the adjacent vertebrae. Where plate 120′ is used and the cage 110′ includes arm-receiving recesses 152, 154, the arms 124a′, 124b′ of the plate 120′ can be easily slid into the recesses 152, 154 to engage the cage 110′. A center screw (not shown) can then be inserted through a central aperture 132 in the plate 120 and through a bore in the cage (e.g.,
The present invention also provides a variety of configurations for securing a spinal fixation plate to adjacent vertebrae. In particular,
The split bushing 162 is disposed within the aperture 160 and it has a generally cylindrical shape with a gap (not shown) formed therein to allow the bushing 162 to be expanded. The split bushing 162 includes an outer surface 176 which can have a shape adapted to conform to the shape of the sidewall 172 of the aperture 160, and an inner surface 178 which is adapted to receive a bone screw 174. By way of non-limiting example, the split bushing 160 can have a convex outer surface 172 to allow the split bushing 162 to sit within the concave sidewall 172 of the aperture 160. The split bushing 162 further includes an inner diameter db that can vary between opposed first and second ends 168, 170 of the split bushing 162. Preferably, the diameter db of the bushing 162 at the first end 168 is larger than the diameter db of the bushing 162 at the second end 170. The tapered diameter allows the bushing 162 to receive a portion of the tapered undersurface of the head 164 of the bone screw 174.
Referring back to
The fusion cage and plate of the present invention can be made from a variety of materials. By way of non-limiting example, a carbon fiber composite or other radiolucent material is well suited for fabrication of the body, and titanium or carbon fiber composites are suitable materials for the plate 20.
As should be readily apparent from the preceding description, the present invention provides many advantages. For example, the fusion cage can be sufficiently broad and thick so that only a single cage is needed to replace an excised disc. The profile and slightly bowed or convex superior and inferior surfaces of the fusion cage body closely approximate the shape of a natural disc and provide an excellent, stable, load-bearing surface. The plate, when included, ensures that the body will not become dislodged from the spine, yet is readily accessible with an anterior approach. Further, the plate allows bone screws to be deeply embedded into the vertebral bodies without piercing or otherwise damaging the hard, load-bearing, cortical bone. Also, both the plate and the body include features that allow for relatively easy manipulation and insertion with appropriately configured surgical tools.
Of course, one skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
This application is a continuation of U.S. patent application Ser. No. 13/912,969, filed on Jun. 7, 2013, which is a continuation of U.S. patent application Ser. No. 12/883,832 (now U.S. Pat. No. 8,591,588), filed on Sep. 16, 2010 entitled “Spinal Fixation Plates,” which is a divisional of U.S. patent application Ser. No. 10/927,778 (now U.S. Pat. No. 7,819,903), filed on Aug. 27, 2004 and entitled “Spinal Fixation Plates,” which is a continuation-in-part of U.S. patent application Ser. No. 10/403,930 (now U.S. Pat. No. 7,112,222), filed on Mar. 31, 2003 and entitled “Anterior Lumbar Interbody Fusion Cage With Locking Plate.” These references are hereby expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1105105 | Sherman | Jul 1914 | A |
