Spinal fixation plates

Information

  • Patent Grant
  • 9320549
  • Patent Number
    9,320,549
  • Date Filed
    Thursday, April 30, 2015
    9 years ago
  • Date Issued
    Tuesday, April 26, 2016
    8 years ago
Abstract
Spinal fixation plates for maintaining adjacent vertebrae in and fixed position are provided. In an exemplary embodiment, the plate includes opposed superior and inferior portions that are angled in a direction anterior to an anterior face of a mid-portion of the plate. The plate also includes a curvature formed therein about a longitudinal axis in a sagittal plane thereof. In use, when the plate is attached to adjacent vertebrae, the angle of the superior and inferior portions and the curvature in the plate are effective to position one or more thru-bores formed in the superior and inferior portions at the anterior rims of the adjacent vertebrae. In another embodiment, a spinal fixation plate is provided that is adapted to engage and mate to a fusion cage or other vertebral implant disposed between adjacent vertebra. The present invention also provides spinal fixation kits or assemblies, and methods for implanting the same.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices, and more particularly to spinal fixation plates for promoting fusion of adjacent vertebral bodies.


BACKGROUND OF THE INVENTION

Advancing age, as well as injury, can lead to changes in the bones, disks, joints, and ligaments of the spine producing pain from nerve root compression. Under certain circumstances, alleviation of pain can be provided by performing a spinal fusion. This is a procedure that involves joining two or more adjacent vertebrae with a bone fixation device so that they no longer are able to move relative to each other. For a number of known reasons, bone fixation devices are useful for promoting proper healing of injured or damaged vertebral bone segments caused by trauma, tumor growth, or degenerative disc disease. The external fixation devices immobilize the injured bone segments to ensure the proper growth of new osseous tissue between the damaged segments. These types of external bone fixation devices often include internal bracing and instrumentation to stabilize the spinal column to facilitate the efficient healing of the damaged area without deformity or instability, while minimizing any immobilization and post-operative care of the patient.


One such device is a bone fixation plate that is used to immobilize adjacent skeletal parts such as bones. Typically, the fixation plate is a rigid metal or polymeric plate positioned to span bones or bone segments that require immobilization with respect to one another. The plate is fastened to the respective bones, usually with bone screws, so that the plate remains in contact with the bones and fixes them in a desired position. Bone plates can be useful in providing the mechanical support necessary to keep vertebral bodies in proper position and bridge a weakened or diseased area such as when a disc, vertebral body or fragment has been removed.


Such plates have been used to immobilize a variety of bones, including vertebral bodies of the spine. These bone plate systems usually include a rigid bone plate having a plurality of screw openings. The openings are either holes or slots to allow for freedom of screw movement. The bone plate is placed against the damaged vertebral bodies and bone screws are used to secure the bone plate to the spine and optionally to a prosthetic implant positioned between the adjacent vertebrae.


While several types of bone fixation plates exists, there remains a need for improved spinal fixation plates.


SUMMARY OF THE INVENTION

The present invention generally provides spinal fixation plates, spinal implants for use with spinal fixation plates, and methods for implanting the same. In one embodiment of the present invention, a spinal fixation plate is provided for maintaining adjacent vertebrae in a fixed position with respect to one another. The fixation plate includes a mid-portion with opposed superior and inferior portions. The superior and inferior portions can each include at least one thru-bore formed therein for receiving a fastening element, and the superior and inferior portions are preferably positioned at an angle with respect to the mid-portion such that, when the plate is positioned in relation to adjacent superior and inferior vertebrae, the superior and inferior portions of the plate are positioned adjacent to the anterior rim of each vertebra. In an exemplary embodiment, the superior and inferior portions are angled in a direction anterior to the anterior face of the mid-portion, and the angle is preferably less than about 15°.


In one exemplary embodiment, the plate can include a posterior curvature formed about a longitudinal axis. As a result, the plate can have a substantially concave posterior face, and the plate can also optionally have a substantially convex anterior face. In another embodiment, the superior and inferior portions of the plate preferably each include first and second thru-bore tabs formed on opposed sides of the longitudinal axis of the plate. When combined with the curvature in the plate, the first and second opposed tabs can be angled toward one another in a posterior direction. In an exemplary embodiment, the angle between a posterior face of the first thru-bore tab and a posterior face of the second thru-bore tab in each of the superior and inferior portions is in the range of about 150° to 180°, and more preferably the angle is about 160°.


In yet another embodiment of the present invention, a spinal fixation plate is provided having a mid-portion and opposed superior and inferior portions extending at an angle with respect to the mid-portion in a direction anterior to an anterior face of the mid-portion. The superior and inferior portions each preferably include first and second thru-bore tabs formed on opposed sides of a longitudinal axis of the plate. The first and second thru-bores tabs are preferably angled toward one another in a posterior direction. The first and second thru-bores tabs in the superior and inferior portions also preferably each include a thru-bore formed therein and adapted to receive a fastening element to mate the plate to adjacent vertebrae. The mid-portion can also optionally be curved about a longitudinal axis, preferably in a posterior direction, such that opposed side edges of the mid-portion are positioned posterior to a posterior face of the mid-portion at the longitudinal axis of the mid-portion. At least a portion of the plate can have a substantially concave posterior face as a result of the curve formed therein. At least a portion of the plate can also optionally have a substantially convex anterior face as a result of the curve formed therein.


The present invention also provides a spinal fixation kit that includes at least one fixation plate and an implant that is adapted to be disposed between adjacent vertebra and that has posterior, anterior, superior, and inferior faces. The fixation plate preferably has a mid-portion with opposed superior and inferior portions that define a plate length that is preferably greater than a height of the implant between the superior and inferior faces. The superior and inferior portions also preferably include first and second opposed thru-bore tabs that extend in a direction anterior to an anterior face of the mid-portion of the fixation plate, and/or that extend at an angle toward one another in a posterior direction. The kit can also include at least one fastening element that is adapted to extend through a thru-bore tab in the superior and inferior portions of the fixation plate to mate the plate to adjacent vertebrae.


The present invention also provides methods for implanting a spinal fixation plate. In one exemplary embodiment, the method can include one or more of the following steps: distracting adjacent vertebrae, removing at least a portion of the disc disposed between the adjacent vertebrae, positioning a spinal implant between the adjacent vertebrae, and positioning a spinal fixation plate adjacent to an anterior face of the spinal implant such the opposed superior and inferior portions of the spinal fixation plate are positioned on the anterior rim of each vertebra. A fastening element can then be inserted through one or more of the thru-bore formed in the spinal fixation plate to attach the spinal fixation plate to the adjacent vertebrae. In an exemplary embodiment, the superior and inferior portions of the spinal fixation plate include longitudinally opposed thru-bores tabs, each having a thru-bore formed therein for receiving a fastening element. The opposed thru-bore tabs in the superior portion are preferably angled toward one another in a posterior direction, and the thru-bore tabs in the inferior portion are also preferably angled toward one another in a posterior direction. The superior and inferior portions of the plate can also be angled in a direction anterior to an anterior face of a mid-portion of the plate, such that the mid-portion of the plate is flush or sub-flush relative to an anterior face of the adjacent vertebrae.


In yet another embodiment of the present invention, a spinal fixation assembly is provided including a fusion cage with posterior, anterior, superior, and inferior faces, and a plate having at least one aperture for receiving a bone screw and being configuration to slidably mate to the fusion cage. In one embodiment, the plate includes a mating element for engaging the cage in an anterior-posterior direction. The mating element can have a variety of configurations, but it preferably takes the form of opposed first and second arms that are adapted to engage the superior and inferior faces of the fusion cage. The first and second arms can be flexible, and preferably extend from the plate and are adapted to seat on the superior and inferior faces of the fusion cage. The superior and inferior faces of the fusion cage can each include an arm-seating recess formed therein for receiving the first and second arms on the plate. These recesses allow the arms to sit flush with the superior and inferior faces when disposed within the arm-seating recesses. In an exemplary embodiment, the first and second arms are adapted to mate with the arm-receiving recesses formed on the fusion cage with an interference fit to temporarily secure the plate to the fusion cage.


In another embodiment, the anterior face of the fusion cage can include at least one bore formed therein, and the mating element can be at least one arm that is adapted to extend into the bore in the fusion cage to mate the plate to the fusion cage. In a preferred embodiment, the anterior face of the fusion cage includes a superior bore and an inferior bore formed therein, and the mating element comprises opposed first and second arms that are adapted to extend into the superior and inferior bores in the fusion cage to mate the plate to the fusion cage.


In another embodiment, the fusion cage includes an intermediate plane that separates the inferior face from the superior face to define an inferior side and a superior side, and the plate includes at least one inferior aperture on the inferior side of the fusion cage and at least one superior aperture on the superior side of the fusion cage. Each aperture in the plate can have a first end having an opening, a second, opposed end, and a sidewall extending therebetween that defines an inner lumen. The first end of each aperture preferably is a generally spherical recess formed in the plate for rotatably seating a head of a bone screw. A split bushing is preferably disposed within each aperture in the plate. Each aperture can optionally include an anti-rotation mechanism effective to prevent each split bushing from rotating within the aperture. The apertures and the split bushings can have a variety of configurations. In one embodiment, the sidewall of each aperture can be concave and each split bushing can include a convex outer surface. Each split bushing can also optionally include a shoulder formed therein that abuts a corresponding shoulder formed within each aperture. In another embodiment, each split bushing can include an inner surface having threads formed thereon that are adapted to mate with corresponding threads formed on a bone screw.


