Spinal implant with fluid delivery capabilities

Information

  • Patent Grant
  • 10603182
  • Patent Number
    10,603,182
  • Date Filed
    Wednesday, January 13, 2016
    8 years ago
  • Date Issued
    Tuesday, March 31, 2020
    4 years ago
Abstract
A spinal implant that allows for fluid injection of material is disclosed. The implant includes a fitting with a passage and holes that are in fluid communication with the passage. The holes extend through upper and lower surfaces and/or into a central cavity of the implant. The implant allows for material to be introduced into the implant after initial implantation thereof. Methods of implanting the implant are also disclosed.
Description
BACKGROUND OF THE INVENTION

The present invention relates to spinal surgery, namely, the fusion of adjacent intervertebral bodies or the replacement of a vertebral body.


Back pain can be caused by many different maladies, not the least of which are problems that directly impact the intervertebral discs of the spine. Typical disc issues include, inter alia, degeneration, bulging, herniation, thinning and abnormal movement. One method of treatment of such disc problems that has been widely utilized in the field of spinal surgery is a spinal fusion procedure, whereby an affected disc is removed, and the adjacent vertebral bodies are fused together through the use of interbody spacers, implants or the like. In some instances, it may also be necessary to remove and replace an entire vertebral body. This is often accomplished through the use of a larger implant that acts to fuse together the vertebral bodies adjacent the removed vertebral body.


The aforementioned implants often rely upon mechanical features to ensure engagement between the devices and the bone of the existing vertebral bodies. This coupled with the normal compressive load of the spine acts to keep the implant in place until bone can grow from the existing vertebral bodies into and through the implant. To encourage the bone growth, the implants are often pre-loaded with bone growth promoting material and thereafter placed into the spine. Bone growth promoting material may include naturally occurring bone, artificial materials or the like.


This pre-loading of bone growth promoting material normally takes place prior to implantation of existing implants, typically on a back table of the operating room. This requires the surgeon or other medical professional to estimate the overall amount of material to be pre-loaded into the implant, which is often not an easy task. Moreover, the pre-loaded material can fall out of the implant during the implantation process. All of this has the tendency to create an inefficient surgical procedure.


Therefore, there exists a need for an improved spinal implant that overcomes the aforementioned drawbacks.


BRIEF SUMMARY OF THE INVENTION

The present application discloses several embodiment spinal implants that allow for in situ application of a material such as cement, a bone growth promoting substance, BMA, biologics, antimicrobials, antibiotics, or the like. The implants in accordance with the present invention provide a more efficient manner of providing such substances to the intervertebral space. Although implants in accordance with the present invention may widely vary from what is specifically disclosed herein, the implants generally include a passage fluidly connected to holes either on one or all of the upper and lower surfaces and interior surface of a cavity formed through the implant. The holes may be sized and/or shaped to allow for uniform flow of material introduced into the implant. While largely disclosed as an implant suitable for fusing adjacent vertebral bodies, implants in accordance with the present invention may be suited for replacement of a vertebral body. Likewise, although largely shown as being suitable for introduction into the body of a patient from a certain aspect, implants according to the present invention may be configured for introduction from any aspect.


A first aspect of the present invention is a spinal implant having an upper surface including a first hole, a lower surface including a second hole a cavity formed through the upper and lower surfaces, the cavity including a third hole and a fitting including a passage in fluid communication with the first, second and third holes.


Other embodiments of the first aspect may vary from the foregoing. For instance, the spinal implant may further include a plurality of first, second and third holes, a manifold in fluid communication with the passage, a first channel in fluid communication with the manifold and the first holes and a second channel in fluid communication with the manifold and the second holes. The first and second channels may be curved, as may the manifold be curved. The first holes, second holes, first channel and second channel may increase in size as they extend further away from the passage. The third holes may be in fluid communication with the manifold and at least one of the first and second channels. The implants may further have a porous structure at the upper and/or lower surfaces. In certain embodiments, the fitting may be a male luer fitting. An insertion tool may be engaged with the fitting. The spinal implants of the first aspect may be designed to be implanted from various aspects of a patient, including from an anterior aspect of a patient. The passage, the manifold, the first channel, the second channel and the first and second holes may be included in a fluid transfer structure. That structure may be formed separately from a remainder of the implant. The implant may further include sidewalls with windows formed therethrough, the windows in fluid communication with the cavity. A fourth hole and a fifth hole may be located within the windows and in fluid communication with the passage


A second aspect of the present invention is another spinal implant having an upper surface including a plurality of first holes, a lower surface including a plurality of second holes, a cavity formed through the upper and lower surfaces and a fitting including a passage in fluid communication with the first and second holes.


Other embodiments according to the second aspect may include a manifold in fluid communication with the passage, a first channel in fluid communication with the manifold and the first holes and a second channel in fluid communication with the manifold and the second holes. A plurality of third holes may be in fluid communication with the cavity.


A third aspect of the present invention is yet another spinal implant having an upper surface, a lower surface, a cavity formed through the upper and lower surfaces, the cavity including a plurality of holes and a fitting including a passage in fluid communication with the holes.


In another embodiment according to the third aspect, the upper surface may include a plurality of second holes and the lower surface may include a plurality of third holes.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the subject matter of the present invention and of the various advantages thereof can be realized by reference to the following detailed description in which reference is made to the accompanying drawings in which:



FIG. 1A is a perspective view of an implant according to one embodiment of the present invention.