2621115 | Van Order | Dec 1952 | A |
2621145 | Sano | Dec 1952 | A |
4135506 | Ulrich | Jan 1979 | A |
4501269 | Bagby | Feb 1985 | A |
4503848 | Caspar et al. | Mar 1985 | A |
4512038 | Alexander et al. | Apr 1985 | A |
4599086 | Doty | Jul 1986 | A |
4627853 | Campbell et al. | Dec 1986 | A |
4678470 | Nashef et al. | Jul 1987 | A |
4717115 | Schmitz et al. | Jan 1988 | A |
4743256 | Brantigan | May 1988 | A |
4834757 | Brantigan | May 1989 | A |
4858603 | Clemow et al. | Aug 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4904261 | Dove et al. | Feb 1990 | A |
4936851 | Fox et al. | Jun 1990 | A |
4950296 | McIntyre | Aug 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4978350 | Wagenknecht | Dec 1990 | A |
4994084 | Brennan | Feb 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5062850 | MacMillan et al. | Nov 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5084051 | Tormala et al. | Jan 1992 | A |
5085660 | Lin | Feb 1992 | A |
5112354 | Sires | May 1992 | A |
5147404 | Downey | Sep 1992 | A |
5180381 | Aust et al. | Jan 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5211664 | Tepic et al. | May 1993 | A |
5235034 | Bobsein et al. | Aug 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5281226 | Davydov et al. | Jan 1994 | A |
5284655 | Bogdansky et al. | Feb 1994 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5314476 | Prewett et al. | May 1994 | A |
5314477 | Marnay | May 1994 | A |
5348788 | White | Sep 1994 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5405391 | Hednerson et al. | Apr 1995 | A |
5423817 | Lin | Jun 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
5439684 | Prewett et al. | Aug 1995 | A |
5443515 | Cohen et al. | Aug 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5458641 | Ramirez Jimenez | Oct 1995 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5507818 | McLaughlin | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5531746 | Errico et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5534031 | Matsuzaki et al. | Jul 1996 | A |
5549612 | Yapp et al. | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554191 | Lahille | Sep 1996 | A |
5556430 | Gendler | Sep 1996 | A |
5569308 | Sottosanti | Oct 1996 | A |
5571190 | Ulrich et al. | Nov 1996 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5593409 | Michelson | Jan 1997 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5607424 | Tropiano | Mar 1997 | A |
5607474 | Athanasiou et al. | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5609637 | Biedermann et al. | Mar 1997 | A |
5616144 | Yapp et al. | Apr 1997 | A |
5658335 | Allen | Aug 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5676699 | Gogolewski et al. | Oct 1997 | A |
5683394 | Rinner | Nov 1997 | A |
5683463 | Godefroy et al. | Nov 1997 | A |
5702449 | McKay | Dec 1997 | A |
5702451 | Biedermann et al. | Dec 1997 | A |
5702453 | Rabbe et al. | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5713899 | Marnay et al. | Feb 1998 | A |
5716415 | Steffee | Feb 1998 | A |
5728159 | Stroever et al. | Mar 1998 | A |
5735905 | Parr | Apr 1998 | A |
5755796 | Ibo et al. | May 1998 | A |
