Spinal implant with expandable fixation

Information

  • Patent Grant
  • 11202712
  • Patent Number
    11,202,712
  • Date Filed
    Monday, September 9, 2019
    5 years ago
  • Date Issued
    Tuesday, December 21, 2021
    3 years ago
Abstract
A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one fixation element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to engage a surface of an adjacent vertebral body and secure the implant between two vertebral bodies. Preferably, the implant is expandable and has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it must pass to be deployed within the intervertebral space. Once within the space between vertebral bodies, the implant can be expanded so as to engage the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures restored and maintained.
Description
FIELD OF THE INVENTION

The invention relates to devices and methods for stabilizing the vertebral motion segment. More specifically, the field of the invention relates to an expandable spinal implant with fixation elements to fix the implant within an intervertebral space while providing controlled spinal correction in three dimensions for improved spinal intervertebral body distraction and fusion.


BACKGROUND OF THE INVENTION

A conventional spine cage or implant is characterized by a kidney bean shaped body which is typically inserted in tandem posteriorly through the neuroforamen of the distracted spine after a trial implant creates a pathway. Existing devices for interbody stabilization have important and significant limitations, including inability to expand and distract the endplates while fixing the device to prevent relative movement between the device and an adjacent vertebral body. Current devices for interbody stabilization include static spacers composed of titanium, PEEK, and high performance thermoplastic polymer produced by VICTREX, (Victrex USA Inc, 3A Caledon Court; Greenville, S.C. 29615), carbon fiber, or resorbable polymers. Moreover, current interbody spacers do not maintain interbody lordosis and can contribute to the formation of a straight or even kyphotic segment and the clinical problem of “flatback syndrome.” Separation of vertebral endplates increases space available for the neural elements, specifically the neural foramen. Existing static cages do not reliably improve space for the neural elements. Therefore, what is needed is a spinal implant that will provide space for the neural elements posteriorly between the vertebral bodies, or at least maintain the natural bone contours to avoid neuropraxia (nerve stretch) or encroachment.


Conventional devices for intervertebral body stabilization includes poor interface between bone and the biomaterial of the device. Conventional static interbody spacers form a weak interface between bone and biomaterial. Although the surface of such implants is typically provided with a series of ridges or coated with hydroxyapetite, the ridges may be in parallel with applied horizontal vectors or side-to-side motion. That is, the ridges or coatings on the implant offer little resistance to movement applied to either side the endplates. Thus, nonunion is common in allograft, titanium and polymer spacers, due to motion between the implant and host bone.


BRIEF SUMMARY OF THE INVENTION

This invention is generally directed to a spinal implant for insertion between superior and inferior vertebral end plates after partial or total removal of a spinal disc. The spinal implant embodying features of the invention is easily installed and is capable of holding the vertebral or joint sections with increased pullout strength to minimize the chance of implant fixation loss during the period when the implant is becoming incorporated into the arthrodesis bone block.


More specifically, the invention is particularly directed to a spinal implant which has one or more extendable fixation elements that engage or penetrate vertebral end plates and prevent movement between the implant and the vertebral end plates after implantation. The one or more expandable fixation elements have a contracted configuration within the implant so as to not interfere with the insertion of the implant between vertebral bodies and have an extended configuration with a distal tip extending beyond the surface of the implant to engage the vertebral end plates after implantation and fix the position of the implant with respect to the adjacent vertebral body. The fixation element may be extended in a variety of ways such as with fluid pressure, e.g. hydraulic fluid, by mechanical force, such as a threaded connection with a rotating driving member or other suitable means. Fluidic displacement is preferred. The distal tip of the fixation element should be sharp enough to penetrate into the vertebral end plate.


Preferably, the spinal implant embodying features of the invention is an expandable spinal implant such as the selectively expanding spine cage described in copending application Ser. No. 11/535,432, filed on Sep. 26, 2006 and Ser. No. 11/692,800, filed on Mar. 28, 2007, which provides restoration of disc height between adjacent vertebrae and can provide corrective spinal alignment in a plurality of dimensions. Preferably, the implant has an interior cavity for receiving osteoconductive material to promote the formation of new bone in the intervertebral space subsequent to implanting.