FIG. 1B is a side view of the implant of FIG. 1A.



FIG. 1C is a rear view of the implant of FIG. 1A.



FIG. 1D is a top view of the implant of FIG. 1A.



FIG. 1E is a cross-sectional view of the implant of FIG. 1A taken along line 1E-1E of FIG. 1D.



FIG. 1F is a front view of the implant of FIG. 1A.



FIG. 1G is a cross-sectional view of the implant of FIG. 1A take along line 1G-1G of FIG. 1F.



FIG. 2A is a top view of an implant according to another embodiment of the present invention.



FIG. 2B is a cross-sectional view of the implant of FIG. 2A take along line 2B-2B.



FIG. 2C is a front view of the implant of FIG. 2A.



FIG. 2D is a cross-sectional view of the implant of FIG. 2A take along line 2D-2D of FIG. 2C.



FIG. 3A is a top view of an implant according to another embodiment of the present invention.



FIG. 3B is a cross-sectional view of the implant of FIG. 3A take along line 3B-3B.



FIG. 3C is a front view of the implant of FIG. 3A.



FIG. 3D is a cross-sectional view of the implant of FIG. 3A take along line 3D-3D of FIG. 3C.



FIG. 4A is a perspective view of an implant according to another embodiment of the present invention.



FIG. 4B is a top view of the implant of FIG. 4A.



FIG. 4C is a rear view of the implant of FIG. 4A.



FIG. 4D is a cross-sectional view of the implant of FIG. 4A taken along line 4D-4D of FIG. 4C.



FIG. 5A is a perspective view of an implant according to another embodiment of the present invention.



FIG. 5B is a front view of the implant of FIG. 5A.



FIG. 5C is a cross-sectional view of the implant of FIG. 5A taken along line 5C-5C of FIG. 5B.



FIG. 5D is a side view of the implant of FIG. 5A.



FIG. 5E is a cross-sectional view of the implant of FIG. 5A take along line 5E-5E of FIG. 5D.



FIG. 6A depicts placement of an implant according to the present invention between adjacent vertebrae of the spine.



FIG. 6B is a cross-sectional view of the placement depicted in FIG. 6A.



FIG. 6C is an enlarged cross-sectional view of the placement shown in FIG. 6B.



FIG. 6D is a cross-sectional view of an implant according to the present invention engaged with an insertion tool.



FIG. 6E depicts removal of an insertion tool subsequent to placement of an implant according to the present invention between adjacent vertebrae.



FIG. 6F illustrates an implanted implant according to the present invention subsequent to injection of a fluid or material therein.



FIG. 6G is an x-ray view of the implant of FIG. 6F.



FIG. 7A illustrates a 3D printed implant according to another embodiment of the present invention with an insertion instrument attached thereto.



FIG. 7B illustrates a 3D printed implant according to another embodiment of the present invention.



FIG. 8A is a perspective view of another implant embodiment of the present invention.



FIGS. 8B-8C depict yet another implant embodiment of the present invention.



FIG. 8D depicts yet another implant embodiment of the present invention.



FIGS. 9A-9B depict yet another implant embodiment of the present invention.



FIGS. 10A-10B depict yet another implant embodiment of the present invention.



FIGS. 11A-11B depict yet another implant embodiment of the present invention.



FIGS. 12A-12C depict yet another implant according to another embodiment of the present invention.



FIG. 13 is a cross-sectional view of an implant according to yet another embodiment of the present invention.





DETAILED DESCRIPTION

An implant 10 according to a first embodiment of the present invention is depicted in FIGS. 1A-1G. Implant 10 is shown as an implant suitable for implantation from an anterior aspect of a patient. However, as will be readily apparent from the below discussion pertaining to other embodiments, the present invention is not limited to any particular type of implant design. Rather, it is contemplated that certain features of the present invention can be implemented in different types of implants. For instance, implants according to the present invention can be adapted for implantation from posterior, lateral, posterior-lateral aspects or the like of the patient. Moreover, implants according to the present invention may be constructed of different types of materials that are both biocompatible and suitable to withstand the natural forces of the human spine. For instance, it is contemplated that implants according to the present invention may be constructed of metallic materials such as titanium, polymeric materials such as PEEK or the like.


Implant 10 is shown including upper and lower surfaces 12 and 14, respectively. Each surface includes a plurality of holes 16 formed therethrough, although the overall number of holes and their shape may vary depending upon the particular implant and its overall size. Implant 10 also includes a central cavity 18 formed through a central portion of the implant and through each of surfaces 12 and 14. Cavity 18 can be sized and shaped differently from what is shown and can be located in other locations of implant 10. The interior of cavity 18 also includes a plurality of holes 20, which like holes 16 may vary in overall number and shape. It is also contemplated to include more than one cavity through the upper and lower surfaces of the implant.


Implant 10 also includes a luer fitting 22 formed in a front portion thereof. In other embodiments, a different type of fitting may be utilized (e.g., threaded, snap-fit, etc. . . . ). Fitting 22 is designed to be engaged by a similarly designed insertion tool (discussed below) and includes a passage 24. As shown in FIG. 1E, passage 24 leads to a manifold 26 fluidly connected with holes 16 and 20. In particular, as is shown in FIGS. 1E and 1G, manifold 26 is connected to holes 16 and 20 through a series of internal passages (a single flow channel 28 is shown in FIG. 1G, while two channels 28 and 29 are shown in FIG. 1E), so that material introduced through passage 24 can ultimately pass through holes 16 and 20. It is to be understood that manifold 26 actually connects with the two flow channels 28, 29, such that channel 28 is in fluid communication with holes 16 on upper surface 12 and channel 29 is in fluid communication with holes 16 on lower surface 14. The channels are also in fluid communication with holes 20 on the interior of cavity 18. This allows for bone growth promoting material, cement or the like to be introduced after implantation of implant 10, which in turn allows for both an easier implantation procedure and better application of the material to the surgical site.