5755798 | Papavero et al. | May 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5766253 | Brosnahan, III | Jun 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5776196 | Matsuzaki et al. | Jul 1998 | A |
5776197 | Rabbe et al. | Jul 1998 | A |
5776198 | Rabbe et al. | Jul 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5782915 | Stone | Jul 1998 | A |
5785710 | Michelson | Jul 1998 | A |
5800433 | Benzel et al. | Sep 1998 | A |
5800550 | Sertich | Sep 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5861041 | Tienboon | Jan 1999 | A |
5865845 | Thalgott | Feb 1999 | A |
5865849 | Stone | Feb 1999 | A |
5872915 | Dykes et al. | Feb 1999 | A |
5876402 | Errico et al. | Mar 1999 | A |
5876452 | Athanasiou et al. | Mar 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5888222 | Coates et al. | Mar 1999 | A |
5888223 | Bray, Jr. | Mar 1999 | A |
5888224 | Beckers et al. | Mar 1999 | A |
5888227 | Cottle | Mar 1999 | A |
5888228 | Knothe et al. | Mar 1999 | A |
5895426 | Scarborough et al. | Apr 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5902338 | Stone | May 1999 | A |
5904683 | Pohndorf et al. | May 1999 | A |
5904719 | Errico et al. | May 1999 | A |
5910315 | Stevenson et al. | Jun 1999 | A |
5920312 | Wagner et al. | Jul 1999 | A |
5922027 | Stone | Jul 1999 | A |
5944755 | Stone | Aug 1999 | A |
5954722 | Bono | Sep 1999 | A |
5961554 | Janson et al. | Oct 1999 | A |
5964807 | Gan et al. | Oct 1999 | A |
5968098 | Winslow | Oct 1999 | A |
5972368 | McKay | Oct 1999 | A |
5976187 | Richelsoph | Nov 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5981828 | Nelson et al. | Nov 1999 | A |
5984967 | Zdeblick et al. | Nov 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
6013853 | Athanasiou et al. | Jan 2000 | A |
6019793 | Perren et al. | Feb 2000 | A |
6025538 | Yaccarino, III | Feb 2000 | A |
6033405 | Winslow et al. | Mar 2000 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6039762 | McKay | Mar 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6045580 | Scarborough et al. | Apr 2000 | A |
6056749 | Kuslich | May 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6080158 | Lin | Jun 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6090998 | Grooms et al. | Jul 2000 | A |
6093205 | McLeod et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6096081 | Grivas et al. | Aug 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6110482 | Khouri et al. | Aug 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6136001 | Michelson | Oct 2000 | A |
6139550 | Michelson | Oct 2000 | A |
6143030 | Schroder | Nov 2000 | A |
6143033 | Paul et al. | Nov 2000 | A |
6156037 | LeHuec et al. | Dec 2000 | A |
6156070 | Incavo et al. | Dec 2000 | A |
6168596 | Wellisz et al. | Jan 2001 | B1 |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6193721 | Michelson | Feb 2001 | B1 |
6193756 | Studer et al. | Feb 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6224602 | Hayes | May 2001 | B1 |
6231610 | Geisler | May 2001 | B1 |
6235033 | Brace et al. | May 2001 | B1 |
6235034 | Bray | May 2001 | B1 |
6235059 | Benezech et al. | May 2001 | B1 |
6241769 | Nicholson et al. | Jun 2001 | B1 |
6245108 | Biscup | Jun 2001 | B1 |
6258089 | Campbell et al. | Jul 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6261291 | Talaber et al. | Jul 2001 | B1 |
6261586 | McKay | Jul 2001 | B1 |
6264695 | Stoy | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6290703 | Ganem | Sep 2001 | B1 |