A spinal implant having features of the invention has a base including a first pressure applying member such as an end plate with a first bone engaging surface, at least one extendable member cooperating with the base and a second upper pressure applying member with a second bone engaging surface coupled to the at least one extendable member. The one or more extendable fixation elements are configured to extend through passageways provided in the second upper pressure applying member and beyond the bone engaging surface thereof to penetrate into the adjacent vertebral end plate and fix the implant with respect the vertebral body. Preferably, the fixation elements are slidably disposed within recesses within the extendable members.


The selectively expanding spine cage (SEC) or spinal implant embodying features of the invention is particularly suitable for posterior insertion between superior and inferior vertebral end plates as described in the aforementioned copending application Ser. Nos. 11/535,432 and 11/692,800. The SEC has an unexpanded configuration which allows easy deployment and is typically about 0.8 to about 1 cm in maximum short transverse dimension so as to enable minimal invasive insertion posteriorly between vertebral pedicles through a working space of approximately 1 cm in diameter. The extended fixation element extends beyond the tissue engaging surface of the second pressure applying member by at least 0.1 cm, preferably at least 0.25 cm to ensure proper engagement or contact with the end plate of the vertebral body and preferably penetration thereof.


In one preferred embodiment, at least one and preferably all of the extendable members of the SEC have an extendable fixation element disposed within a recess in the extendable member. In this embodiment, the implant is preferably fluid activated so the extendable members expand the SEC after implantation and be properly positioned between the adjacent vertebral bodies. Additionally, the fixation member is also extended by fluid pressure with or after expansion of the SEC. Preferably, the fluid expansion is by hydraulic fluid from a master cylinder or a syringe located remotely from the patient to enable controlled spinal correction in multiple dimensions and fixation of the SEC in a proper position. Individual cylinders or syringes may also be employed. Advantageously, the hydraulic fluid is a time-controlled curable polymer, such as methylmethacrylate, which has a viscosity and curing time that can be adjusted by the formulation of an appropriate added catalyst, as is well known. When the polymer cures, it hardens and locks the expanded expandable members and the expanded fixation element in position to provide the desired amount of anterior/posterior, medial/lateral, superior/inferior spinal correction immovably in place. Mechanical locking of the expandable members and/or the fixation elements may also be employed.


Once inserted between vertebral endplates, the implant advantageously can be expanded with a minimum of force exerted remotely through the hydraulic control lines. The expansion of the implant advantageously is about 20% to about 100% greater than the unexpanded height thereof, typically about 60%. Typical expansion is about 13 mm in the case of a 8 mm implant and about 16 mm in the case of a 10 mm implant.


Since the vertebral end plates are held together at one (the anterior) end by a ligament much like a clamshell, as the implant expands against the vertebral end plates, the amount of vertical expansion can be adjusted to create the desired anterior/posterior correction angle.


Left and right lateral correction of the spine is achieved by differential vertical expansion of the two or more extendable members of the implant. Each extendable member is preferably independently controlled by a master cylinder or syringe located ex vivo (away from the patient) and communicating hydraulically with the slave cylinders for moving the pistons and top plate vertically and laterally for correcting spinal deformities anteriorly or posteriorly, medial or lateral, thus available to provide spinal correction in three dimensions.


A minimally invasive downsized insertion tool both inserts the unexpanded SEC posteriorly and houses the hydraulic lines communicating between the master cylinder and the slave cylinder. The insertion tool also houses a line for communicating the liquid or slurry bone graft material to the slave cylinder and into the intervertebral space for subsequent fusion. Advantageously, the hydraulic lines are small size tubing to allow for high hydraulic pressure without danger of the lines bursting. The sizes of the slave cylinders and pistons can be varied to increase the mechanical advantage.


Due to the mechanical advantage provided by the hydraulic system, the SEC has minimized size and diameter in its unexpanded state that is smaller than the diameter of a prepared neuroforamen. The SEC thus can be inserted posteriorly and is engaged between the endplates of the adjacent vertebra to effectively distract the intervertebral area, restore space for neural elements, stabilize the motion segment and eliminate pathologic segmental motion. The SEC enhances spine arthrodesis by creating a rigid spine segment.


The SEC provides a significant advantage by enabling a comparatively large quantity of gone growth conductive or inductive agents to be contained within its interior communicating directly to adjacent bone. Importantly, this results in fixation forces greater than adjacent bone and soft tissue failure forces.


The hydraulic control system provides a minimally invasive procedure by enabling the surgeon to apply a controlling force away from the patient's body to expand and adjust the spinal implant in three dimensions. Preferably, the expansion is infinitely adjustable to provide a variety of height and lateral angles, and is not limited to incremental positions. The implant can be used to promote fusion, and/or to correct deformities such as scoliosis, kyphosis, and spondylolisthesis.