In other aspects, the inferior and superior apertures are disposed in inferior and superior portions. The portions, or tabs, are preferably angled with respect to the fusion cage in a direction anterior to the anterior face of the fusion cage. In an exemplary embodiment, each portion extends in a plane, and each aperture defines a central axis that extends through the aperture at an angle with respect to the plane of the portion in which the aperture is disposed.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:



FIG. 1A illustrates an anterior view of one embodiment of a spinal fixation plate in accordance with the present invention;



FIG. 1B is an anterior perspective view of the fixation plate shown in FIG. 1A;



FIG. 1C is a posterior perspective view of the fixation plate shown in FIG. 1A;



FIG. 2A is a cross-sectional view of the fixation plate shown in FIG. 1A taken along line A-A;



FIG. 2B is a cross-sectional view of the fixation plate shown in FIG. 1A taken along line B-B;



FIG. 2C is a side view of a portion of a human spine having the fixation plate shown in FIG. 1A implanted therein;



FIG. 3A is side view of an embodiment of a spinal fixation plate that is adapted to mate to a fusion cage;



FIG. 3B is a posterior perspective view of the plate shown in FIG. 3A;



FIG. 4A is a side view of the plate shown in FIGS. 3A and 3B mated to one embodiment of a fusion cage to form a spinal fixation assembly;



FIG. 4B is a perspective view of the fusion cage shown in FIG. 4A;



FIG. 5 is a side view of another embodiment of a spinal fixation assembly;



FIG. 6 is a cut-away view of an aperture, split bushing, and bone screw according to another embodiment of the present invention;



FIG. 7 is a side view of one embodiment of a bone screw according to the present invention;



FIG. 8 is a cut-away view of another embodiment of an aperture, split bushing, and bone screw according to the present invention;



FIG. 9 is a side view of another embodiment of a bone screw according to the present invention; and



FIG. 10 is a cut-away, side view of a plate having apertures adapted to receive the bone screw shown in FIG. 9.





DETAILED DESCRIPTION OF THE DRAWINGS

In general, the present invention provides a spinal fixation plate having at least one aperture for receiving a bone screw. The plate is adapted to be attached to adjacent vertebrae to maintain the vertebrae in and fixed position and thereby provide biomechanical stability to the vertebra. The plate can be used in connection with a variety of spinal implants, including inner body fusion devices, fusion cages, bone grafts, artificial discs, or other vertebral implants, and it can optionally be adapted for use in both mating or non-mating relationships with the inner body fusion devices or other vertebral implant.



FIGS. 1A-2B illustrate one embodiment of spinal fixation plate 10. In general, the plate 10 has a substantially elongate shape and it includes a mid-portion 12 that is positioned between superior and inferior portions 14, 16. Each portion 12, 14, 16 includes an anterior face 12a, 14a, 16a and a posterior face 12b, 14b, 16b, respectively, and the portions 12, 14, 16 together define a longitudinal axis L extending therealong. The mid-portion 12 of the plate 10 also includes opposed lateral sides 12c, 12d extending therealong between the superior and inferior portions 14, 16.


As indicated above, the superior and inferior portions 14, 16 are adapted to mate to superior and inferior vertebrae, respectively, and the mid-portion 12 extends therebetween to maintain the vertebrae at a fixed position with respect to one another. Accordingly, the plate 10 preferably includes one or more apertures or thru-bores formed therein for receiving a fastening element, such as a bone screw, to attach the plate 10 to the adjacent vertebrae. In the illustrated exemplary embodiment, each portion 14, 16 includes two thru-bores 20a, 20b, 22a, 22b formed therein. The thru-bores 20a, 20b, 22a, 22b are preferably formed on opposed sides of the longitudinal axis L of the plate 10 such that each of the superior and inferior portions 14, 16 of the plate 10 include first and second opposed thru-bore tabs 15a, 15b, 17a, 17b. The thru-bores 20a, 20b, 22a, 22b can have a variety of configurations, and exemplary configurations will be discussed in more detail with respect to FIGS. 6-10.


The superior and inferior portions 14, 16 of the plate 10 can also be adapted to position the thru-bores 20a, 20b, 22a, 22b at a particular location with respect to the adjacent vertebrae. In an exemplary embodiment, the superior and inferior portions 14, 16 can be angled with respect to the mid-portion 12 and more particularly, as best shown in FIG. 2A, the superior and inferior portions 14, 16 can extend in a direction that is anterior to the anterior face 12a of the mid-portion 12. As a result, when the plate 10 is implanted, the superior and inferior portions 14, 16 can be positioned on the anterior rim of each vertebra, which is a location that is between the anterior face and the endplate of each vertebra, e.g., along an edge of the vertebrae at the endplate/cortical junction. This location, which will be discussed in more detail with respect to FIG. 2C, is hereinafter referred to as the anterior rim of a vertebra. When the superior and inferior portions 14, 16 are positioned against the anterior rims, the angle α also causes the mid-portion 12 to be substantially flush or sub-flush with respect to the anterior surface of each vertebra, thereby minimizing the anterior prominence of the plate 10. The position also allows locking mechanisms, such as bone screws, to be inserted through the thru-bores 20a, 20b, 22a, 22b, through the anterior rims of the vertebrae, and into the vertebral bodies. The unique positioning of the plate 10 also reduces the need for excessive vessel retraction.


The angulation of the superior and inferior portions 14, 16 can vary depending on the intended use, but in an exemplary embodiment the angle αT between the anterior surface 14a, 16a of the superior and inferior portions 14, 16 and the anterior surface 12a of the mid-portion 12 is less than about 15°, and more preferably the angle αT is about 10°. A person having ordinary skill in the art will appreciate that the angle αT can be greater than 15°.


The plate 10 can also or alternatively have a curve X, as best shown in FIGS. 1B, 1C, and 2B, that is formed about the longitudinal axis L in a sagittal plane, which extends in a superior-inferior direction and dissects the posterior and anterior faces 12a, 12b, 14a, 14b, 16a, 16c of the plate 10. The curve X is preferably only formed about the longitudinal axis L that extends between the superior and inferior portions 14, 16. More particularly, the plate 10 can be curved such that the opposed edges 12c, 12d of the mid-portion 12 are substantially longitudinally straight, but they are positioned posterior to the posterior face 12b of the mid-portion 12. As a result of the curve X, the posterior face 12b, 14b, 16b of each portion 12, 14, 16 can have a substantially concave shape about the longitudinal axis L. The anterior face 12a, 14a, 16a of each portion 12, 14, 16 can also optionally have a substantially convex shape about the longitudinal axis L to correspond to the posterior face 12b, 14b, 16b.


The curve X can also continue through the superior and inferior portions 14, 16 of the plate 10, such that the opposed edges 14c, 14d, 16c, 16d of the superior and inferiors portions 14, 16 are positioned posterior to the posterior faces 14b, 16b thereof. As previously discussed, the superior and inferior portions 14, 16 can also be angled in a direction anterior to the anterior faces 14a, 16a thereof. When the angle αT and the curve X are combined, the opposed thru-bore tabs 15a, 15b, 17a, 17b are not only angled anterior to the anterior face 12a of the mid-portion 12 of the plate 10, but they are also angled toward one another in a posterior direction. While the angle αx, shown in FIGS. 1C and 2B, can vary, in an exemplary embodiment the angle αx between the thru-bore tabs 15a, 15b, 17a, 17b is in the range of about 150° to 180°, and more preferably the angle is about 160°. A person skilled in the art will appreciate that where the angle αx is 180°, the plate 10 will not have a curve X formed therein, but rather it will be substantially planar.


In use, the plate 10 can be implanted in the lumbar, cervical, or thoracic regions of the patient's spine, and thus the size of the plate 10 will vary depending on the intended use. The plate 10 can also be adapted for use in various surgical approaches, but preferably the plate 10 is adapted for anterior fixation. In an exemplary embodiment, the plate 10 has a length l and/or width w that is adapted for use in the lumbar region of a patient's spine. More preferably, the plate 10 has a length l that is less than a distance between the adjacent vertebrae to which the plate 10 is adapted to be mated to. This allows the superior and inferior portions 14, 16 of the plate 10, and in particular the thru-bore tabs 15a, 15b, 17a, 17b, to be positioned on the anterior rims of the adjacent vertebrae, as previously discussed above. A person skilled in the art will appreciate that the plate 10 can be adapted for a variety of other uses and the configuration of the plate 10 can vary depending on the intended use. Moreover, a variety of plates 10 having various sizes and configurations can be provided as part of a kit, allowing a surgeon to select the appropriate plate 10 based on the intended use.