6306139 | Fuentes et al. | Oct 2001 | B1 |
6306170 | Ray | Oct 2001 | B2 |
6322562 | Wolter et al. | Nov 2001 | B1 |
6342055 | Eisermann et al. | Jan 2002 | B1 |
6342074 | Simpson | Jan 2002 | B1 |
6364880 | Michelson | Apr 2002 | B1 |
6371986 | Bagby | Apr 2002 | B1 |
6383186 | Michelson | May 2002 | B1 |
6387130 | Stone et al. | May 2002 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
6423063 | Bonutti | Jul 2002 | B1 |
6428542 | Michelson | Aug 2002 | B1 |
6432106 | Fraser | Aug 2002 | B1 |
6447512 | Landry et al. | Sep 2002 | B1 |
6447546 | Bramlet et al. | Sep 2002 | B1 |
6454771 | Michelson | Sep 2002 | B1 |
6458158 | Anderson et al. | Oct 2002 | B1 |
6468311 | Boyd et al. | Oct 2002 | B2 |
6471724 | Zdeblick et al. | Oct 2002 | B2 |
6503250 | Paul | Jan 2003 | B2 |
6524312 | Landry et al. | Feb 2003 | B2 |
6558387 | Errico et al. | May 2003 | B2 |
6558423 | Michelson | May 2003 | B1 |
6562073 | Foley | May 2003 | B2 |
6565571 | Jackowski et al. | May 2003 | B1 |
6569201 | Moumene et al. | May 2003 | B2 |
6575975 | Brace et al. | Jun 2003 | B2 |
6576017 | Foley et al. | Jun 2003 | B2 |
6585769 | Muhanna et al. | Jul 2003 | B1 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6602256 | Hayes | Aug 2003 | B1 |
6605090 | Trieu et al. | Aug 2003 | B1 |
6613091 | Zdeblick et al. | Sep 2003 | B1 |
6616671 | Landry et al. | Sep 2003 | B2 |
6620163 | Michelson | Sep 2003 | B1 |
6623486 | Weaver et al. | Sep 2003 | B1 |
6629998 | Lin | Oct 2003 | B1 |
6638310 | Lin et al. | Oct 2003 | B2 |
6645212 | Goldhahn et al. | Nov 2003 | B2 |
6656181 | Dixon et al. | Dec 2003 | B2 |
6679887 | Nicholson et al. | Jan 2004 | B2 |
6682563 | Scharf | Jan 2004 | B2 |
6695846 | Richelsoph et al. | Feb 2004 | B2 |
6695851 | Zdeblick et al. | Feb 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6712818 | Michelson | Mar 2004 | B1 |
6712820 | Orbay | Mar 2004 | B2 |
6730127 | Michelson | May 2004 | B2 |
6736850 | Davis | May 2004 | B2 |
6740088 | Kozak et al. | May 2004 | B1 |
6761739 | Shepard | Jul 2004 | B2 |
6770096 | Bolger et al. | Aug 2004 | B2 |
6786909 | Dransfeld et al. | Sep 2004 | B1 |
6805714 | Sutcliffe | Oct 2004 | B2 |
6808537 | Michelson | Oct 2004 | B2 |
6824564 | Crozet | Nov 2004 | B2 |
6835206 | Jackson | Dec 2004 | B2 |
6837905 | Lieberman | Jan 2005 | B1 |
6849093 | Michelson | Feb 2005 | B2 |
6855168 | Crozet | Feb 2005 | B2 |
6884242 | LeHuec et al. | Apr 2005 | B2 |
6890334 | Brace et al. | May 2005 | B2 |
6892586 | Welch et al. | May 2005 | B1 |
6899735 | Coates et al. | May 2005 | B2 |
6916320 | Michelson | Jul 2005 | B2 |
6962606 | Michelson | Nov 2005 | B2 |
6972019 | Michelson | Dec 2005 | B2 |
6972035 | Michelson | Dec 2005 | B2 |
6974479 | Trieu | Dec 2005 | B2 |
6984234 | Bray | Jan 2006 | B2 |
7001385 | Bonutti | Feb 2006 | B2 |
7001432 | Keller et al. | Feb 2006 | B2 |
7033394 | Michelson | Apr 2006 | B2 |
7041135 | Michelson | May 2006 | B2 |
7044968 | Yaccarino, III et al. | May 2006 | B1 |
7060097 | Fraser et al. | Jun 2006 | B2 |
7077843 | Thramann et al. | Jul 2006 | B2 |
7077864 | Byrd, III et al. | Jul 2006 | B2 |
7112222 | Fraser et al. | Sep 2006 | B2 |
7112223 | Davis | Sep 2006 | B2 |
7135024 | Cook et al. | Nov 2006 | B2 |
7135043 | Nakahara et al. | Nov 2006 | B2 |
7137984 | Michelson | Nov 2006 | B2 |
7147665 | Bryan et al. | Dec 2006 | B1 |