The clinical goals of the SEC and the method for its insertion provide a minimally invasive risk of trauma to nerve roots, reduce pain, improve function, and permit early mobilization of the patient after fusion surgery. The fixation elements maintain the implant in a desired position until healing (fusion or arthrodesis) occurs. At this point, the implant is incorporated inside bone and its role becomes quiescent. The present SEC provides more internal and external graft bone space exposure, easier and safer directed insertion, less risk of insertional damage to nerve roots and other tissue, and thus provide substantially improved immediate and long term results.


Thus, a key feature of the invention is that an essentially incompressible implant can be inserted posteriorly between vertebral pedicles in only a 1 cm working space. The implant then can be expanded to about 100% to about 200%, typically about 160%, of its original insertion size to provide a closely controlled full range of spinal correction in three dimensions. The one or more expandable fixation elements or spikes ensure that the implant remains in place after deployment. These and other advantages of the invention will become more apparent from the following detailed description and the accompanying exemplary drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts placement of an SEC embodying features of the invention between adjacent lumbar vertebrae.



FIG. 2 is a front perspective view of the SEC shown in FIG. 1 in an unexpanded state prior to deployment.



FIG. 3 is a sectional view of the SEC shown in FIG. 2.



FIG. 4 is a front perspective view of the SEC of similar to that shown in FIG. 2 in an expanded configuration.



FIG. 5 is a partial sectional view of the expanded SEC shown in FIG. 4 in place adjacent to a vertebral body with the pointed ends of a fixation member penetrating the surface of the vertebral body.



FIG. 6 is a sectional view of an alternative embodiment of the SEC.





DETAILED DESCRIPTION


FIG. 1 illustrates location of spinal implant or SEC 10 between adjacent lumbar vertebrae in an expanded configuration. A partial or complete discectomy is performed prior to the insertion of the spinal implant 10 in a conventional manner. The SEC 10 is introduced in its unexpanded state to enable it to be inserted posteriorly with minimal trauma to the patient and risk of injury to nerve roots. Once in place the SEC 10 can be expanded to provide both medial and lateral spinal correction. The SEC has an unexpanded height of about 5 to about 15 mm, typically about 10 mm and is expandable to at least 130% to about 180% of the unexpanded height. Typically the SEC is about 9 to about 15 mm, typically about 12 mm wide and about 25 to about 40 mm, typically about 28 mm long to facilitate posterior insertion and thereby minimize trauma to the patient and risk of injury to nerve roots.



FIG. 2 illustrate the SEC 10 in a closed or unexpanded configuration and FIG. 3 illustrates the SEC 10 in an expanded configuration in section or cutaway view to show the interior structure.



FIG. 4 illustrates the SEC 10 in an expanded configuration.


As shown in these figures, the SEC 10 has a base 12 with a pressure applying end member or plate 13 having a surface 14 for engaging an end surface of an adjacent vertebral body. Extendable support members 15 and 16 cooperate with the base 12. A second end pressure applying member or plate 17 is coupled to the extendable support members 15 and 16 so that the plate 17 moves with the extension of extendable support members 15 and 16. The plate 17 may be fixed to only one of the extendable support member but also engageable with the other extendable support member. Each extendable support member may have a separate end plate 17 fixed thereto, as shown in FIG. 6. As shown in more detail in FIG. 3, the extendable support members 15 and 16 are provided with fixation elements or spikes 18 and 19 which are slidably disposed within the bores 20 and 21 of extendable support members 15 and 16. The spikes 18 and 19 are provided with enlarged bases 22 and 23 which provide a seal with the bores 20 and 21. The seal allows extension of the spikes 18 and 19 to be extended with the same pressurized hydraulic fluid (not shown) which extends the extendable support members 15 and 16. The spikes 18 and 19 are provided with pointed distal tips 22 and 23 which extend through passageways 24 and 25 provided in the end pressure plate 17 to ensure contact between the spikes and the adjacent vertebral body as shown in FIG. 5 so as to fix the SEC 10 within the space between the adjacent vertebral bodies. In FIG. 5, the SEC 10 is shown in the expanded configuration. The SEC 10 has a central cavity 27 for infusion of bone graft material into the intervertebral space when the SEC is fully expanded or during the expansion process.