FIGS. 2A-2D depict a second embodiment implant 110. Because of the similarities of implant 110 to above-discussed implant 10, like reference numerals will be utilized to describe like elements, albeit within the 100-series of numbers. For instance, implant 110 includes an upper surface 112, a lower surface 114, a cavity 118, openings 120, a fitting 122 and a passage 124. The major difference between implants 10 and 110 is that the latter does not include any holes through its upper and lower surfaces 112, 114. Thus, any material introduced through passage 124 only extends into cavity 118. This type of design results in an implanted implant more akin to traditional spinal implants, i.e., one in which grafting material or the like is only included in a central cavity or the like. Like implant 10, implant 110 includes a manifold 126 and flow channels 128, 129. Also like implant 10, implant 110 is designed to be implanted from an anterior aspect of a patient. Of course, implant 110, like all embodiment implants disclosed in the present application, could be configured for implantation from other aspects, as well as could exhibit different overall shapes and/or sizes and in its individual features.



FIGS. 3A-3D depict yet another embodiment implant 210. As with implant 110, like elements included in implant 210 will be identified with like reference numerals within the 200-series of numbers. Contrary to implant 110, implant 210 only includes holes 216 through upper and lower surfaces 212, 214. There are no holes included within cavity 218. Therefore, material introduced through passage 224 only extends to those upper and lower surfaces. Implant 210 is best suited for situations in which the implant is to be cemented in place between vertebral bodies. Cement injected through passage 224 extends to the interface between upper and lower surfaces 212, 214 and the vertebrae. Cavity 218 could separately be packed with bone growth promoting materials or the like, but such is up to the surgeon. It is also contemplated to provide an implant 210 without a cavity 218. Such an embodiment could include additional holes 216 on its upper and lower surfaces 212, 214.



FIGS. 4A-4D depict yet another embodiment implant 310, which is closest in design to implant 210. Implant 310 only includes holes 316 formed through its upper and lower surfaces 312, 314, with none being formed in cavity 318. However, holes 316, as well as flow channel 328 exhibit varying sizes. More specifically, holes 316 and flow channel 328 increase in size as they progress from passage 324. This increase in size is aimed at ensuring balanced fluid flow. In other words, the design is such that each of holes 316 get the same amount of fluid flow of material, thus ensuring even distribution of cement or other materials introduced through passage 324. Of course, the same concept may be employed in implants like above discussed implants 10, 110, where holes also extend into the central cavities of the implants.



FIGS. 5A-5E depict a PLIF-style (i.e., best suited for implantation from a posterior lateral aspect of a patient) implant 410 in accordance with the present invention. This is one example of how the overall implant design can vary from those anterior implants that are described above. Aside from the overall difference in shape, implant 410 includes an internally threaded passage 424 in lieu of a luer fitting or the like. Otherwise, implant 410 provides the similar functionality to that of above-discussed implant 210. Of course, any of the aforementioned variations could be applied to implant 410. For instance, cavity 418 could include holes in fluid communication with passage 424.


The use of implants according to the present invention is depicted in FIGS. 6A-6G. For ease of describing the method of use, implant 10 will be referred to. However, it is contemplated that any of the above-described implants, or variations thereof, could be utilized in such use. As shown in FIG. 6A implant 10 is first connected with an insertion tool 50. The latter is designed so as to rigidly engage implant 10, including, for instance, a female luer fitting 52 (best shown in FIGS. 6B-6D). Tool 50 also includes an internal passage 54 for allowing material to be introduced through passage 24 of implant 10 when the tool is connected thereto. Although tool 50 is depicted as including a threaded end opposite to fitting 52, many different configurations are contemplated. Essentially, tool 50 must be connected, either removably or integral with a source of material. Many different designs for such connection are contemplated, as are the sources that provide the material. For instance, it is contemplated to provide a source of material that is pressurized or capable of being pressurized to allow deployment through passage 24.


With implant 10 connected to tool 50, the latter may be manipulated to place the former between vertebral bodies, as is shown in FIGS. 6A-6C. Although the vertebral bodies shown are naturally adjacent to one another, it is contemplated that implant 10 may be sized and shaped to be placed between vertebral bodies that have become adjacent by virtue of the removal of another vertebral body. Once implant 10 is placed, material may be introduced through passage 54 of tool 50 and into implant 10. The above-discussed passage 24, channels 28, 29 and holes 16, 20 of implant 10 allow for such material to ultimately extend through upper and lower surfaces 12, 14 and/or into cavity 18. FIGS. 6F and 6G, for instance, depict an implant according to the present invention which has been implanted between two artificial bodies. Cement was thereafter introduced and is shown extending through upper and lower surfaces of the implant and into the artificial bodies. This depicts a scenario where an implant like above-discussed implant 210 is initially fixed in place through the use of cement. Finally, FIG. 6E depicts removal of tool 50 from implant 10.