7163561 | Michelson | Jan 2007 | B2 |
7172627 | Fiere et al. | Feb 2007 | B2 |
7172672 | Silverbrook | Feb 2007 | B2 |
7232463 | Falahee | Jun 2007 | B2 |
7232464 | Mathieu et al. | Jun 2007 | B2 |
7235105 | Jackson | Jun 2007 | B2 |
7255698 | Michelson | Aug 2007 | B2 |
7273481 | Lombardo et al. | Sep 2007 | B2 |
7276070 | Muckter | Oct 2007 | B2 |
7276082 | Zdeblick et al. | Oct 2007 | B2 |
7306605 | Ross | Dec 2007 | B2 |
7320708 | Bernstein | Jan 2008 | B1 |
7323011 | Shepard et al. | Jan 2008 | B2 |
7481829 | Baynham et al. | Jan 2009 | B2 |
7594932 | Aferzon et al. | Sep 2009 | B2 |
7608096 | Foley et al. | Oct 2009 | B2 |
7608107 | Michelson | Oct 2009 | B2 |
7618456 | Mathieu et al. | Nov 2009 | B2 |
7819903 | Fraser et al. | Oct 2010 | B2 |
7833245 | Kaes et al. | Nov 2010 | B2 |
7846207 | Lechmann et al. | Dec 2010 | B2 |
7862616 | Lechmann et al. | Jan 2011 | B2 |
7875076 | Mathieu et al. | Jan 2011 | B2 |
8328872 | Duffield et al. | Dec 2012 | B2 |
8343222 | Cope | Jan 2013 | B2 |
8591588 | Fraser et al. | Nov 2013 | B2 |
9039775 | Fraser et al. | May 2015 | B2 |
20010001129 | McKay et al. | May 2001 | A1 |
20010005796 | Zdeblick et al. | Jun 2001 | A1 |
20010010021 | Boyd et al. | Jul 2001 | A1 |
20010016777 | Biscup | Aug 2001 | A1 |
20010031254 | Bianchi et al. | Oct 2001 | A1 |
20010039456 | Boyer et al. | Nov 2001 | A1 |
20010041941 | Boyer et al. | Nov 2001 | A1 |
20020004683 | Michelson | Jan 2002 | A1 |
20020010511 | Michelson | Jan 2002 | A1 |
20020016595 | Michelson | Feb 2002 | A1 |
20020022843 | Michelson | Feb 2002 | A1 |
20020029084 | Paul et al. | Mar 2002 | A1 |
20020065517 | Paul | May 2002 | A1 |
20020077630 | Lin | Jun 2002 | A1 |
20020082597 | Fraser | Jun 2002 | A1 |
20020082603 | Dixon et al. | Jun 2002 | A1 |
20020091447 | Shimp et al. | Jul 2002 | A1 |
20020095155 | Michelson | Jul 2002 | A1 |
20020099376 | Michelson | Jul 2002 | A1 |
20020106393 | Bianchi et al. | Aug 2002 | A1 |
20020111680 | Michelson | Aug 2002 | A1 |
20020128712 | Michelson | Sep 2002 | A1 |
20020128717 | Alfaro et al. | Sep 2002 | A1 |
20020147450 | LeHuec et al. | Oct 2002 | A1 |
20020169508 | Songer et al. | Nov 2002 | A1 |
20020193880 | Fraser | Dec 2002 | A1 |
20030045939 | Casutt | Mar 2003 | A1 |
20030078666 | Ralph et al. | Apr 2003 | A1 |
20030078668 | Michelson | Apr 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030135277 | Bryan et al. | Jul 2003 | A1 |
20030153975 | Byrd et al. | Aug 2003 | A1 |
20030167092 | Foley | Sep 2003 | A1 |
20030187443 | Lauryssen et al. | Oct 2003 | A1 |
20030195626 | Huppert | Oct 2003 | A1 |
20030195632 | Foley et al. | Oct 2003 | A1 |
20030199983 | Michelson | Oct 2003 | A1 |
20040039387 | Gause et al. | Feb 2004 | A1 |
20040078078 | Shepard | Apr 2004 | A1 |
20040078081 | Ferree | Apr 2004 | A1 |
20040093084 | Michelson | May 2004 | A1 |
20040102848 | Michelson | May 2004 | A1 |
20040126407 | Falahee | Jul 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040193269 | Fraser et al. | Sep 2004 | A1 |
20040199254 | Louis | Oct 2004 | A1 |
20040210310 | Trieu | Oct 2004 | A1 |
20040210314 | Michelson | Oct 2004 | A1 |
20040220571 | Assaker et al. | Nov 2004 | A1 |
20040249377 | Kaes et al. | Dec 2004 | A1 |
20040254644 | Taylor | Dec 2004 | A1 |
20050015149 | Michelson | Jan 2005 | A1 |
20050021143 | Keller | Jan 2005 | A1 |
20050033294 | Garden et al. | Feb 2005 | A1 |