Additional details of the SEC such as the attachment of hydraulic lines and lines for transmission of a slurry or liquid bone graft material, device and hydraulic fluid delivery accessories and the like can be found in co-pending application Ser. No. 11/535,432 filed on Sep. 26, 2006 and Ser. No. 11,692,800, filed on Mar. 28, 2007, which are incorporated herein by reference.


Since vertebral end plates are held together at one end by a ligament much like a clamshell, expansion of the device 10 against the end plates of adjacent vertebral bodies can be adjusted to create the desired anterior/posterior correction angle.


The hydraulic fluid used to expand the SEC 10 and to extend the spikes 18 and 19 may advantageously be a time-controlled curable polymer such as methylmethacrylate. The viscosity and curing time of such a polymer can be adjusted by the formulation with an appropriate added catalyst as is well known. Such catalysts are available from LOCTITE Corp., 1001 Trout Brook Crossing, Rocky Hill, Conn. 06067. When the polymer cures, it hardens and locks the extendable members 15 and 16 and the spikes 18 and 19 in a desired position to provide the desired amount of spinal correction determined by the physician. Other means may be employed to lock the extendable members and the spikes in a desired position. For example, spring actuated locking fingers may be provided in the bore of one or more of the pistons and one or more of the bores of the spikes which extend outwardly when the piston or spike pass their respective locations upon extension thereof.


It will be appreciated that the SEC, including its various components should be formed of biocompatible, substantially incompressible material such as titanium, and preferably type 6-4 titanium alloy or other suitable materials which will allow for long term deployment within a patient.


The extension of extendable members 15 and 16 are preferably individually controlled so that the physician is able to provide a controlled angle of the SEC corrective surface. While only two extendable members are described herein, the SEC 10 may be provided with three or more individually extendable members so that the physician can exercise three-dimensional control of the SEC extension.


The SEC 10 embodying features of the invention provides advantages that include correction of coronal plane deformity; introduction of interbody lordosis, early stabilization of the interbody space with rigidity that is greater than present spacer devices and the ability to fix the SEC within the intervertebral space. This early stability may improve post-operative pain, preclude the need for posterior implants including pedicle screws, and improve the rate of successful arthrodesis. Importantly, the SEC provides improvement of space available for the neural elements while improving lordosis. As infused osteoinductive/osteoconductive bone graft materials heal, the patient becomes well and the implant becomes inert and quiescent, embedded in bone, and no longer needed.


While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments and alternatives as set forth above, but on the contrary is intended to cover various modifications and equivalent arrangements included within the scope of the following claims.


For example, the SEC 10 described herein is expanded by hydraulic fluid. Other expansion means may be employed. For example, a screw mechanism may be employed to expand the SEC and to extend one or more of the spikes into engagement with adjacent vertebral surfaces. Additionally, the spikes which help fix the SEC within the vertebral space are described herein as being extended with the extendable support members. However, the spikes may be slidably disposed in separate bores and independent expansion of the extendable support members.


Further, the SEC can be provided with load or pressure sensors that register differential pressure and pressure intensity exerted on the engaging surfaces of the SEC by the patient's vertebrae end plates to generate corrective signals, for example by control, that are used e.g. by the surgeon or by a computer controlled mechanism to realign the patient's spine. The invention may further include a system that makes these adjustments, responsive to sensor signals, in real time and on a continual basis, such that the shapes of the implant changes to realign the patient's spine or mechanism. Preferably, such system is contemplated for use in setting the positions of the pistons during installation of the implant.


Furthermore, the SEC needs not be rigidly locked into position but may be provided with yieldable material to provide some movement of the end surfaces of the SEC to accommodate spinal movement.


While particular forms of the invention have been illustrated and described herein, it will be apparent that various modifications and improvements can be made to the invention. Additional details of the spinal implant devices may be found in the patents and applications referenced herein. To the extent not otherwise disclosed herein, materials and structure may be of conventional design.


Moreover, individual features of embodiments of the invention may be shown in some drawings and not in others, but those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of another embodiment. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is therefore intended that this invention be defined by the scope of the appended claims as broadly as the prior art will permit.