FIGS. 7A and 7B depict 3D printed versions of implant 210 and implant 410, respectively. As shown, these versions of the implants include porous upper and lower surfaces, as can be created through the use of a 3D printing process such as is disclosed in U.S. Pat. Nos. 7,537,664 and 8,147,861; U.S. Patent Application Publications Nos. 2006/0147332, 2007/0142914, 2008/0004709; and U.S. patent application Ser. Nos. 13/441,154 and 13/618,218, the disclosures of which are hereby incorporated by reference herein. The solid portions of the implants can also be formed through the use of similar procedures. It is to be understood that creating implants according to the present invention via a 3D printing may require that the design be modified to allow for such a process. For instance, it is difficult, if not impossible, to create a surface directly over a void when using a 3D printing process. Therefore, the various manifolds, channels and passages may be curved or radiused to permit creation via the 3D printing process. It is also contemplated to form any porous region via any other suitable process, for example, a laser etching procedure.



FIG. 8A depicts an implant 510 similar to above-discussed implant 10, while FIGS. 8B-8D depict implants 610 and 710 similar to above-discussed implant 410. As such, like reference numerals are utilized in such figures, where applicable. The implants of FIGS. 8A-D differ from the above-discussed implants in that they include lateral windows 530, 630 and 730, respectively, on each side of the implant. In each case, the lateral windows may allow for material introduced into the window to leach out and into the disc space. The windows may also act to reduce the overall stiffness of implants 510, 610 and 710 and to improve views during an imaging process (e.g., fluoroscopy). In this regard, it is contemplated that the windows may be tapered in a similar manner to the lordotic taper of the implant, where applicable. Furthermore, in the case of implant 710, lateral window 730 includes holes 732. These holes, like the others discussed above, allow for material introduced into the implant to pass therethrough.



FIGS. 9A-9B depict yet another embodiment implant 810 similar to above-discussed implant 110. Most notably, implant 810 only includes holes 820 on an interior of cavity 818. Implant 810 also includes porous upper and lower surfaces 812, 814. The partial transparent view of FIG. 9A shows the inner components (e.g., manifold 826 and channels 828, 829), while the partial transparent implantation view of FIG. 9B shows the flow of material into cavity 818 and hence the disc space. It is noted that FIG. 9B does not include reference numerals so that the fluid flow can be fully appreciated.



FIGS. 10A-10B depict an implant 910 similar to above-discussed implant 710. Implant 910 includes porous upper and lower surfaces 912, 914, as well as lateral windows 930 with holes 932. The partial transparent implantation view of FIG. 10B depicts the flow of material to upper surface 912, as well as from window 930. It is noted that FIG. 10B does not include reference numerals so that the fluid flow can be fully appreciated.


Implant 1010 of FIGS. 11A and 11B exhibits an overall design similar to that disclosed in U.S. Pat. No. 8,349,015 (“the '015 patent”), the disclosure of which is hereby incorporated by reference herein. In addition to employing a stand-alone design similar to that of the '015 patent, implant 1010, like those discussed above, includes a passage 1024 designed to fluidly engage an insertion tool. This allows for material to be introduced into implant 1010 where it is ultimately dispersed within cavity 1018. The flow of such material is shown in the partial transparent implantation view of FIG. 11B.



FIGS. 12A-12C depict an embodiment implant 1110, which is particularly suited for creation via a 3D printing or additive manufacturing process. In particular, in addition to including many similar elements to those discussed above in connection with the foregoing embodiments, implant 1110 includes a preformed fluid transfer structure 1170 (shown alone in FIG. 12C) that includes channels and holes formed therein. This component can be created separately from the remainder of implant 1110 and the can be built upon utilizing a 3D printing process or the like (see the partial hidden view of FIG. 12B). Additionally, the implant 1110 and the preformed fluid transfer structure 1170 can be created simultaneously. Alternatively, fluid transfer structure 1170 could be formed via a similar process. Implant 1110 exhibits a remaining structure similar to that disclosed in U.S. Provisional Patent Application No. 62/103,276, filed Jan. 14, 2015, and the related utility application filed on the same date as the present application, the disclosures of which is hereby incorporated herein by reference. For instance, the implant can exhibit exterior surfaces that include both porous and non-porous sections.



FIG. 13 depicts a cross-sectional view of yet another embodiment implant 1210. As shown, passages 1224 are simply formed as triangular shaped voids within the overall structure of the implant. It is noted that these passages may be in communication with holes (not shown) like those discussed above, or could simply allow for material to leach or push through the porous material making up implant 1210. In certain embodiments, this leaching may occur only at certain locations. Implant 1210 is yet another implant embodiment created utilizing a 3D printing process, but could of course be formed through the use of other known manufacturing processes.


The various embodiment implants disclosed in the present application make it readily apparent that implants according to the present invention may vary widely while still encompassing the salient features of the invention. It is to be understood that not all contemplated embodiments have been shown. It is also to be understood that the various embodiments may borrow certain features from each while still remaining within the scope of the present invention. It is also to be understood that although it is specifically discussed herein to create implants according to the present invention via a 3D printing like process, other processes may be utilized to manufacture the implants of the present invention.