By way of non-limiting example, FIG. 2C illustrates plate 10 implanted in a patient's spinal column. In particular, the plate 10 is shown mated to adjacent vertebrae 50, 52 having an implant, e.g., fusion cage 30, disposed therebetween. The adjacent vertebrae 52, 54 are distracted, at least a portion of the disc is removed, and the area is prepared using techniques known in the art. Prior to inserting the fusion cage 30 between the adjacent vertebrae 52, 54, the fusion cage 30 can be filled with autograft, allograft bone, and/or demineralized bone matrix to promote fusion. The fusion cage 30 is then positioned between the vertebrae 52, 54 using a variety of devices. Distractor and spreader devices are known in the art, and are effective for separating adjacent vertebrae, and optionally assisting with insertion of the implant. Typical distractors include two opposed blade members which are inserted between the adjacent vertebrae, and then opened to separate the vertebrae. The fusion cage 30 can then be inserted into the disc space either manually, or using an impacting device, such as a mallet.


Once the fusion cage is in position, the fixation plate 10, and in particular the posterior surface 12b of the plate 10, can be placed adjacent to the anterior face 32 of the fusion cage 30 to position the superior and inferior portions 14, 16 of the plate 10 against the anterior rims 52a, 54a of the adjacent vertebrae 52, 54. Once positioned against the vertebrae, the plate 10 is preferably not fixedly attached to the fusion cage 30 such that the two components are in a non-mating relationship with one another. In other words, the plate 10 and the fusion cage 30 remain as separate components from one another. One or more bone screws (only two screws 62a, 64 are shown) can then be inserted through the thru-bores 20a, 20b, 22a, 22b in the superior and inferior portions 14, 16 of the plate 10 to secure the plate 10 to the adjacent vertebrae 52, 54. A person skilled in the art will appreciate that various procedures and tools can be used to position the plate 10 against the adjacent vertebrae and to prepare the vertebrae for receiving the bone screws. The plate 10 can also optionally include various features to allow the plate 10 to be coupled to a tool for implanting the plate 10.



FIGS. 3A-3B illustrate another embodiment of a spinal fixation plate 120. In this embodiment, the plate 120 is adapted to mate to a vertebral implant, such as a fusion cage 110, shown in FIGS. 4A-4B. FIG. 4A illustrates plate/cage assembly 100. The plate 120 can have a generally planar shape and it includes a mid-portion 126 that is positioned between superior and inferior portions 128, 130. When the plate 120 is mated to the fusion cage 110, the superior portion 128 of the plate 120 is adapted to extend beyond a superior surface 102 of the fusion cage 110, and the inferior portion 130 of the plate 120 is adapted to extend beyond an inferior surface 104 of the fusion cage 110. While the plate 120 is preferably substantially planar, the mid-portion 126 of the plate 120 can be curved to contour the shape of an anterior face 108 of the fusion cage 110.


Each of the superior and inferior portions 128, 130 of the plate 120 further include at least one aperture 122a-d formed therein for receiving a bone screw to secure the plate 120 to a vertebra. As shown, the superior and inferior portions 128, 130 of the plate 120 each include two apertures 122a, 122b, 122c, 122d formed therein. The apertures 122a-d can have a variety of configurations, and exemplary configurations will be discussed in more detail with respect to FIGS. 6-10. FIGS. 4A-4B illustrate plate 120 mated to implant 110, and apertures 122a-d having bone screws 146 and 148 disposed therethrough, each having a head and a shank.


The superior and inferior portions 128, 130 of the plate 120 can also extend at an angle with respect to the mid-portion 126 of the plate 120. In particular, referring to FIG. 4A, which shows plate 120 mated to cage 110, superior and inferior portions 128, 130 are angled with respect to the remainder of the plate 120 so that screws 146 and 148 extending therethrough are angled with respect to a medial plane “P” of the body 110. The angle formed by the tab(s) and plate, as well as by the screw(s) and medial plane, is designated as “α” and it can vary depending on a patient's particular anatomy. Although the angle α can range from 15° to 60°, for most applications the angle α is about 20°. However, in other embodiments, the superior and inferior portions 128, 130 can be flexible or readily bent with respect to the remainder of the plate 120.


The mid-portion 126 of the plate 120 can also include a central aperture 132 formed therein. The central aperture 132 is positioned such that it is aligned with a central bore (not shown) formed in the fusion cage 110 when the plate 120 is mated to the cage 110. The central aperture 132 and bore can be effective to receive an insertion tool and/or a fastening element, such as a screw, effective to mate the plate 120 to the fusion cage 110. In one embodiment (not shown), the fastening element can be fixedly, but rotatably disposed within the central aperture 132 of the plate 120, and/or it can be adapted to snap into the central bore in the fusion cage 110. The fastening element can further be adapted to engage the fusion cage 110 upon rotation thereof. A person having ordinary skill in the art will appreciate that a variety of techniques can be used to mate the plate 120 to the fusion cage 110.


Still referring to FIGS. 3A-4B, the plate 120 can also include a mating element 124a, 124b that is adapted to slidably engage and mate the plate 120 to the anterior face 108 of the fusion cage 110 in an anterior-posterior direction. While the mating element 124a, 124b can have a variety of configurations, FIGS. 3A-3B illustrate first and second opposed arms 124a, 124b that extend outward from the plate 120 in a direction substantially perpendicular to the substantially planar surface of the plate 120. The arms 124a, 124b can be positioned anywhere on the plate 120, but preferably the first arm 124a is positioned just superior to the mid-portion 126 of the plate 120 between the central aperture 132 and the superior apertures 122a, 122b formed in the superior portion 128 of the plate 120, and the second arm 124b is positioned just distal to the mid-portion 126 of the plate 120 between the central aperture 132 and the inferior apertures 122c, 122d formed in the inferior portion 130 of the plate 120. In other words, the arms 124a, 124b are positioned such that, when the plate 120 is mated to the fusion cage 110, the arms 124a, 124b are configured to engage the superior and inferior faces 102, 104 of the fusion cage 110.


The shape of the arms 124a, 124b can also vary, but preferably each arm 124a, 124b is adapted to contour the shape of the fusion cage 110. By way of non-limiting example, where the fusion cage 110 has domed or convex superior and inferior surfaces 102, 104, the arms 124a, 124b are preferably convex to contour the shape of the fusion cage 110. The size of each arm 124a, 124b can vary as well, but preferably each arm 124a, 124b has a length la sufficient to enable the arms 124a, 124b to extend across at least a portion of the superior and inferior surfaces 102, 104 of the fusion cage 110, and a width wa sufficient to allow the arms 124a, 124b to grasp the fusion cage 110.


Each arm 124a, 124b can have a variety of configurations, but preferably the arms 124a, 124b include an engagement element 136a, 136b effective to engage the superior and inferior faces 102, 104 of the fusion cage 110. The engagement element 136a, 136b preferably provides an interference fit to temporarily secure the plate 120 to the fusion cage 110. While the engagement element 136a, 136b can have a variety of configurations, the engagement element 136a, 136b can be, for example, in the form of at least one protrusion formed on an inner surface of each arm 124a, 124b that is adapted to sit in at least one indentation 138 (shown in FIG. 4B) formed in each of the superior and inferior faces 102, 104 of the fusion cage 110. As shown in FIG. 3A, the protrusion 136a, 136b on each arm 124a, 124b has a generally elongate shape. The indentation will be discussed in more detail with respect to FIG. 4B below. The arms 124a, 124b can optionally be flexible to allow the arms 124a, 124b to flex outward while sliding the plate 120 onto the fusion cage 110, and to allow the arms 124a, 124b to then return to their original state whereby the protrusions 136a, 136b on the arms 124a, 124b to snap into the indentations 138 (only one indentation is shown in FIG. 4B) formed in the superior and inferior faces 102, 104 of the fusion cage 110.


Referring now to FIG. 4B, fusion cage 110 is shown in more detail. The fusion cage 110 can have a variety of configurations, but as previously stated it generally includes superior 102, inferior 104, posterior 106, and anterior 108 faces. The inferior and superior faces 102, 104 can have a flat to slightly convex shape, and/or a slightly tapered (about 10°) or wedge profile, wherein the body 110 is thicker at the anterior face 108 than at the posterior face 106.


A central bore (not shown) can be formed in the anterior face 102 of the fusion cage 110, and it preferably includes threads formed therein for receiving a fastening element, e.g., a screw. The threads are preferably spinal lock threads to provide a secure connection between the plate and the cage. First and second transverse elements 140, 142 can join the posterior face 106 to the anterior face 108, and a guide path 144 for receiving an insertion tool can extend across the superior and inferior faces 102, 104 between the posterior and anterior faces 106, 108.