Terms such as “element”, “member”, “component”, “device”, “means”, “portion”, “section”, “steps” and words of similar import when used herein shall not be construed as invoking the provisions of 35 U.S.C § 112(6) unless the following claims expressly use the terms “means for” or “step for” followed by a particular function without reference to a specific structure or a specific action. All patents and all patent applications referred to above are hereby incorporated by reference in their entirety.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A method of implanting a spinal implant, comprising: positioning a spinal implant in a space between opposed first and second vertebral bodies, such that a first surface of the implant engages the first vertebral body and a second surface of the implant engages the second vertebral body;expanding the implant by moving the first surface away from the second surface so as to apply forces on the respective first and second vertebral bodies directed away from one another; andindependently of expanding the implant, extending an extendable fixation element having a pointed distal tip from a contracted configuration within the implant to an extended configuration in which the pointed distal tip extends beyond the second surface and engages the second vertebral body to fix the implant within the space between the first and second vertebral bodies.
  • 2. The method of claim 1, wherein the step of expanding the implant is induced by a pressurized fluid.
  • 3. The method of claim 1, wherein the step of extending the extendable fixation element is induced by a pressurized fluid.
  • 4. The method of claim 1 wherein the step of extending the extendable fixation element comprises extending a first extendable fixation element and a second extendable fixation element.
  • 5. The method of claim 4, wherein the first extendable fixation element is extended independently of the second extendable fixation element.
  • 6. The method of claim 1, wherein the step of expanding the implant comprises extending a first extendable support member and a second extendable support member.
  • 7. The method of claim 6, wherein the first extendable support member is extended independently of the second extendable support member.
  • 8. The method of claim 7, wherein the first surface is positioned on a first end plate adapted to engage the first vertebral body, wherein the second surface is positioned on a second end plate and a third end plate, the second and third end plates being separate from one another and adapted to engage the second vertebral body, wherein the first extendable support member is coupled to the first end plate and the second end plate, the first extendable support member being extendable so as to move the second end plate away from the first end plate, wherein the second extendable support member is coupled to the first end plate and the third end plate, the second extendable support member being extendable so as to move the third end plate away from the first end plate, wherein extending the first extendable support member and the second extendable support member independently comprises independently moving the respective second and third end plates.
  • 9. The method of claim 8, further comprising independently changing the angles of the second and third plates with respect to the first end plate.
  • 10. The method of claim 9, wherein the first extendable support member is pivotably coupled to the second end plate at a first pivot point that is fixed with respect to the second end plate, such that the second end plate is constrained to pivot about the first pivot point, and wherein the second extendable support member is pivotably coupled to the third end plate at a second pivot point that is fixed with respect to the third end plate, such that the third end plate is constrained to pivot about the second pivot point.
  • 11. The method of claim 6, wherein the first and second extendable support members are laterally spaced apart from one another along a dimension of the first surface of the implant.
  • 12. The method of claim 11, wherein a central cavity is defined between the laterally spaced apart first and second support members.
  • 13. The method of claim 12, further comprising positioning bone graft material into the central cavity for infusion from the central cavity into the space between the first and second vertebral bodies.
  • 14. The method of claim 1, further comprising positioning bone graft material into the implant for infusion into the space between the first and second vertebral bodies.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 15/938,442, filed on Mar. 28, 2018, which is a continuation of U.S. patent application Ser. No. 14/594,569, filed on Jan. 12, 2015, which is a continuation of U.S. patent application Ser. No. 12/072,044, filed on Feb. 22, 2008, the disclosures of which are incorporated herein by reference.