Although shown as distinct passages, manifolds, channels and holes, it is contemplated to provide different formations for allowing for material to be introduced into implants according to the present invention and to be dispersed therefrom. For instance, it is contemplated to provide chambers that are in fluid communication with porous areas of the implant so that material within the chambers is allowed to pass through the porous material. The ability to include porous material in the implants themselves may negate the need for a specific passage/manifold/channel system. Moreover, it is contemplated to include independent passage/manifold/channel systems within a single implant. This, in connection with a multi-bore insertion tool may allow for the introduction of more than one material into the implant. For instance, it may be beneficial to have one material (e.g., allograft) directed to the cavity of the implant, while another material (e.g., cement) is directed to the upper and lower surfaces. It is also contemplated to provide holes on an exterior surface of the various implants, so as to allow material to be directed from the implant. This allows for such material to be dispersed around the implant, which may be beneficial in a fusion procedure. Of course, porous areas can also be included on the exterior of the implant to allow for same.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A spinal implant comprising: an upper exterior surface including a first hole extending therefrom;a lower exterior surface including a second hole extending therefrom;a cavity formed through the upper and lower surfaces, the cavity being surrounded by a continuous inner wall extending between the upper and lower surfaces, the inner wall separating the cavity from a side exterior surface extending between the upper and lower surfaces, a third hole extending from the inner wall toward the side exterior surface; anda fitting including a passage in fluid communication with the first, second and third holes via a first and second channel, the first and second channels being located between the inner wall and the side exterior surface and extending around the cavity such that the first and second channels form continuous pathways around the entire cavity.
  • 2. The spinal implant of claim 1, further including a plurality of first, second and third holes.
  • 3. The spinal implant of claim 2, further including a manifold in fluid communication with the passage, the first channel in fluid communication with the manifold and the first and third holes and the second channel in fluid communication with the manifold and the second and third holes.
  • 4. The spinal implant of claim 3, wherein the first and second channels are curved.
  • 5. The spinal implant of claim 4, wherein the manifold is curved.
  • 6. The spinal implant of claim 3, wherein the first holes, second holes, first channel and second channel increase in size as they extend further away from the passage.
  • 7. The spinal implant of claim 3, wherein the passage, the manifold, the first channel, the second channel and the first and second holes are included in a fluid transfer structure.
  • 8. The spinal implant of claim 7, wherein the fluid transfer structure is formed separately from a remainder of the implant.
  • 9. The spinal implant of claim 1, further including a porous structure at the upper and lower surfaces.
  • 10. The spinal implant of claim 1, wherein the fitting is a male luer fitting.
  • 11. The spinal implant of claim 1, further comprising a tool engaged with the fitting.
  • 12. The spinal implant of claim 1, wherein the implant is designed to be implanted from an anterior aspect of a patient.
  • 13. The spinal implant of claim 1, wherein the side exterior surface comprises sidewalls with windows, the windows in fluid communication with the cavity.
  • 14. The spinal implant of claim 13, further comprising a fourth hole and a fifth hole located within the windows and in fluid communication with the passage.