Fusion cage 110 further includes an arm-seating recess formed in each of the superior and inferior surfaces 102, 104 for receiving the arms 124a, 124b formed on the plate 120. The recesses can be formed in the guide path 144, or more preferably the guide path 144 can form arm-seating recesses, as is shown in FIG. 4B. Each guide path 144 (only the guide path on the superior surface 102 is shown), or arm-seating recess, preferably has a depth d sufficient to receive the corresponding arm 124a, 124b formed on the plate 120 such that, when the plate 120 is mated to the fusion cage 110, the arms 124a, 124b are flush with the superior and inferior surfaces 102, 104 of the fusion cage 110. This is particularly advantageous in that it allows the fusion cage 110 to be positioned between adjacent vertebrae prior to inserting the arms 124a, 124b into the arm-seating recesses 144 to attach the plate 120 to the fusion cage 110. Each of the arm-seating recesses 144 further preferably includes at least one indentation 138 formed therein for receiving the protrusion 136a, 136b formed on the inner surface of each arm 124a, 124b. As shown, the indentation 138 is in the form of an elongate groove that is adapted to receive and seat the protrusion 136a, 136b formed on each arm 124a, 124b. A person having ordinary skill in the art will appreciate that the arms 124a, 124b can merely slid into and seat within the recess 144 formed in the fusion cage 110, and that they do not need to engage the fusion cage 110. An engagement mechanism is merely preferred to allow the plate 120 to be at least temporarily secured to the fusion cage 110 during implantation.


The fusion cage 110 can optionally include a number of bone engaging surface features 146 formed on the superior and inferior surfaces 102, 104 to facilitate the secure mounting of the cage 110 between adjacent vertebrae. The bone engaging surface features 146 can be present on the entire surface area of the superior and inferior surfaces 102, 104, or optionally, selected regions of the superior and inferior surfaces 102, 104 can be free of surfaces features 146. The bone engaging surface features 146 can have a variety of shapes, but are preferably in the form of wedge-shaped ridges that extend is a direction transverse to the posterior 106 and anterior 108 faces of the fusion cage 110. Each bone engaging surface feature 146 includes a posterior side wall 148 and an anterior side wall 149, which meet at a peak 150. The side walls 148, 149 of each surface feature 146 can be angled or sloped to facilitate insertion of the cage 110 between adjacent vertebrae and to assist in preventing the fusion cage 110 from becoming dislodged. The size of the surface features 146 can also vary but preferably the surface features 146 have a size sufficient to cause each surface feature 146 to engage and penetrate the adjacent vertebrae. It will be understood that while ridges 146 have been shown in a preferred embodiment, it is contemplated that there are a variety of structures which could provide a surface for effective engagement with the vertebral bodies to limit expulsion from the disc space.



FIG. 5 illustrates another embodiment of a spinal fixation assembly 100′. In this embodiment, the arms 124a, 124b on the plate 120 are adapted to extend into opposed superior and inferior bores 152, 154, rather than recesses 144, formed in the fusion cage 110′. As shown, the arms 124a, 124b can merely slide into the bores 152, 154 that extend into the fusion cage 110′ to provide an alignment mechanism between the cage 110′ and the plate 120. The bores 152, 154 can optionally be adapted to receive the engagement mechanism 136a, 136b formed on each arm 124a, 124b to at least temporarily secure the arms 124a, 124b within the bores 152, 154. By way of non-limiting example, the arms 124a, 124b and the bores 152, 154 can each be tapered to provide an interference fit between the arms 124a, 124b and the bores 152, 154. Alternatively, the arms 124a, 124b can include a press-fit pin that depresses upon insertion of the arms 124a, 124b into the bores 152, 154, and then once each arm 124a, 124b is fully inserted into the bore 152, 154, returns to its originally state whereby the pins extending into corresponding indentations formed within the bores 152, 154. A person having ordinary skill in the art will appreciate that a variety of mechanisms can be used to secure the arms 124a, 124b of the plate 120 within the bores 152, 154 formed in the fusion cage 110′.


In use, the adjacent vertebrae are prepared and distracted and the fusion cage 110 is placed therebetween, as previously described above. Once the fusion cage 110 is in position, the fixation plate 120 can be placed adjacent to the anterior face 108 of the fusion cage 110 to position the superior and inferior portions 128, 130 of the plate 110 against the anterior rims of the adjacent vertebrae. The plate 120 is then preferably mated to the anterior face 108 of the fusion cage 110 by positioning the arms 124a, 124b between the superior and inferior surfaces 102, 104 of the fusion cage 110 and the adjacent vertebrae. Where plate 120′ is used and the cage 110′ includes arm-receiving recesses 152, 154, the arms 124a′, 124b′ of the plate 120′ can be easily slid into the recesses 152, 154 to engage the cage 110′. A center screw (not shown) can then be inserted through a central aperture 132 in the plate 120 and through a bore in the cage (e.g., FIG. 5 shows bore 134 formed in the cage 110′) to secure the plate 120 to the cage 110, and one or more bone screws (only two bone screws 146, 148 are shown in FIG. 4A) can be inserted through the apertures 122a, 122b, 122c, 122d in the superior and inferior portions 128, 130 of the plate 120 to secure the plate 120 to the adjacent vertebrae.


The present invention also provides a variety of configurations for securing a spinal fixation plate to adjacent vertebrae. In particular, FIGS. 6-10 illustrate embodiments of different apertures for use with a plate according to the present invention. The apertures are adapted to provide a more secure connection between the plate and a vertebrae. While the various embodiments will be described in relation to particular spinal fixation plates disclosed herein, a person having ordinary skill in the art will appreciate that the virtually any technique known in the art can be used with any of the various embodiments of spinal fixation plates, as well as with a variety of vertebral implants.



FIG. 6 illustrates one embodiment of an aperture 160 formed in a tab 166 of a plate and having a split bushing 162 disposed therein. A bone screw 174 is disposed through the aperture 160 and the split bushing 162. The aperture 160 includes a first end 168, a second end 170, and a sidewall 172 extending therebetween. The first end 168 is preferably adapted to receive a bone screw 174, or similar type of fixation element, and to seat the head 164 of the bone screw 174 therein. The aperture 160 can extend through the tab 166 in the plate along a central axis aa that is substantially perpendicular to a central plane ap of the tab 166, or alternatively the central axis aa of the aperture 160 can be offset from, or disposed at an angle with respect to, the plane ap of the tab 166. The sidewall 172 of the aperture 160 can also vary and can be either substantially planar along the length thereof between the first and second ends 168, 170 of the aperture 160, or the sidewall 172 can be curved or can extend at an angle. As shown in FIG. 6, the sidewall 172 has a substantially concave shape to receive the split bushing 162.


The split bushing 162 is disposed within the aperture 160 and it has a generally cylindrical shape with a gap (not shown) formed therein to allow the bushing 162 to be expanded. The split bushing 162 includes an outer surface 176 which can have a shape adapted to conform to the shape of the sidewall 172 of the aperture 160, and an inner surface 178 which is adapted to receive a bone screw 174. By way of non-limiting example, the split bushing 160 can have a convex outer surface 172 to allow the split bushing 162 to sit within the concave sidewall 172 of the aperture 160. The split bushing 162 further includes an inner diameter db that can vary between opposed first and second ends 168, 170 of the split bushing 162. Preferably, the diameter db of the bushing 162 at the first end 168 is larger than the diameter db of the bushing 162 at the second end 170. The tapered diameter allows the bushing 162 to receive a portion of the tapered undersurface of the head 164 of the bone screw 174.



FIG. 7 illustrates the bone screw 174 in more detail having a tapered head 164 adapted to fit within the split bushing 162 shown in FIG. 6. As shown, the bone screw 174 includes a head 164 and a threaded shank 180. The head 164 is tapered preferably at an angle substantially the same as the angle of the tapered inner diameter db of the split bushing 162. In use, upon tightening the bone screw 174, the split bushing 162 expands and provides an interference fit between the bone screw 174 and the aperture 160, thereby creating a rigid lock to secure the plate to a vertebrae. The tapered diameter db of the bushing 162 also allows the bone screw 174 to be inserted at variable angles as with respect to the central axis aa of the aperture, as shown in FIG. 6.



FIG. 8 illustrates another embodiment of an aperture 190 having a split bushing 192 disposed therein. In this embodiment, the split bushing 192 includes threads 194 formed on an inner surface thereof to mate with corresponding threads 196 formed on a bone screw 198. The threads 194, 196 are particularly effective to prevent the bone screw 198 from backing out of the aperture 190, and to provide a rigid lock between the screw 198 and the aperture 190 thereby securely mating the plate to a vertebrae. In this embodiment, the aperture 190 preferably includes an anti-rotation mechanism effective to prevent the split bushing 192 from rotating while the screw 198 is threaded therethrough. The anti-rotation mechanism can have a variety of configurations and, by way of non-limiting example, can be a pin or raised protrusion (not shown) disposed within the aperture 190 and adapted to extend into the gap formed in the split bushing 192.