20050033433 | Michelson | Feb 2005 | A1 |
20050049593 | Duong et al. | Mar 2005 | A1 |
20050049595 | Suh et al. | Mar 2005 | A1 |
20050065608 | Michelson | Mar 2005 | A1 |
20050071008 | Kirschman | Mar 2005 | A1 |
20050085913 | Fraser et al. | Apr 2005 | A1 |
20050101960 | Fiere et al. | May 2005 | A1 |
20050149193 | Zucherman et al. | Jul 2005 | A1 |
20050159813 | Molz | Jul 2005 | A1 |
20050159818 | Blain | Jul 2005 | A1 |
20050159819 | McCormack et al. | Jul 2005 | A1 |
20050177236 | Mathieu et al. | Aug 2005 | A1 |
20050216081 | Taylor | Sep 2005 | A1 |
20050228382 | Richelsoph et al. | Oct 2005 | A1 |
20050240271 | Zubok et al. | Oct 2005 | A1 |
20060030851 | Bray et al. | Feb 2006 | A1 |
20060079901 | Ryan et al. | Apr 2006 | A1 |
20060079961 | Michelson | Apr 2006 | A1 |
20060085071 | Lechmann et al. | Apr 2006 | A1 |
20060089717 | Krishna et al. | Apr 2006 | A1 |
20060129240 | Lessar et al. | Jun 2006 | A1 |
20060136063 | Zeegers | Jun 2006 | A1 |
20060142765 | Dixon et al. | Jun 2006 | A9 |
20060195189 | Link et al. | Aug 2006 | A1 |
20060206208 | Michelson | Sep 2006 | A1 |
20070088441 | Duggal et al. | Apr 2007 | A1 |
20070118125 | Orbay et al. | May 2007 | A1 |
20070123987 | Bernstein | May 2007 | A1 |
20070162130 | Rashbaum et al. | Jul 2007 | A1 |
20070168032 | Muhanna et al. | Jul 2007 | A1 |
20070219365 | Joyce et al. | Sep 2007 | A1 |
20070219635 | Mathieu et al. | Sep 2007 | A1 |
20070225806 | Squires et al. | Sep 2007 | A1 |
20070225812 | Gill | Sep 2007 | A1 |
20070270961 | Ferguson | Nov 2007 | A1 |
20080051890 | Waugh et al. | Feb 2008 | A1 |
20080119933 | Aebi et al. | May 2008 | A1 |
20080133013 | Duggal et al. | Jun 2008 | A1 |
20080177307 | Moskowitz et al. | Jul 2008 | A1 |
20080249569 | Waugh et al. | Oct 2008 | A1 |
20080249575 | Waugh et al. | Oct 2008 | A1 |
20080269806 | Zhang et al. | Oct 2008 | A1 |
20080306596 | Jones et al. | Dec 2008 | A1 |
20090076608 | Gordon et al. | Mar 2009 | A1 |
20090105830 | Jones et al. | Apr 2009 | A1 |
20090210064 | Lechmann et al. | Aug 2009 | A1 |
20100016901 | Robinson | Jan 2010 | A1 |
20100137916 | Hynes et al. | Jun 2010 | A1 |
20110004253 | Fraser et al. | Jan 2011 | A1 |
20110118843 | Mathieu et al. | May 2011 | A1 |
20120101580 | Lechmann et al. | Apr 2012 | A1 |
20120101581 | Mathieu et al. | Apr 2012 | A1 |
20120109308 | Lechmann et al. | May 2012 | A1 |
20120109309 | Mathieu et al. | May 2012 | A1 |
20120109310 | Mathieu et al. | May 2012 | A1 |
20120109311 | Mathieu et al. | May 2012 | A1 |
20120109312 | Mathieu et al. | May 2012 | A1 |
20120109313 | Mathieu et al. | May 2012 | A1 |
20130274810 | Fraser et al. | Oct 2013 | A1 |
20150230832 | Fraser et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2317791 | Aug 1999 | CA |
3042003 | Jul 1982 | DE |
3933459 | Apr 1991 | DE |
4242889 | Jun 1994 | DE |
4409392 | Sep 1995 | DE |
29511146 | Nov 1995 | DE |
0 179 695 | Apr 1986 | EP |
0 505 634 | Sep 1992 | EP |
0 577 178 | Jan 1994 | EP |
0 639 351 | Feb 1995 | EP |
0 517 030 | Sep 1996 | EP |
0505634 | Aug 1997 | EP |
0 966 930 | Dec 1999 | EP |
0 968 692 | Jan 2000 | EP |
0 974 319 | Jan 2000 | EP |
1 103 236 | May 2001 | EP |
2552659 | Apr 1985 | FR |
2697996 | May 1994 | FR |
2700947 | Aug 1994 | FR |
2727003 | May 1996 | FR |
2742653 | Jun 1997 | FR |
2747034 | Oct 1997 | FR |
2753368 | Mar 1998 | FR |
2148122 | May 1985 | GB |