US Referenced Citations (237)
Number Name Date Kind
3875595 Froning Apr 1975 A
4932975 Main et al. Jun 1990 A
4969888 Scholten et al. Nov 1990 A
5236460 Barber Aug 1993 A
5653763 Errico et al. Aug 1997 A
5665122 Kambin Sep 1997 A
5723013 Jeanson et al. Mar 1998 A
5827328 Butterman Oct 1998 A
5865848 Baker Feb 1999 A
5916267 Tienboon Jun 1999 A
5980522 Koros et al. Nov 1999 A
5989290 Biedermann et al. Nov 1999 A
6039761 Li et al. Mar 2000 A
6102950 Vaccaro Aug 2000 A
6127597 Beyar et al. Oct 2000 A
6176881 Schar et al. Jan 2001 B1
6193756 Studer et al. Feb 2001 B1
6214012 Karpman et al. Apr 2001 B1
6296665 Strnad et al. Oct 2001 B1
6371989 Chauvin et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6375683 Crozet et al. Apr 2002 B1
6395032 Gauchet May 2002 B1
6454806 Cohen et al. Sep 2002 B1
6527803 Crozet et al. Mar 2003 B1
6562074 Gerbec et al. May 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6585699 Ljunggreen et al. Jul 2003 B2
6692495 Zacouto Feb 2004 B1
6719796 Cohen et al. Apr 2004 B2
6723126 Berry Apr 2004 B1
6730088 Yeh May 2004 B2
6764491 Frey et al. Jul 2004 B2
6830570 Frey et al. Dec 2004 B1
6835207 Zacouto et al. Dec 2004 B2
6866682 An et al. Mar 2005 B1
6875235 Ferree Apr 2005 B2
6953477 Berry Oct 2005 B2
6960232 Lyons et al. Nov 2005 B2
6981989 Fleischmann et al. Jan 2006 B1
7001431 Bao et al. Feb 2006 B2
7018415 McKay Mar 2006 B1
7018416 Hanson et al. Mar 2006 B2
7060037 Lussier et al. Jun 2006 B2
7060073 Frey et al. Jun 2006 B2
7066958 Ferree Jun 2006 B2
7094257 Mujwid et al. Aug 2006 B2
7166110 Yundt Jan 2007 B2
7204853 Gordon et al. Apr 2007 B2
7214243 Taylor May 2007 B2
7217293 Branch, Jr. May 2007 B2
7282063 Cohen et al. Oct 2007 B2
7291150 Graf Nov 2007 B2
7291158 Crow et al. Nov 2007 B2
7316686 Dorchak et al. Jan 2008 B2
7316714 Gordon et al. Jan 2008 B2
7351261 Casey Apr 2008 B2
7407513 Alleyne et al. Aug 2008 B2
7419505 Fleischmann et al. Sep 2008 B2
7452359 Michelson Nov 2008 B1
7470273 Dougherty-Shah Dec 2008 B2
7481812 Frey et al. Jan 2009 B2
7485145 Purcell Feb 2009 B2
7507241 Levy et al. Mar 2009 B2
7520900 Tried Apr 2009 B2
7563284 Coppes et al. Jul 2009 B2
7563286 Gerber et al. Jul 2009 B2
7621956 Paul et al. Nov 2009 B2
7628815 Baumgartner et al. Dec 2009 B2
7670359 Yundt Mar 2010 B2
7708779 Edie et al. May 2010 B2
7722674 Grotz May 2010 B1
7731752 Edie et al. Jun 2010 B2
7731753 Reo et al. Jun 2010 B2
7771480 Navarro et al. Aug 2010 B2
7794501 Edie et al. Sep 2010 B2
7806935 Navarro et al. Oct 2010 B2
7819921 Grotz Oct 2010 B2
7824444 Biscup et al. Nov 2010 B2
7824445 Biro et al. Nov 2010 B2
7854766 Moskowitz et al. Dec 2010 B2
7862618 White et al. Jan 2011 B2
7883543 Sweeney Feb 2011 B2
7935124 Frey et al. May 2011 B2
7967863 Frey et al. Jun 2011 B2
7967867 Barreiro et al. Jun 2011 B2
7985231 Sankaran Jul 2011 B2
7985256 Grotz et al. Jul 2011 B2
8021395 Ben-Mokhtar et al. Sep 2011 B2
8025680 Hayes et al. Sep 2011 B2
8057549 Butterman et al. Nov 2011 B2
8062368 Heinz et al. Nov 2011 B2
8062373 Fabian, Jr. Nov 2011 B2
8070813 Grotz et al. Dec 2011 B2
8105382 Olmos et al. Jan 2012 B2
8137401 Stad et al. Mar 2012 B2
8153785 Khire et al. Apr 2012 B2
8187331 Strohkirch, Jr. et al. May 2012 B2
8192495 Simpson et al. Jun 2012 B2
8267939 Cipoletti et al. Sep 2012 B2
8273124 Renganath et al. Sep 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8353961 McClintock et al. Jan 2013 B2
8366777 Matthis et al. Feb 2013 B2
8394143 Grotz et al. Mar 2013 B2
8435296 Kadaba et al. May 2013 B2