FIGS. 9-10 illustrate yet another embodiment of an aperture 200 and bone screw 202 for use with the present invention. As shown in FIG. 10, the aperture 200 includes a first end 204, a second end 206, and a sidewall 208 extending therebetween and defining an inner lumen 210. The inner lumen 210 includes a first portion 214 positioned adjacent the first end 204, and a second portion 212 positioned adjacent the second end 206 of the aperture 200. The first portion 214 of the inner lumen 210 has a shape and size adapted to receive the head 216 of a bone screw 202. FIG. 9 illustrates an exemplary embodiment of a bone screw 202 for use with a plate having an aperture 200 as shown in FIG. 10. The bone screw 202 includes a head 216 and a threaded shank 218. The head 216 of the bone screw 202 includes a substantially convex, slightly rounded outer surface 220. The first portion 214 of the inner lumen 210 of the aperture 200 has a concave sidewall 222, e.g., a generally spherical recess, to allow the rounded head 216 of the bone screw 202 to seat therein. The second portion 212 of the inner lumen 210 is substantially cylindrical and has a shape and size adapted to receive the threaded shank 218 of a bone screw 202. Preferably, the second portion 212 of the inner lumen 210 has a diameter d2 greater than a diameter d1 of the shank 218 of the bone screw 202. In use, the first and second portions 214, 212 of the inner lumen 210 allow the bone screw 202 to translate within the aperture 200 such that the screw 202 can be inserted at varying angles. While the aperture 200 does not include a split bushing to provide a rigid connection between the bone screw 202 and the plate, the aperture 200 allows the full exertion of natural biomechanical compression stresses through the vertebral bodies into which the screw 202 is inserted.


Referring back to FIG. 7, in yet another embodiment, the bone screw 174 can include a shoulder 230 formed thereon that abuts a corresponding shoulder (not shown) formed in an aperture. The shoulder 230 is formed by a difference, or stepped increase, in the diameter d3, d4 of the screw head 164 and in the diameter of the aperture, or in the split bushing if the aperture includes one. In use, the bone screw 174 is inserted through an aperture and once the shoulder 230 on the screw head 164 passes the shoulder 230 in the aperture, or in the split bushing, the shoulders will engage thereby preventing the screw 174 from backing out of the aperture.


The fusion cage and plate of the present invention can be made from a variety of materials. By way of non-limiting example, a carbon fiber composite or other radiolucent material is well suited for fabrication of the body, and titanium or carbon fiber composites are suitable materials for the plate 20.


As should be readily apparent from the preceding description, the present invention provides many advantages. For example, the fusion cage can be sufficiently broad and thick so that only a single cage is needed to replace an excised disc. The profile and slightly bowed or convex superior and inferior surfaces of the fusion cage body closely approximate the shape of a natural disc and provide an excellent, stable, load-bearing surface. The plate, when included, ensures that the body will not become dislodged from the spine, yet is readily accessible with an anterior approach. Further, the plate allows bone screws to be deeply embedded into the vertebral bodies without piercing or otherwise damaging the hard, load-bearing, cortical bone. Also, both the plate and the body include features that allow for relatively easy manipulation and insertion with appropriately configured surgical tools.


Of course, one skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.

Claims
  • 1. A spinal fixation assembly, comprising: a fusion cage having an anterior face and a posterior face, and a superior face and an inferior face, the fusion cage being configured to be positioned between adjacent vertebrae such that at least a portion of the superior face contacts an endplate of a superior vertebra and at least a portion of the inferior face contacts an endplate of an inferior vertebra, the fusion cage having a first recess disposed in the superior face and a second recess disposed in the inferior face; anda spinal fixation plate having an anterior face and a posterior face,at least one bone screw aperture extending through the anterior and posterior faces for receiving a bone screw configured to mate the spinal fixation plate to bone, the at least one bone screw aperture being obliquely angled relative to the posterior and anterior faces of the spinal fixation plate,a central opening being disposed substantially at a center of the spinal fixation plate, andfirst and second arms extending outward from the posterior face of the plate, the first and second arms being configured to slidably contact the fusion cage such that the first arm extends across and contacts the first recess of the fusion cage and the second arm extends across and contacts the second recess of the fusion cage.
  • 2. The spinal fixation assembly of claim 1, wherein the at least one bone screw aperture comprises first and second bone screw apertures positioned on opposite sides of the central opening.
  • 3. The spinal fixation assembly of claim 1, wherein the first and second arms each have a central longitudinal axis that is non-parallel to a central longitudinal axis of the at least one bone screw aperture.
  • 4. The spinal fixation assembly of claim 1, wherein the superior and inferior faces of the fusion cage include bone engaging surface features formed thereon.
  • 5. The spinal fixation assembly of claim 1, wherein the at least one bone screw aperture has an inner sidewall that is substantially concave for polyaxially seating a bone screw.
  • 6. The spinal fixation assembly of claim 1, further comprising at least one locking feature configured to prevent the spinal fixation plate from moving relative to the fusion cage in the direction substantially perpendicular to the posterior face of the fusion cage.
  • 7. The spinal fixation assembly of claim 1, wherein when the first and second arms are received in the first and second recesses, the first and second arms engage the fusion cage.
  • 8. A spinal fixation assembly, comprising: a fusion cage having superior and inferior bone-contacting surfaces, and at least one arm-guide formed therein;a spinal fixation plate having first and second bone screw bores formed therein, and at least one arm formed thereon and configured to extend into the at least one arm-guide in the fusion cage, the first and second screw bores each having a central longitudinal axis that extends at an acute angle relative to first and second faces of the spinal fixation plate; andfirst and second bone screws configured to extend respectively through the first and second bone screw bores for mating the spinal fixation plate to bone;wherein the spinal fixation plate includes an opening formed therein and positioned along a horizontal longitudinal axis of the plate and a screw received in the opening;wherein the first and second bone screw bores are offset from the horizontal longitudinal axis, the first bone screw bore being positioned on a first side of the horizontal longitudinal axis and the second bone screw bore being positioned on a second side of the horizontal longitudinal axis;wherein, when the first and second bone screws are disposed through the first and second bone screw bores, a distance between each of the first and second bone screws and one of the superior and inferior surfaces of the fusion cage increases in a direction from the second face of the spinal fixation plate to distal ends of the first and second bone screws.
  • 9. The spinal fixation assembly of claim 8, wherein the at least one arm has a central longitudinal axis that is non-parallel to a central longitudinal axis of each of the first and second bone screw bores.
  • 10. The spinal fixation assembly of claim 8, wherein when the at least one arm of the spinal fixation plate is coupled to the at least one arm guide, the at least one arm is flush with an outer surface of the fusion cage.
  • 11. The spinal fixation assembly of claim 8, wherein the superior and inferior surfaces of the fusion cage include bone engaging surface features formed thereon.
  • 12. The spinal fixation assembly of claim 8, wherein the first and second bone screw bores each have an inner sidewall that is substantially concave, and wherein the first and second bone screws each have a head with a substantially convex outer surface for seating within the first and second bone screw bores.
  • 13. The spinal fixation assembly of claim 8, further comprising a central bore formed in the fusion cage, wherein the opening formed in the spinal fixation plate is configured to be coaxially aligned with the central bore.
  • 14. The spinal fixation assembly of claim 8, further comprising at least one pin configured to lock the spinal fixation plate relative to the fusion cage, thereby preventing the spinal fixation plate from moving relative to the fusion cage in the direction substantially perpendicular to a first face of the fusion cage.
  • 15. A spinal fixation assembly, comprising: a fusion cage having an anterior face and a posterior face, and a superior face and an inferior face, the superior face comprising a superior-facing bone-engaging surface and a superior-facing recessed surface that is open to a superior end of the cage and the inferior face comprising an inferior-facing bone-engaging surface and an inferior-facing recessed surface that is open to an inferior end of the cage, the fusion cage being configured to be positioned between adjacent vertebrae such that the superior-facing bone-engaging surface contacts an endplate of a superior vertebra and the inferior-facing bone-engaging surface contacts an endplate of an inferior vertebra; anda spinal fixation plate having an anterior face and a posterior face,at least one bone screw aperture extending through the anterior and posterior faces for receiving a bone screw configured to mate the spinal fixation plate to bone, the at least one bone screw aperture being obliquely angled relative to the posterior and anterior faces of the spinal fixation plate,a central opening being disposed substantially at a center of the spinal fixation plate, andfirst and second arms extending outward from the posterior face of the plate, the first and second arms being configured to slidably contact the fusion cage such that the first arm extends along the superior-facing recessed surface of the fusion cage and the second arm extends along the inferior-facing recessed surface of the fusion cage.
  • 16. The spinal fixation assembly of claim 15, wherein when the arms of the spinal fixation plate contact the fusion cage, a superior surface of the first arm is flush with the superior bone-engaging surface of the fusion cage and an inferior surface of the second arm is flush with the inferior bone-engaging surface of the fusion cage.
  • 17. The spinal fixation assembly of claim 15, wherein the at least one bone screw aperture comprises first and second bone screw apertures positioned on opposite sides of the central opening.
  • 18. The spinal fixation assembly of claim 15, wherein the first and second arms each have a central longitudinal axis that is non-parallel to a central longitudinal axis of the at least one bone screw aperture.
  • 19. The spinal fixation assembly of claim 15, further comprising at least one locking feature configured to prevent the spinal fixation plate from moving relative to the fusion cage in a direction substantially perpendicular to the posterior face of the fusion cage.
  • 20. The spinal fixation assembly of claim 15, wherein when the first arm extends along the superior-facing recessed surface and the second arm extends along the inferior-facing recessed surface, the first and second arms engage the fusion cage.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/912,969, filed on Jun. 7, 2013, which is a continuation of U.S. patent application Ser. No. 12/883,832 (now U.S. Pat. No. 8,591,588), filed on Sep. 16, 2010 entitled “Spinal Fixation Plates,” which is a divisional of U.S. patent application Ser. No. 10/927,778 (now U.S. Pat. No. 7,819,903), filed on Aug. 27, 2004 and entitled “Spinal Fixation Plates,” which is a continuation-in-part of U.S. patent application Ser. No. 10/403,930 (now U.S. Pat. No. 7,112,222), filed on Mar. 31, 2003 and entitled “Anterior Lumbar Interbody Fusion Cage With Locking Plate.” These references are hereby expressly incorporated herein by reference.