  • 15. A spinal implant comprising: an upper exterior surface including a plurality of first holes extending therefrom;a lower exterior surface including a plurality of second holes extending therefrom;a cavity formed through the upper and lower surfaces, the cavity being surrounded by a continuous inner wall extending between the upper and lower surfaces, the inner wall separating the cavity from a side exterior surface extending between the upper and lower surfaces, a third hole extending from the inner wall toward the side exterior surface; anda fitting including a passage in fluid communication with the first, second and third holes via a first and second channel, the first and second channels being located between the inner wall and the side exterior surface and extending around the cavity such that the first and second channels form continuous pathways around the entire cavity.
  • 16. The spinal implant of claim 15, further including a manifold in fluid communication with the passage, the first channel in fluid communication with the manifold and the first and third holes, and the second channel in fluid communication with the manifold and the second and third holes.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/103,270, filed Jan. 14, 2015, the disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (285)
Number Name Date Kind
3852045 Wheeler et al. Dec 1974 A
3855638 Pilliar Dec 1974 A
4612160 Donlevy et al. Sep 1986 A
1853489 Tronzo Mar 1987 A
4718914 Frey et al. Jan 1988 A
5071437 Steffee Dec 1991 A
5156628 Kranz Oct 1992 A
5180381 Aust et al. Jan 1993 A
5263986 Noiles et al. Nov 1993 A
5370692 Fink et al. Dec 1994 A
5443514 Steffee Aug 1995 A
5458643 Oka et al. Oct 1995 A
5489308 Kuslich Feb 1996 A
5504300 Devanathan et al. Apr 1996 A
5672284 Devanathan et al. Sep 1997 A
5702455 Saggar Dec 1997 A
5723011 Devanathan et al. Mar 1998 A
5734959 Krebs et al. Mar 1998 A
5768134 Swaelens et al. Jun 1998 A
5776199 Michelson Jul 1998 A
5961554 Janson et al. Oct 1999 A
6039761 Li Mar 2000 A
6152927 Farris et al. Nov 2000 A
6193721 Michelson Feb 2001 B1
6293949 Justis et al. Sep 2001 B1
6447547 Michelson Sep 2002 B1
6454769 Wagner et al. Sep 2002 B2
6471725 Ralph et al. Oct 2002 B1
6485521 Say et al. Nov 2002 B1
6503250 Paul Jan 2003 B2
6533786 Needham et al. Mar 2003 B1
6533818 Weber et al. Mar 2003 B1
6547823 Scarborough Apr 2003 B2
6572654 Santilli Jun 2003 B1
6623525 Ralph et al. Sep 2003 B2
6673075 Santilli Jan 2004 B2
6740186 Hawkins et al. May 2004 B2
6767367 Michelson Jul 2004 B1
6790233 Brodke et al. Sep 2004 B2
6863689 Ralph et al. Mar 2005 B2
6890335 Grabowski et al. May 2005 B2
6890355 Michelson May 2005 B2
6945448 Medlin et al. Sep 2005 B2
6970233 Blatchford Nov 2005 B2
7044972 Mathys, Jr. et al. May 2006 B2
7118580 Beyersdorff et al. Oct 2006 B1
7135042 Stoll Nov 2006 B2
7169150 Shipp et al. Jan 2007 B2
7238203 Bagga et al. Jul 2007 B2
7241313 Unwin et al. Jul 2007 B2
7255713 Malek Aug 2007 B2
7278997 Mueller et al. Oct 2007 B1
7303564 Freid et al. Dec 2007 B2
7497876 Tuke et al. Mar 2009 B2
7500976 Suh Mar 2009 B2
7501073 Wen et al. Mar 2009 B2
7563284 Coppes et al. Jul 2009 B2
7625375 Garden et al. Dec 2009 B2
7635447 Hamman et al. Dec 2009 B2
7662186 Bagga et al. Feb 2010 B2
7670359 Yundt Mar 2010 B2
7670375 Schaller Mar 2010 B2
7766947 Hawkes et al. Aug 2010 B2
7857839 Duong et al. Dec 2010 B2
7862597 Gause et al. Jan 2011 B2
7883661 Hamman et al. Feb 2011 B2
7918382 Charlebois et al. Apr 2011 B2
7922765 Reiley Apr 2011 B2
8043346 Markworth Oct 2011 B2
8083796 Raiszadeh et al. Dec 2011 B1
8092499 Roth Jan 2012 B1
8105366 Null et al. Jan 2012 B2
8123808 Dewey Feb 2012 B2
8167946 Michelson May 2012 B2
8191760 Charlebois et al. Jun 2012 B2
8202305 Reiley Jun 2012 B2
8231676 Trudeau et al. Jul 2012 B2
8236034 Binder et al. Aug 2012 B2
8262737 Bagga et al. Sep 2012 B2
8266780 Bollinger et al. Sep 2012 B2
8268100 O'Neill et al. Sep 2012 B2
8303879 Bertele et al. Nov 2012 B2
8308805 Lynn Nov 2012 B2
8343224 Lynn et al. Jan 2013 B2
8361126 Perrow et al. Jan 2013 B2
8361150 Zhang et al. Jan 2013 B2
8361153 Ralph et al. Jan 2013 B2
8361380 Hamman et al. Jan 2013 B2
8388667 Reiley et al. Mar 2013 B2
8403969 Wallenstein et al. Mar 2013 B2
8403991 Ullrich, Jr. et al. Mar 2013 B2
8414648 Reiley Apr 2013 B2
8414650 Bertele et al. Apr 2013 B2
8414651 Tyber et al. Apr 2013 B2
8414654 Ganey Apr 2013 B1
8414820 Bertele et al. Apr 2013 B2
8419777 Walker et al. Apr 2013 B2
8425570 Reiley Apr 2013 B2
8425604 Trieu Apr 2013 B2
8435301 Gerber et al. May 2013 B2
8435302 Ulrich, Jr. et al. May 2013 B2
8444693 Reiley May 2013 B2
8470004 Reiley Jun 2013 B2
8470042 Zhang et al. Jun 2013 B2
8480749 Ullrich, Jr. et al. Jul 2013 B2
8486115 Fisher et al. Jul 2013 B2