2207607 | Feb 1989 | GB |
1465040 | Mar 1989 | SU |
8803417 | May 1988 | WO |
8810100 | Dec 1988 | WO |
9201428 | Feb 1992 | WO |
9521053 | Aug 1995 | WO |
9639988 | Dec 1996 | WO |
9720526 | Jun 1997 | WO |
9723175 | Jul 1997 | WO |
9725941 | Jul 1997 | WO |
9725945 | Jul 1997 | WO |
9817209 | Apr 1998 | WO |
9855052 | Dec 1998 | WO |
9856319 | Dec 1998 | WO |
9856433 | Dec 1998 | WO |
9927864 | Jun 1999 | WO |
9929271 | Jun 1999 | WO |
9932055 | Jul 1999 | WO |
9938461 | Aug 1999 | WO |
9956675 | Nov 1999 | WO |
9963914 | Dec 1999 | WO |
0007527 | Feb 2000 | WO |
0007528 | Feb 2000 | WO |
0030568 | Jun 2000 | WO |
0040177 | Jul 2000 | WO |
0041654 | Jul 2000 | WO |
0059412 | Oct 2000 | WO |
0066044 | Nov 2000 | WO |
0066045 | Nov 2000 | WO |
0074607 | Dec 2000 | WO |
0108611 | Feb 2001 | WO |
0156497 | Aug 2001 | WO |
0162190 | Aug 2001 | WO |
0180785 | Nov 2001 | WO |
0193742 | Dec 2001 | WO |
0195837 | Dec 2001 | WO |
0193742 | Sep 2002 | WO |
2004069106 | Aug 2004 | WO |
2005007040 | Jan 2005 | WO |
2007098288 | Aug 2007 | WO |
2009064644 | May 2009 | WO |
Entry |
---|
Appendix 1 to Joint Claim Construction Brief; Synthes' Exhibits A-9, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012 (192 Pages). |
Appendix 2 to Joint Claim Construction Brief; Globus' Exhibits A-F, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012 (146 Pages). |
Appendix 3 to Joint Claim Construction Brief; Exhibits A-C, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, (38 Pages). |
Chadwick et al., “Radiolucent Structural Materials for Medical Applications,” www.mddionline.conn/print/238, Jun. 1, 2001, accessed date Jul. 31, 2012 (9 Pages). |
Co-pending U.S. Appl. No. 11/199,599: Amendment dated Sep. 29, 2009 (30 Pages). |
Co-pending U.S. Appl. No. 11/199,599: Appeal Brief dated Apr. 15, 2010 (51 Pages). |
Co-pending U.S. Appl. No. 11/199,599: Final Office Action dated Dec. 24, 2009 (22 Pages). |
Co-pending U.S. Appl. No. 11/199,599: Interview Summary including Draft Claim Amendments dated Sep. 24, 2009 (16 Pages). |
Co-pending U.S. Appl. No. 11/199,599: Non-Final Office Action dated Apr. 1, 2009 (21 Pages). |
Co-pending U.S. Appl. No. 11/199,599: Preliminary Amendment dated Jan. 9, 2008 (11 Pages). |
Expert Report of Dr. Domagoj Cade Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 5, 2012 (149 Pages). |
Expert Report of John F. Hall, M.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012 (27 Pages). |
Expert Report of Paul Ducheyne, Ph.D. Concerning Patent Validity, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 13, 2012 (155 Pages). |
Expert Report of Richard J. Gering, Ph.D., CLP in the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012 (39 Pages). |
I**nternational Search Report for International Application No. PCT/US2007/005098 dated Aug. 16, 2007 (5 Pages). |
International Search Report for International Patent Application No. PCT/CH2003/00089 dated Dec. 2, 2003 (3 Pages). |
Joint Claim Construction Brief, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2012 (97 Pages). |
Jonbergen et al., “Anterior Cervical Interbody fusion with a titanium box cage: Early radiological assessment of fusion and subsidence”, The Spine Journal 5, Jul. 2005, pp. 645-649. |
Jury Trial Demanded, In the United States District Court for the District of Delaware, Case No. 1:11-cv-00652-LPS, filed Jul. 22, 2011 (8 Pages). |