US Referenced Citations (406)
Number Name Date Kind
1105105 Sherman Jul 1914 A
2621115 Van Order Dec 1952 A
2621145 Sano Dec 1952 A
4135506 Ulrich Jan 1979 A
4501269 Bagby Feb 1985 A
4503848 Caspar et al. Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4599086 Doty Jul 1986 A
4627853 Campbell et al. Dec 1986 A
4678470 Nashef et al. Jul 1987 A
4717115 Schmitz et al. Jan 1988 A
4743256 Brantigan May 1988 A
4834757 Brantigan May 1989 A
4858603 Clemow et al. Aug 1989 A
4878915 Brantigan Nov 1989 A
4904261 Dove et al. Feb 1990 A
4936851 Fox et al. Jun 1990 A
4950296 McIntyre Aug 1990 A
4955908 Frey et al. Sep 1990 A
4961740 Ray et al. Oct 1990 A
4978350 Wagenknecht Dec 1990 A
4994084 Brennan Feb 1991 A
5026373 Ray et al. Jun 1991 A
5053049 Campbell Oct 1991 A
5062850 MacMillan et al. Nov 1991 A
5071437 Steffee Dec 1991 A
5084051 Tormala et al. Jan 1992 A
5085660 Lin Feb 1992 A
5112354 Sires May 1992 A
5147404 Downey Sep 1992 A
5180381 Aust et al. Jan 1993 A
5192327 Brantigan Mar 1993 A
5211664 Tepic et al. May 1993 A
5235034 Bobsein et al. Aug 1993 A
5275601 Gogolewski et al. Jan 1994 A
5281226 Davydov et al. Jan 1994 A
5284655 Bogdansky et al. Feb 1994 A
5290312 Kojimoto et al. Mar 1994 A
5298254 Prewett et al. Mar 1994 A
5306309 Wagner et al. Apr 1994 A
5314476 Prewett et al. May 1994 A
5314477 Marnay May 1994 A
5348788 White Sep 1994 A
5397364 Kozak et al. Mar 1995 A
5405391 Hednerson et al. Apr 1995 A
5423817 Lin Jun 1995 A
5425772 Brantigan Jun 1995 A
5439684 Prewett et al. Aug 1995 A
5443515 Cohen et al. Aug 1995 A
5458638 Kuslich et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5489308 Kuslich et al. Feb 1996 A
5507818 McLaughlin Apr 1996 A
5514180 Heggeness et al. May 1996 A
5520690 Errico et al. May 1996 A
5522899 Michelson Jun 1996 A
5531746 Errico et al. Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5534031 Matsuzaki et al. Jul 1996 A
5549612 Yapp et al. Aug 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille Sep 1996 A
5556430 Gendler Sep 1996 A
5569308 Sottosanti Oct 1996 A
5571190 Ulrich et al. Nov 1996 A
5571192 Schonhoffer Nov 1996 A
5593409 Michelson Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5607424 Tropiano Mar 1997 A
5607474 Athanasiou et al. Mar 1997 A
5609635 Michelson Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5609637 Biedermann et al. Mar 1997 A
5616144 Yapp et al. Apr 1997 A
5658335 Allen Aug 1997 A
5658337 Kohrs et al. Aug 1997 A
5676699 Gogolewski et al. Oct 1997 A
5683394 Rinner Nov 1997 A
5683463 Godefroy et al. Nov 1997 A
5702449 McKay Dec 1997 A
5702451 Biedermann et al. Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5713899 Marnay et al. Feb 1998 A
5716415 Steffee Feb 1998 A
5728159 Stroever et al. Mar 1998 A
5735905 Parr Apr 1998 A
5755796 Ibo et al. May 1998 A
5755798 Papavero et al. May 1998 A
5766252 Henry et al. Jun 1998 A
5766253 Brosnahan, III Jun 1998 A
5776194 Mikol et al. Jul 1998 A
5776196 Matsuzaki et al. Jul 1998 A
5776197 Rabbe et al. Jul 1998 A
5776198 Rabbe et al. Jul 1998 A
5776199 Michelson Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782915 Stone Jul 1998 A
5785710 Michelson Jul 1998 A
5800433 Benzel et al. Sep 1998 A
5800550 Sertich Sep 1998 A
5824094 Serhan et al. Oct 1998 A
5861041 Tienboon Jan 1999 A
5865845 Thalgott Feb 1999 A
5865849 Stone Feb 1999 A
5872915 Dykes et al. Feb 1999 A
5876402 Errico et al. Mar 1999 A
5876452 Athanasiou et al. Mar 1999 A
5885299 Winslow et al. Mar 1999 A
5888222 Coates et al. Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5888224 Beckers et al. Mar 1999 A
5888227 Cottle Mar 1999 A
5888228 Knothe et al. Mar 1999 A
5895426 Scarborough et al. Apr 1999 A
5899939 Boyce et al. May 1999 A
5902338 Stone May 1999 A
5904683 Pohndorf et al. May 1999 A
5904719 Errico et al. May 1999 A
5910315 Stevenson et al. Jun 1999 A
5920312 Wagner et al. Jul 1999 A
5922027 Stone Jul 1999 A
5944755 Stone Aug 1999 A
5954722 Bono Sep 1999 A
5961554 Janson et al. Oct 1999 A
5964807 Gan et al. Oct 1999 A
5968098 Winslow Oct 1999 A
5972368 McKay Oct 1999 A
5976187 Richelsoph Nov 1999 A
5980522 Koros et al. Nov 1999 A
5981828 Nelson et al. Nov 1999 A
5984967 Zdeblick et al. Nov 1999 A
5989289 Coates et al. Nov 1999 A
6013853 Athanasiou et al. Jan 2000 A
6019793 Perren et al. Feb 2000 A
6025538 Yaccarino, III Feb 2000 A
6033405 Winslow et al. Mar 2000 A
6033438 Bianchi et al. Mar 2000 A
6039762 McKay Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6045580 Scarborough et al. Apr 2000 A
6056749 Kuslich May 2000 A
6066175 Henderson et al. May 2000 A
6080158 Lin Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6090998 Grooms et al. Jul 2000 A
6093205 McLeod et al. Jul 2000 A
6096080 Nicholson et al. Aug 2000 A
6096081 Grivas et al. Aug 2000 A
6099531 Bonutti Aug 2000 A
6110482 Khouri et al. Aug 2000 A
6113638 Williams et al. Sep 2000 A
6120503 Michelson Sep 2000 A
6123731 Boyce et al. Sep 2000 A
6129763 Chauvin et al. Oct 2000 A
6136001 Michelson Oct 2000 A
6139550 Michelson Oct 2000 A
6143030 Schroder Nov 2000 A
6143033 Paul et al. Nov 2000 A
6156037 LeHuec et al. Dec 2000 A
6156070 Incavo et al. Dec 2000 A
6168596 Wellisz et al. Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6193721 Michelson Feb 2001 B1
6193756 Studer et al. Feb 2001 B1
6200347 Anderson et al. Mar 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
6224602 Hayes May 2001 B1
6231610 Geisler May 2001 B1
6235033 Brace et al. May 2001 B1
6235034 Bray May 2001 B1
6235059 Benezech et al. May 2001 B1
6241769 Nicholson et al. Jun 2001 B1
6245108 Biscup Jun 2001 B1
6258089 Campbell et al. Jul 2001 B1
6258125 Paul et al. Jul 2001 B1
6261291 Talaber et al. Jul 2001 B1
6261586 McKay Jul 2001 B1
6264695 Stoy Jul 2001 B1
6270528 McKay Aug 2001 B1
6290703 Ganem Sep 2001 B1
6306139 Fuentes et al. Oct 2001 B1
6306170 Ray Oct 2001 B2
6322562 Wolter et al. Nov 2001 B1
6342055 Eisermann et al. Jan 2002 B1
6342074 Simpson Jan 2002 B1
6364880 Michelson Apr 2002 B1
6371986 Bagby Apr 2002 B1
6383186 Michelson May 2002 B1
6387130 Stone et al. May 2002 B1
6413259 Lyons et al. Jul 2002 B1
6423063 Bonutti Jul 2002 B1
6428542 Michelson Aug 2002 B1
6432106 Fraser Aug 2002 B1
6447512 Landry et al. Sep 2002 B1
6447546 Bramlet et al. Sep 2002 B1
6454771 Michelson Sep 2002 B1
6458158 Anderson et al. Oct 2002 B1
6468311 Boyd et al. Oct 2002 B2
6471724 Zdeblick et al. Oct 2002 B2
6503250 Paul Jan 2003 B2
6524312 Landry et al. Feb 2003 B2
6558387 Errico et al. May 2003 B2
6558423 Michelson May 2003 B1
6562073 Foley May 2003 B2
6565571 Jackowski et al. May 2003 B1
6569201 Moumene et al. May 2003 B2
6575975 Brace et al. Jun 2003 B2
6576017 Foley et al. Jun 2003 B2
6585769 Muhanna et al. Jul 2003 B1
6592624 Fraser et al. Jul 2003 B1
6602256 Hayes Aug 2003 B1
6605090 Trieu et al. Aug 2003 B1
6613091 Zdeblick et al. Sep 2003 B1