8496710 Bagga et al. Jul 2013 B2
8500782 Kovach et al. Aug 2013 B2
8500811 Blain et al. Aug 2013 B2
8500819 Meridew et al. Aug 2013 B2
8530560 Kerr et al. Sep 2013 B2
8535354 Cummins Sep 2013 B2
8545568 Ulrich, Jr. et al. Oct 2013 B2
8551173 Lechmann et al. Oct 2013 B2
8551176 Ullrich, Jr. et al. Oct 2013 B2
8556981 Jones et al. Oct 2013 B2
8562684 Ullrich, Jr. et al. Oct 2013 B2
8562685 Ullrich, Jr. et al. Oct 2013 B2
8585765 Ullrich, Jr. et al. Nov 2013 B2
8585766 Ullrich, Jr. et al. Nov 2013 B2
8585767 Ullrich, Jr. et al. Nov 2013 B2
8591590 Ullrich, Jr. et al. Nov 2013 B2
8617246 Malone Dec 2013 B2
8617248 Ullrich, Jr. et al. Dec 2013 B2
8632604 Brooks Jan 2014 B2
8636803 Hibri Jan 2014 B2
8663332 To Mar 2014 B1
8673016 Liu Mar 2014 B2
8709088 Kleiner Apr 2014 B2
8734462 Reiley et al. May 2014 B2
8747412 Bae et al. Jun 2014 B2
8758442 Ullrich, Jr. et al. Jun 2014 B2
8758443 Ullrich, Jr. et al. Jun 2014 B2
8814939 Ullrich, Jr. et al. Aug 2014 B2
8814978 Hamman et al. Aug 2014 B2
8821555 Bae et al. Sep 2014 B2
8827986 Shachar et al. Sep 2014 B2
8834571 Bagga et al. Sep 2014 B2
8840623 Reiley Sep 2014 B2
8845736 Zhang et al. Sep 2014 B2
8864831 Lee et al. Oct 2014 B2
8870957 Vraney Oct 2014 B2
8900277 Perrow et al. Dec 2014 B2
8906093 Malone Dec 2014 B2
8906095 Christensen et al. Dec 2014 B2
8940053 Ullrich, Jr. et al. Jan 2015 B2
8979934 Kirschman Mar 2015 B2
8985430 Charlebois et al. Mar 2015 B2
8992619 Patterson et al. Mar 2015 B2
9060876 To Jun 2015 B1
9078718 Campbell Jul 2015 B2
9089428 Bertele et al. Jul 2015 B2
9173692 Kaloostian Nov 2015 B1
9320549 Fraser et al. Apr 2016 B2
9375237 Keegan et al. Jun 2016 B2
9381044 Robinson et al. Jul 2016 B2
9387087 Tyber Jul 2016 B2
9615733 Nottmeier Apr 2017 B2
9629664 Altarac et al. Apr 2017 B2
9655665 Perrow May 2017 B2
9730807 Donaldson Aug 2017 B2
9782270 Wickham Oct 2017 B2
9925051 Bae et al. Mar 2018 B2
10070970 Lynn Sep 2018 B2
20020004683 Michelson Jan 2002 A1
20030055505 Sicotte et al. Mar 2003 A1
20030083748 Lee May 2003 A1
20040059318 Zhang et al. Mar 2004 A1
20040122426 Michelson Jun 2004 A1
20040133279 Krueger et al. Jul 2004 A1
20040181226 Michelson Sep 2004 A1
20040193269 Fraser et al. Sep 2004 A1
20040204712 Kolb et al. Oct 2004 A1
20040210218 Dixon et al. Oct 2004 A1
20040215195 Shipp et al. Oct 2004 A1
20040220566 Bray Nov 2004 A1
20040220571 Assaker et al. Nov 2004 A1
20040225360 Malone Nov 2004 A1
20040258732 Shikinami Dec 2004 A1
20050033294 Garden et al. Feb 2005 A1
20050049593 Duong et al. Mar 2005 A1
20050049595 Suh et al. Mar 2005 A1
20050070900 Serhan Mar 2005 A1
20050075633 Ross Apr 2005 A1
20050123672 Justin et al. Jun 2005 A1
20050143820 Zucherman et al. Jun 2005 A1
20050154460 Yundt Jul 2005 A1
20050177238 Khandkar et al. Aug 2005 A1
20050216081 Taylor Sep 2005 A1
20060036250 Lange et al. Feb 2006 A1
20060089656 Allard et al. Apr 2006 A1
20060116770 White Jun 2006 A1
20060122603 Kolb Jun 2006 A1
20060195097 Evans et al. Aug 2006 A1
20060293668 May et al. Dec 2006 A1
20070073404 Rashbaum et al. Mar 2007 A1
20070123884 Abdou May 2007 A1
20070123985 Errico et al. May 2007 A1
20070173816 Metz-Stavenhagen Jul 2007 A1
20070173940 Hestad et al. Jul 2007 A1
20070179609 Goble et al. Aug 2007 A1
20080097435 DeRidder et al. Apr 2008 A1
20080161927 Savage et al. Jul 2008 A1
20080183292 Trieu Jul 2008 A1
20080262623 Bagga et al. Oct 2008 A1
20080269756 Tomko et al. Oct 2008 A1
20080306595 McLeod et al. Dec 2008 A1
20090093885 Levieux et al. Apr 2009 A1
20090105832 Allain et al. Apr 2009 A1
20090112323 Hestad et al. Apr 2009 A1
20090138015 Conner et al. May 2009 A1
20090198184 Martin Aug 2009 A1
20090240333 Trudeau et al. Sep 2009 A1
20090287257 Hagen Nov 2009 A1
20090306717 Kercher et al. Dec 2009 A1
20100042218 Nebosky et al. Feb 2010 A1
20100042221 Boyd Feb 2010 A1
20100076559 Bagga et al. Mar 2010 A1
20100094426 Grohowski, Jr. et al. Apr 2010 A1
20100137916 Hynes et al. Jun 2010 A1
20100137990 Apatsidis et al. Jun 2010 A1
20100256773 Thijs et al. Oct 2010 A1
20100262244 Savage-Erickson et al. Oct 2010 A1
20100262245 Alfaro Oct 2010 A1
20100268343 Dewey et al. Oct 2010 A1
20110004256 Biedermann Jan 2011 A1
20110071635 Zhang et al. Mar 2011 A1
20110106159 Nazeck May 2011 A1
20110160866 Laurence et al. Jun 2011 A1
20110196494 Yedlicka et al. Aug 2011 A1
20110282392 Murphy et al. Nov 2011 A1
20110282454 Ullrich, Jr. et al. Nov 2011 A1
20110301709 Kraus Dec 2011 A1