Jury Verdict Form, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013 (20 Pages). |
Marcolongo et al., “Trends in Materials for Spine Surgery”, Biomaterials and Clinical Use, vol. 6, 2011, (21 Pages). |
Memorandum Opinion, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013 (33 Pages). |
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 15, 2013 (4 Pages). |
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013 (7 Pages). |
Parlov et al., Anterior Lumbar Interbody Fusion with Threaded Fusion Cages and Autologous Grafts, Eur. Spine J., vol. 9, 2000, pp. 224-229. |
Plaintiffs' Responses and Objections to Defendant Globus Medical, Inc.'s First Set of Interrogatories (Nos. 1-11), United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 14, 2011 (18 Pages). |
Plaintiffs' Supplemental Responses and Objections to Defendant Globus Medical Inc.'s Interrogatories Nos. 6-10 and Second Supplemental Responses and Objections to Interrogatory No. 5, United States District Court for the District of Delaware, Civil Action No. 11-cv-652-LPS, Sep. 1, 2012 (12 Pages). |
Redacted version of “Defendant Globus Medical, Inc.'s Answering Brief in Opposition to Plaintiffs Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 12, 2013 (233 Pages). |
Redacted version of “Opening Brief in Support of Plaintiffs' Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Feb. 13, 2013 (66 Pages). |
Redacted version of “Plaintiffs Reply Brief in Support of Plaintiffs Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 21, 2013 (11 Pages). |
Reply Report of Dr. Domagoj Carie Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jan. 4, 2013 (81 Pages). |
Schleicher et al., “Biomechanical Comparison of Two Different Concepts for Stand alone anterior lumbar interbody fusion”, Eur. Spine J., vol. 17, Sep. 2008, pp. 1757-1765. |
Scholz et al., “A New Stand-Alone Cervical Anterior Interbody Fusion Device”, Spine, vol. 34(2) Jan. 2009, (6 Pages). |
Second Expert Report of Wilson C. Hayes, Ph.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012 (22 Pages). |
Spruit et al., The in Vitro Stabilising Effect of Polyether-etherketone Cages Versus a Titanium Cage of similar design for anterior lumbar interbody fusion, Eur. Spine J., vol. 14, Aug. 2005, pp. 752-758. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 10, 2013 (114 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 11, 2013 (98 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 12, 2013 (75 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 13, 2013 (94 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013 (26 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 3, 2013 (98 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 4, 2013 (110 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 5, 2013 (99 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 6, 2013 (80 Pages). |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 7, 2013 (97 Pages). |
Number | Date | Country | |
---|---|---|---|
20150230832 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10927778 | Aug 2004 | US |
Child | 12883832 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13912969 | Jun 2013 | US |
Child | 14700419 | US | |
Parent | 12883832 | Sep 2010 | US |
Child | 13912969 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10403930 | Mar 2003 | US |
Child | 10927778 | US |