6616671 Landry et al. Sep 2003 B2
6620163 Michelson Sep 2003 B1
6623486 Weaver et al. Sep 2003 B1
6629998 Lin Oct 2003 B1
6638310 Lin et al. Oct 2003 B2
6645212 Goldhahn et al. Nov 2003 B2
6656181 Dixon et al. Dec 2003 B2
6679887 Nicholson et al. Jan 2004 B2
6682563 Scharf Jan 2004 B2
6695846 Richelsoph et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6709456 Langberg et al. Mar 2004 B2
6712818 Michelson Mar 2004 B1
6712820 Orbay Mar 2004 B2
6730127 Michelson May 2004 B2
6736850 Davis May 2004 B2
6740088 Kozak et al. May 2004 B1
6761739 Shepard Jul 2004 B2
6770096 Bolger et al. Aug 2004 B2
6786909 Dransfeld et al. Sep 2004 B1
6805714 Sutcliffe Oct 2004 B2
6808537 Michelson Oct 2004 B2
6824564 Crozet Nov 2004 B2
6835206 Jackson Dec 2004 B2
6837905 Lieberman Jan 2005 B1
6849093 Michelson Feb 2005 B2
6855168 Crozet Feb 2005 B2
6884242 LeHuec et al. Apr 2005 B2
6890334 Brace et al. May 2005 B2
6892586 Welch et al. May 2005 B1
6899735 Coates et al. May 2005 B2
6916320 Michelson Jul 2005 B2
6962606 Michelson Nov 2005 B2
6972019 Michelson Dec 2005 B2
6972035 Michelson Dec 2005 B2
6974479 Trieu Dec 2005 B2
6984234 Bray Jan 2006 B2
7001385 Bonutti Feb 2006 B2
7001432 Keller et al. Feb 2006 B2
7033394 Michelson Apr 2006 B2
7041135 Michelson May 2006 B2
7044968 Yaccarino, III et al. May 2006 B1
7060097 Fraser et al. Jun 2006 B2
7077843 Thramann et al. Jul 2006 B2
7077864 Byrd, III et al. Jul 2006 B2
7112222 Fraser et al. Sep 2006 B2
7112223 Davis Sep 2006 B2
7135024 Cook et al. Nov 2006 B2
7135043 Nakahara et al. Nov 2006 B2
7137984 Michelson Nov 2006 B2
7147665 Bryan et al. Dec 2006 B1
7163561 Michelson Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7172672 Silverbrook Feb 2007 B2
7232463 Falahee Jun 2007 B2
7232464 Mathieu et al. Jun 2007 B2
7235105 Jackson Jun 2007 B2
7255698 Michelson Aug 2007 B2
7273481 Lombardo et al. Sep 2007 B2
7276070 Muckter Oct 2007 B2
7276082 Zdeblick et al. Oct 2007 B2
7306605 Ross Dec 2007 B2
7320708 Bernstein Jan 2008 B1
7323011 Shepard et al. Jan 2008 B2
7481829 Baynham et al. Jan 2009 B2
7594932 Aferzon et al. Sep 2009 B2
7608096 Foley et al. Oct 2009 B2
7608107 Michelson Oct 2009 B2
7618456 Mathieu et al. Nov 2009 B2
7819903 Fraser et al. Oct 2010 B2
7833245 Kaes et al. Nov 2010 B2
7846207 Lechmann et al. Dec 2010 B2
7862616 Lechmann et al. Jan 2011 B2
7875076 Mathieu et al. Jan 2011 B2
8328872 Duffield et al. Dec 2012 B2
8343222 Cope Jan 2013 B2
8591588 Fraser et al. Nov 2013 B2
9039775 Fraser et al. May 2015 B2
20010001129 McKay et al. May 2001 A1
20010005796 Zdeblick et al. Jun 2001 A1
20010010021 Boyd et al. Jul 2001 A1
20010016777 Biscup Aug 2001 A1
20010031254 Bianchi et al. Oct 2001 A1
20010039456 Boyer et al. Nov 2001 A1
20010041941 Boyer et al. Nov 2001 A1
20020004683 Michelson Jan 2002 A1
20020010511 Michelson Jan 2002 A1
20020016595 Michelson Feb 2002 A1
20020022843 Michelson Feb 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020065517 Paul May 2002 A1
20020077630 Lin Jun 2002 A1
20020082597 Fraser Jun 2002 A1
20020082603 Dixon et al. Jun 2002 A1
20020091447 Shimp et al. Jul 2002 A1
20020095155 Michelson Jul 2002 A1
20020099376 Michelson Jul 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020111680 Michelson Aug 2002 A1
20020128712 Michelson Sep 2002 A1
20020128717 Alfaro et al. Sep 2002 A1
20020147450 LeHuec et al. Oct 2002 A1
20020169508 Songer et al. Nov 2002 A1
20020193880 Fraser Dec 2002 A1
20030045939 Casutt Mar 2003 A1
20030078666 Ralph et al. Apr 2003 A1
20030078668 Michelson Apr 2003 A1
20030125739 Bagga et al. Jul 2003 A1
20030135277 Bryan et al. Jul 2003 A1
20030153975 Byrd et al. Aug 2003 A1
20030167092 Foley Sep 2003 A1
20030187443 Lauryssen et al. Oct 2003 A1
20030195626 Huppert Oct 2003 A1
20030195632 Foley et al. Oct 2003 A1
20030199983 Michelson Oct 2003 A1
20040039387 Gause et al. Feb 2004 A1
20040078078 Shepard Apr 2004 A1
20040078081 Ferree Apr 2004 A1
20040093084 Michelson May 2004 A1
20040102848 Michelson May 2004 A1
20040126407 Falahee Jul 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040193269 Fraser et al. Sep 2004 A1
20040199254 Louis Oct 2004 A1
20040210310 Trieu Oct 2004 A1
20040210314 Michelson Oct 2004 A1
20040220571 Assaker et al. Nov 2004 A1
20040249377 Kaes et al. Dec 2004 A1
20040254644 Taylor Dec 2004 A1
20050015149 Michelson Jan 2005 A1
20050021143 Keller Jan 2005 A1
20050033294 Garden et al. Feb 2005 A1
20050033433 Michelson Feb 2005 A1
20050049593 Duong et al. Mar 2005 A1
20050049595 Suh et al. Mar 2005 A1
20050065608 Michelson Mar 2005 A1
20050071008 Kirschman Mar 2005 A1
20050085913 Fraser et al. Apr 2005 A1
20050101960 Fiere et al. May 2005 A1
20050149193 Zucherman et al. Jul 2005 A1
20050159813 Molz Jul 2005 A1
20050159818 Blain Jul 2005 A1
20050159819 McCormack et al. Jul 2005 A1
20050177236 Mathieu et al. Aug 2005 A1
20050216081 Taylor Sep 2005 A1
20050228382 Richelsoph et al. Oct 2005 A1
20050240271 Zubok et al. Oct 2005 A1
20060030851 Bray et al. Feb 2006 A1
20060079901 Ryan et al. Apr 2006 A1
20060079961 Michelson Apr 2006 A1
20060085071 Lechmann et al. Apr 2006 A1
20060089717 Krishna et al. Apr 2006 A1
20060129240 Lessar et al. Jun 2006 A1
20060136063 Zeegers Jun 2006 A1
20060142765 Dixon et al. Jun 2006 A9
20060195189 Link et al. Aug 2006 A1
20060206208 Michelson Sep 2006 A1
20070088441 Duggal et al. Apr 2007 A1
20070118125 Orbay et al. May 2007 A1
20070123987 Bernstein May 2007 A1
20070162130 Rashbaum et al. Jul 2007 A1
20070168032 Muhanna et al. Jul 2007 A1
20070219365 Joyce et al. Sep 2007 A1
20070219635 Mathieu et al. Sep 2007 A1
20070225806 Squires et al. Sep 2007 A1
20070225812 Gill Sep 2007 A1
20070270961 Ferguson Nov 2007 A1
20080051890 Waugh et al. Feb 2008 A1
20080119933 Aebi et al. May 2008 A1
20080133013 Duggal et al. Jun 2008 A1
20080177307 Moskowitz et al. Jul 2008 A1
20080249569 Waugh et al. Oct 2008 A1
20080249575 Waugh et al. Oct 2008 A1
20080269806 Zhang et al. Oct 2008 A1
20080306596 Jones et al. Dec 2008 A1
20090076608 Gordon et al. Mar 2009 A1
20090105830 Jones et al. Apr 2009 A1
20090210064 Lechmann et al. Aug 2009 A1
20100016901 Robinson Jan 2010 A1
20100137916 Hynes et al. Jun 2010 A1
20110004253 Fraser et al. Jan 2011 A1
20110118843 Mathieu et al. May 2011 A1
20120101580 Lechmann et al. Apr 2012 A1
20120101581 Mathieu et al. Apr 2012 A1
20120109308 Lechmann et al. May 2012 A1
20120109309 Mathieu et al. May 2012 A1
20120109310 Mathieu et al. May 2012 A1
20120109311 Mathieu et al. May 2012 A1
20120109312 Mathieu et al. May 2012 A1
20120109313 Mathieu et al. May 2012 A1
20130274810 Fraser et al. Oct 2013 A1
20150230832 Fraser et al. Aug 2015 A1
Foreign Referenced Citations (65)
Number Date Country
2317791 Aug 1999 CA
3042003 Jul 1982 DE
3933459 Apr 1991 DE
4242889 Jun 1994 DE
4409392 Sep 1995 DE
29511146 Nov 1995 DE