20120029432 Sweeney Feb 2012 A1
20120071933 DeRidder Mar 2012 A1
20120078315 Sweeney Mar 2012 A1
20120078373 Gamache et al. Mar 2012 A1
20120123544 Suh May 2012 A1
20120215315 Hochschuler et al. Aug 2012 A1
20120265306 Trieu Oct 2012 A1
20120277876 Ullrich, Jr. et al. Nov 2012 A1
20120303127 Ullrich, Jr. et al. Nov 2012 A1
20120312778 Ullrich, Jr. et al. Dec 2012 A1
20120312779 Patterson et al. Dec 2012 A1
20120330420 Brodke et al. Dec 2012 A1
20130123925 Patterson et al. May 2013 A1
20130184822 Kleiner Jul 2013 A1
20130274886 Matsumoto et al. Oct 2013 A1
20130282122 Ullrich, Jr. et al. Oct 2013 A1
20130292357 Ullrich, Jr. et al. Nov 2013 A1
20130304218 Ullrich, Jr. et al. Nov 2013 A1
20130306591 Ullrich, Jr. et al. Nov 2013 A1
20130338777 Bagga et al. Dec 2013 A1
20140025169 Lechmann et al. Jan 2014 A1
20140031942 Ullrich, Jr. et al. Jan 2014 A1
20140046449 Ullrich, Jr. et al. Feb 2014 A1
20140052258 Ball Feb 2014 A1
20140114415 Tyber Apr 2014 A1
20140114421 Ullrich, Jr. et al. Apr 2014 A1
20140128924 Perrow et al. May 2014 A1
20140200670 Chin et al. Jul 2014 A1
20140277461 Nebosky et al. Sep 2014 A1
20140277464 Richter Sep 2014 A1
20140277482 Gfeller et al. Sep 2014 A1
20140277491 Fang et al. Sep 2014 A1
20140277511 Ullrich, Jr. et al. Sep 2014 A1
20140277512 Ullrich, Jr. et al. Sep 2014 A1
20140350682 Bagga et al. Nov 2014 A1
20150012100 Ullrich, Jr. et al. Jan 2015 A1
20150032220 Tyber et al. Jan 2015 A1
20150045903 Neal Feb 2015 A1
20150073422 Chegini et al. Mar 2015 A1
20150157465 Kirschman Jun 2015 A1
20150202047 Patterson et al. Jul 2015 A1
20150202051 Tanaka et al. Jul 2015 A1
20150230832 Fraser et al. Aug 2015 A1
20160038301 Wickham Feb 2016 A1
20160081818 Waugh et al. Mar 2016 A1
20160199190 Sharifi-Mehr Jul 2016 A1
20170049491 Ross et al. Feb 2017 A1
20170119537 Tepper et al. May 2017 A1
20170182222 Paddock Jun 2017 A1
20170224388 Walker et al. Aug 2017 A1
20170238974 Konieczynski et al. Aug 2017 A1
20190008655 Body Jan 2019 A1
Foreign Referenced Citations (10)
Number Date Country
10052008 Aug 2002 DE
202013007361 Mar 2014 DE
0505634 Sep 1992 EP
2006121795 Nov 2006 WO
2009099559 Aug 2009 WO
2010021612 Feb 2010 WO
2010028045 Mar 2010 WO
2010121149 Oct 2010 WO
2013133729 Sep 2013 WO
2014018325 Jan 2014 WO
Non-Patent Literature Citations (17)
Entry
Extended European Search Report for Application No. EP16171066 dated Dec. 14, 2016.
Karageorgiou, V., and D. Kaplan. “Porosity of 3D Biomaterial Scaffolds and Osteogenesis.” Biomaterials 26.27 (2005): 5474-491.
Harris, W. H. and M. Jasty (1985). “Bone ingrowth into porous coated canine acetabular replacements: the effect of pore sizee, apposition, and dislocation.” Hip: 214-34.
Kujala, S. et al (2003): “Effect of porosity on the osteointegration and bone ingrowth of a weightbearing nickel-titanium bone graft substitute”, Biomaterials, 24(25), Nov. 2003, pp. 4691-4697.
Callaghan, J. J. (1993). “The clinical results and basic science of total hip arthroplasty with porous-coated prostheses.” J Bone Joint Surg Am 75(2): 299-310.
Wu, s et al (2013). Porous Ti6Al4V Cage Has Better Osseointegration and Less Micromotion Than a PEEK cage in Sheep Vertebral Fusion. Artificial organs 37(12).
Bobyn, J. D., G. J. Stackpool, S. A. Hacking, M. Tanzer, and J. J. Krygier. “Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial.” The Journal of Bone and Joint Surgery81.5 (1999): 307-14.
Bobyn JD. Next generation porous metals forbiologic fixation. In: Glassman AH, Lachiewicz PF, Tanzer, M, eds. Orthopaedic Knowledge Update: Hip and Knee Reconstruction 4. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2011:45-58.
Extended European Search Report for Application No. 15161713.1 dated Jun. 29, 2015.
U.S. Appl. No. 14/994,697, filed Jan. 13, 2016.
U.S. Appl. No. 14/994,749, filed Jan. 13, 2016.
Extended European Search Report for Application No. 16151374.2 dated Jun. 8, 2016.
Extended European Search Report for Application No. 16151375 dated Jun. 8, 2016.
European Search Report for Application No. 16170075 dated Oct. 21, 2016.
Extended European Search Report for Application No. EP16189379 dated Jun. 6, 2017.
Extended European Search Report for Application No. EP16202603 dated May 31, 2017.
Australian Examination Report for AU2017216532 dated Oct. 23, 2018.
Related Publications (1)
Number Date Country
20160199190 A1 Jul 2016 US
Provisional Applications (1)
Number Date Country
62103270 Jan 2015 US