8454695 Grotz et al. Jun 2013 B2
8480741 Grotz et al. Jul 2013 B2
8574297 Stad et al. Nov 2013 B2
8696751 Ashley et al. Apr 2014 B2
8894710 Simpson et al. Nov 2014 B2
8900305 Stad et al. Dec 2014 B2
8956413 Ashley et al. Feb 2015 B2
8992620 Ashley et al. Mar 2015 B2
9028550 Shulock et al. May 2015 B2
9545316 Ashley et al. Jan 2017 B2
9814600 Shulock et al. Nov 2017 B2
10342673 Ashley et al. Jul 2019 B2
20010056302 Boyer et al. Dec 2001 A1
20020128716 Cohen et al. Sep 2002 A1
20020138146 Jackson Sep 2002 A1
20020151976 Foley et al. Oct 2002 A1
20030114899 Woods et al. Jun 2003 A1
20040030346 Frey et al. Feb 2004 A1
20040088054 Berry May 2004 A1
20040097928 Zdeblick et al. May 2004 A1
20040133273 Cox Jul 2004 A1
20040153065 Lim Aug 2004 A1
20040186576 Biscup et al. Sep 2004 A1
20050033437 Bao et al. Feb 2005 A1
20050043800 Paul et al. Feb 2005 A1
20050049590 Alleyne et al. Mar 2005 A1
20050085910 Sweeney Apr 2005 A1
20050107881 Alleyne et al. May 2005 A1
20050113842 Bertagnoli et al. May 2005 A1
20050197702 Coppes et al. Sep 2005 A1
20050216084 Fleischmann et al. Sep 2005 A1
20050229433 Cachia Oct 2005 A1
20050251260 Gerber et al. Nov 2005 A1
20050256576 Moskowitz et al. Nov 2005 A1
20050273169 Purcell Dec 2005 A1
20050273170 Navarro et al. Dec 2005 A1
20050273171 Gordon et al. Dec 2005 A1
20060036259 Carl et al. Feb 2006 A1
20060085073 Raiszadeh Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060106416 Raymond et al. May 2006 A1
20060116767 Magerl et al. Jun 2006 A1
20060142860 Navarro et al. Jun 2006 A1
20060142861 Murray Jun 2006 A1
20060149377 Navarro et al. Jul 2006 A1
20060167547 Suddaby Jul 2006 A1
20060200244 Assaker Sep 2006 A1
20060235426 Lim et al. Oct 2006 A1
20060235535 Ferree et al. Oct 2006 A1
20060264968 Frey et al. Nov 2006 A1
20070050030 Kim Mar 2007 A1
20070050033 Reo et al. Mar 2007 A1
20070073395 Baumgartner et al. Mar 2007 A1
20070093901 Grotz et al. Apr 2007 A1
20070093903 Cheng Apr 2007 A1
20070123987 Bernstein May 2007 A1
20070179611 DiPoto et al. Aug 2007 A1
20070233254 Grotz et al. Oct 2007 A1
20070255409 Dickson et al. Nov 2007 A1
20070255413 Edie et al. Nov 2007 A1
20070255415 Edie et al. Nov 2007 A1
20070270961 Ferguson Nov 2007 A1
20070270964 Strohkirch et al. Nov 2007 A1
20070288092 Bambakidis Dec 2007 A1
20080021555 White et al. Jan 2008 A1
20080021556 Edie Jan 2008 A1
20080058930 Edie et al. Mar 2008 A1
20080058931 White et al. Mar 2008 A1
20080065082 Chang et al. Mar 2008 A1
20080065220 Alleyne et al. Mar 2008 A1
20080065221 Alleyne et al. Mar 2008 A1
20080077150 Nguyen Mar 2008 A1
20080086276 Naka et al. Apr 2008 A1
20080097441 Hayes et al. Apr 2008 A1
20080103601 Biro et al. May 2008 A1
20080114467 Capote et al. May 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080147194 Grotz et al. Jun 2008 A1
20080161933 Grotz et al. Jul 2008 A1
20080177387 Parimore et al. Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080215153 Butterman et al. Sep 2008 A1
20080243251 Stad et al. Oct 2008 A1
20080281424 Parry et al. Nov 2008 A1
20080288073 Renganath et al. Nov 2008 A1
20080300598 Barreiro et al. Dec 2008 A1
20090005819 Ben-Mokhtar et al. Jan 2009 A1
20090005874 Fleischmann et al. Jan 2009 A1
20090018661 Kim et al. Jan 2009 A1
20090043312 Koulisis et al. Feb 2009 A1
20090048676 Fabian, Jr. Feb 2009 A1
20090105836 Frey et al. Apr 2009 A1
20090171389 Sankaran Jul 2009 A1
20090204215 McClintock et al. Aug 2009 A1
20090216331 Grotz et al. Aug 2009 A1
20090222100 Cipoletti et al. Sep 2009 A1