0 179 695 Apr 1986 EP
0 505 634 Sep 1992 EP
0 577 178 Jan 1994 EP
0 639 351 Feb 1995 EP
0 517 030 Sep 1996 EP
0505634 Aug 1997 EP
0 966 930 Dec 1999 EP
0 968 692 Jan 2000 EP
0 974 319 Jan 2000 EP
1 103 236 May 2001 EP
2552659 Apr 1985 FR
2697996 May 1994 FR
2700947 Aug 1994 FR
2727003 May 1996 FR
2742653 Jun 1997 FR
2747034 Oct 1997 FR
2753368 Mar 1998 FR
2148122 May 1985 GB
2207607 Feb 1989 GB
1465040 Mar 1989 SU
8803417 May 1988 WO
8810100 Dec 1988 WO
9201428 Feb 1992 WO
9521053 Aug 1995 WO
9639988 Dec 1996 WO
9720526 Jun 1997 WO
9723175 Jul 1997 WO
9725941 Jul 1997 WO
9725945 Jul 1997 WO
9817209 Apr 1998 WO
9855052 Dec 1998 WO
9856319 Dec 1998 WO
9856433 Dec 1998 WO
9927864 Jun 1999 WO
9929271 Jun 1999 WO
9932055 Jul 1999 WO
9938461 Aug 1999 WO
9956675 Nov 1999 WO
9963914 Dec 1999 WO
0007527 Feb 2000 WO
0007528 Feb 2000 WO
0030568 Jun 2000 WO
0040177 Jul 2000 WO
0041654 Jul 2000 WO
0059412 Oct 2000 WO
0066044 Nov 2000 WO
0066045 Nov 2000 WO
0074607 Dec 2000 WO
0108611 Feb 2001 WO
0156497 Aug 2001 WO
0162190 Aug 2001 WO
0180785 Nov 2001 WO
0193742 Dec 2001 WO
0195837 Dec 2001 WO
0193742 Sep 2002 WO
2004069106 Aug 2004 WO
2005007040 Jan 2005 WO
2007098288 Aug 2007 WO
2009064644 May 2009 WO
Non-Patent Literature Citations (45)
Entry
Appendix 1 to Joint Claim Construction Brief; Synthes' Exhibits A-9, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012 (192 Pages).
Appendix 2 to Joint Claim Construction Brief; Globus' Exhibits A-F, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012 (146 Pages).
Appendix 3 to Joint Claim Construction Brief; Exhibits A-C, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, (38 Pages).
Chadwick et al., “Radiolucent Structural Materials for Medical Applications,” www.mddionline.conn/print/238, Jun. 1, 2001, accessed date Jul. 31, 2012 (9 Pages).
Co-pending U.S. Appl. No. 11/199,599: Amendment dated Sep. 29, 2009 (30 Pages).
Co-pending U.S. Appl. No. 11/199,599: Appeal Brief dated Apr. 15, 2010 (51 Pages).
Co-pending U.S. Appl. No. 11/199,599: Final Office Action dated Dec. 24, 2009 (22 Pages).
Co-pending U.S. Appl. No. 11/199,599: Interview Summary including Draft Claim Amendments dated Sep. 24, 2009 (16 Pages).
Co-pending U.S. Appl. No. 11/199,599: Non-Final Office Action dated Apr. 1, 2009 (21 Pages).
Co-pending U.S. Appl. No. 11/199,599: Preliminary Amendment dated Jan. 9, 2008 (11 Pages).
Expert Report of Dr. Domagoj Cade Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 5, 2012 (149 Pages).
Expert Report of John F. Hall, M.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012 (27 Pages).
Expert Report of Paul Ducheyne, Ph.D. Concerning Patent Validity, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 13, 2012 (155 Pages).
Expert Report of Richard J. Gering, Ph.D., CLP in the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012 (39 Pages).
I**nternational Search Report for International Application No. PCT/US2007/005098 dated Aug. 16, 2007 (5 Pages).
International Search Report for International Patent Application No. PCT/CH2003/00089 dated Dec. 2, 2003 (3 Pages).
Joint Claim Construction Brief, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2012 (97 Pages).
Jonbergen et al., “Anterior Cervical Interbody fusion with a titanium box cage: Early radiological assessment of fusion and subsidence”, The Spine Journal 5, Jul. 2005, pp. 645-649.
Jury Trial Demanded, In the United States District Court for the District of Delaware, Case No. 1:11-cv-00652-LPS, filed Jul. 22, 2011 (8 Pages).
Jury Verdict Form, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013 (20 Pages).
Marcolongo et al., “Trends in Materials for Spine Surgery”, Biomaterials and Clinical Use, vol. 6, 2011, (21 Pages).
Memorandum Opinion, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013 (33 Pages).
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 15, 2013 (4 Pages).
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013 (7 Pages).
Parlov et al., Anterior Lumbar Interbody Fusion with Threaded Fusion Cages and Autologous Grafts, Eur. Spine J., vol. 9, 2000, pp. 224-229.
Plaintiffs' Responses and Objections to Defendant Globus Medical, Inc.'s First Set of Interrogatories (Nos. 1-11), United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 14, 2011 (18 Pages).
Plaintiffs' Supplemental Responses and Objections to Defendant Globus Medical Inc.'s Interrogatories Nos. 6-10 and Second Supplemental Responses and Objections to Interrogatory No. 5, United States District Court for the District of Delaware, Civil Action No. 11-cv-652-LPS, Sep. 1, 2012 (12 Pages).
Redacted version of “Defendant Globus Medical, Inc.'s Answering Brief in Opposition to Plaintiffs Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 12, 2013 (233 Pages).
Redacted version of “Opening Brief in Support of Plaintiffs' Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Feb. 13, 2013 (66 Pages).
Redacted version of “Plaintiffs Reply Brief in Support of Plaintiffs Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 21, 2013 (11 Pages).
Reply Report of Dr. Domagoj Carie Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jan. 4, 2013 (81 Pages).
Schleicher et al., “Biomechanical Comparison of Two Different Concepts for Stand alone anterior lumbar interbody fusion”, Eur. Spine J., vol. 17, Sep. 2008, pp. 1757-1765.
Scholz et al., “A New Stand-Alone Cervical Anterior Interbody Fusion Device”, Spine, vol. 34(2) Jan. 2009, (6 Pages).
Second Expert Report of Wilson C. Hayes, Ph.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012 (22 Pages).
Spruit et al., The in Vitro Stabilising Effect of Polyether-etherketone Cages Versus a Titanium Cage of similar design for anterior lumbar interbody fusion, Eur. Spine J., vol. 14, Aug. 2005, pp. 752-758.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 10, 2013 (114 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 11, 2013 (98 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 12, 2013 (75 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 13, 2013 (94 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013 (26 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 3, 2013 (98 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 4, 2013 (110 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 5, 2013 (99 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 6, 2013 (80 Pages).
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 7, 2013 (97 Pages).
Related Publications (1)
Number Date Country
20150230832 A1 Aug 2015 US
Divisions (1)
Number Date Country
Parent 10927778 Aug 2004 US
Child 12883832 US
Continuations (2)
Number Date Country
Parent 13912969 Jun 2013 US
Child 14700419 US
Parent 12883832 Sep 2010 US
Child 13912969 US
Continuation in Parts (1)
Number Date Country
Parent 10403930 Mar 2003 US
Child 10927778 US