20090270987 Heinz et al. Oct 2009 A1
20100016970 Kapitan et al. Jan 2010 A1
20100057204 Kadaba et al. Mar 2010 A1
20100145455 Simpson et al. Jun 2010 A1
20100145456 Simpson et al. Jun 2010 A1
20100249930 Myers Sep 2010 A1
20100286783 Lechmann et al. Nov 2010 A1
20110130835 Ashley et al. Jun 2011 A1
20110137416 Myers Jun 2011 A1
20110270398 Grotz et al. Nov 2011 A1
20110288646 Moskowitz et al. Nov 2011 A1
20120059469 Myers et al. Mar 2012 A1
20120116518 Grotz et al. May 2012 A1
20120130387 Simpson et al. May 2012 A1
20120245695 Simpson et al. Sep 2012 A1
20120283830 Myers Nov 2012 A1
20130096677 Myers et al. Apr 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130197642 Ernst Aug 2013 A1
20130197647 Wolters et al. Aug 2013 A1
20130197648 Boehm et al. Aug 2013 A1
20130204368 Prevost Aug 2013 A1
20130204374 Milella, Jr. Aug 2013 A1
20130253650 Ashley et al. Sep 2013 A1
20140018922 Marino et al. Jan 2014 A1
20140031938 Lechmann et al. Jan 2014 A1
20150148908 Marino et al. May 2015 A1
20170224506 Ashley et al. Aug 2017 A1
20180064557 Shulock et al. Mar 2018 A1
20180098860 To et al. Apr 2018 A1
20180116811 Bernard et al. May 2018 A1
20180125671 Bernard et al. May 2018 A1
20190000644 Moore et al. Jan 2019 A1
20190231556 Butler et al. Aug 2019 A1
Foreign Referenced Citations (24)
Number Date Country
3729600 Mar 1989 DE
1442715 Nov 2004 EP
1415624 May 2006 EP
2001-518824 Oct 2001 JP
2008-502372 Jan 2008 JP
2003003951 Jan 2003 WO
2004016250 Feb 2004 WO
2004016205 May 2004 WO
2005112834 Dec 2005 WO
2006044786 Jan 2007 WO
2008011371 Mar 2008 WO
2007124078 Jul 2008 WO
2008039811 Jul 2008 WO
2008112607 Dec 2008 WO
2008148210 Dec 2008 WO
2009033100 Mar 2009 WO
2008121251 Aug 2009 WO
2009064787 Aug 2009 WO
2009105182 Aug 2009 WO
2009114381 Sep 2009 WO
2008086276 Dec 2009 WO
2010068725 Oct 2010 WO
2011011609 Jun 2011 WO
2011150077 Dec 2011 WO
Non-Patent Literature Citations (10)
Entry
Extended European Search Report for Application No. 11787340.6 dated Jun. 25, 2014.
Extended European Search Report for Application No. EP14159619 dated Jun. 12, 2014.
International Search Report and Written Opinion dated Jun. 5, 2009 for related PCT/US2009/000974.
International Search Report and Written Opinion dated Apr. 10, 2008 in related International Application No. PCT/US2007/079474.
International Search Report and Written Opinion dated Aug. 13, 2010, in related International Application No. PCT/US2009/067446 filed Dec. 10, 2009.
International Search Report and Written Opinion dated Jun. 30, 2009, in related International Application No. PCT/US2008/003776 filed Mar. 21, 2008.
International Search Report and Written Opinion dated May 6, 2009, in related International Application No. PCT/US2009/000974 filed Feb. 17, 2009.
International Search Report and Written Opinion dated Nov. 11, 2010, in International Application No. PCT/US2010/031247 entitled “Insertion Handle for Implant.”
International Search Report and Written Opinion dated Sep. 22, 2011 in related International Application No. PCT/US2011/037929.
State Intellectual Property Office of The People's Republic of China Search Report for Chinese Application No. 201510859939.8 dated Oct. 24, 2017.
Related Publications (1)
Number Date Country
20200000606 A1 Jan 2020 US
Divisions (1)
Number Date Country
Parent 15938442 Mar 2018 US
Child 16564341 US
Continuations (2)
Number Date Country
Parent 14594569 Jan 2015 US
Child 15938442 US
Parent 12072044 Feb 2008 US
Child 14594569 US