The present invention relates to bone fixation devices and procedures for the placement of these devices in an individual. More particularly, the present invention relates to a device for use in spinal fusion having surface projections, and to a unique surface for use in surgical procedures.
Medical procedures often require the use of surgical hardware. In spine related surgeries, a common type of surgical hardware used by surgeons is a cage implant. Typical cage implants are porous and made of strong plastic or titanium, and are inserted into various portions or anatomical features of the spine, including in the cervical, thoracic, lumbar, sacroiliac joints, and facets. For example, the degeneration of the intervertebral disk, in particular, the degeneration of the nucleus pulposus, results in a loss of height in the affected disk space which is associated with a weakening of the annulus fibrosus and of the ligaments. As a consequence, the spinal column becomes instable and is more susceptible to horizontal displacement of the vertebral bodies with respect to one another. This horizontal movement of vertebral bodies results in impairments of the nerve roots in this region and/or of the spinal marrow, with pain resulting therefrom.
The principle treatment of these symptoms consists of the surgical removal of the nucleus pulposus and the insertion of support bodies in order to restore the normal height of the disk space. While there are a number of traditional systems and methods for inserting support bodies, there are a variety of demands on both the surgeon performing an intervertebral disk procedure and on the spinal spacers themselves.
A Transforaminal Lumbar Interbody Fusion (TLIF) is a surgical procedure that uses a posterior and lateral approach to access the disc space and insert a spacer. To gain access to the disc space, typically, a facet joint is removed and access is gained via the nerve foramen. While more technically demanding of the surgeon than other fusion techniques, a TLIF offers a number of clinical advantages.
When compared to a Posterolateral Fusion (PLF), a TLIF approach leaves much more of the soft tissue intact, which is less traumatic for the patient. Further, a PLF does not provide access to the disc space.
While a Posterolateral Interbody Fusion (PLIF) provides access to the disc space, a TLIF approach also provides access to the interbody space, but without the need for manipulation of neural elements, reducing the risk of post-operative neural deficit. Additionally, in a TLIF, only a single spacer is placed. More specifically, the TLIF spacer is placed in the anterior aspect of the disc space, thus providing space for a substantial fusion mass in the posterior aspect of the disc space where the natural compression occurs.
However, traditional TLIF procedures do suffer from a number of shortcomings. For example, traditional interbody spacers are coupled to an inserter by stationary threads formed in the body of the interbody spacer. Furthermore, in order to place the desired spacer in the anterior aspect of the disc space from an oblique posterior approach, traditional procedures demand that the spacer be released from the inserter and then tamped into place. The two-step insertion of this spacer is generally recognized among surgeons as cumbersome and may cause unneeded damage to bone and tissue, thereby increasing patient discomfort and increasing the amount of time sufficient to complete healing.
The present invention is directed towards a device, preferably an interbody spacer for use in spinal procedures, having one or more surfaces with a unique surface pattern designed to aid in bone growth and attachment. The present invention is also directed towards a unique surface with a unique surface pattern which can be used in spinal procedures to aid in bone growth and attachment. The interbody spacer is preferably designed for use as an intervertebral spacer in spinal fusion surgery, where portions of an affected disc are removed from between two adjacent vertebrae and replaced with an interbody spacer that provides segmental stability, may correct a deformity, and allows for bone to grow between the two vertebrae to bridge the gap created by disk removal. The interbody spacer has one or more unique surfaces designed to aid in bone growth and attachment. The unique surface comprises one or more surface projections, referred to generally as surface projection patterns or matrixes, which can be arranged to form unique patterns and structures.
Accordingly, it is an objective of the invention to provide a unique interbody spacer configured to aid in bone growth and attachment.
It is a further objective of the invention to provide for an interbody spacer having one or more unique surfaces designed to aid in bone growth and attachment.
It is yet another objective of the invention to provide for an interbody spacer having one or more unique surfaces comprising a surface projection pattern or matrix designed to aid in bone growth and attachment.
It is a further objective of the invention to provide a unique surface configuration designed to aid in bone growth and attachment.
Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with any accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. Any drawings contained herein constitute a part of this specification, include exemplary embodiments of the present invention, and illustrate various objects and features thereof.
While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred, albeit not limiting, embodiment with the understanding that the present disclosure is to be considered an exemplification of the present invention and is not intended to limit the invention to the specific embodiments illustrated.
Referring to
As illustrated, the interbody spacer 10 assumes a generally rectangular shape having a proximal end 12 that will be closest to a surgeon during use, a distal end 14 that will likely be the leading edge of insertion during use, and a main body 16 therebetween. In general, the proximal end 12 is constructed and arranged for connection to an insertion tool that allows the interbody spacer to be grasped or locked into a specific orientation with respect to the insertion tool. The distal end 14 is constructed to aid in insertion of the interbody spacer 10 in between, for example, adjacent vertebrae 102 and 104.
The main body 16 comprises a first or upper wall or surface 18, a second or lower wall or surface 20, and two opposing side walls 22 and 24. The first upper wall or surface 18 comprises an opening, illustrated as an upper surface slotted opening 26, see
The proximal end 12 of the interbody spacer 10 is preferably constructed and arranged for connection to an insertion tool that allows the interbody spacer 10 to be grasped or locked into a specific orientation with respect to the insertion tool. As illustrated in
The distal end 14 is preferably constructed to aid in insertion of the interbody spacer 10. The distal end 14 may comprise of a plurality of angled surfaces, 54, 56, 58, and 60, each ending to form a tapered interbody spacer end insertion point 62. The tapered interbody spacer end insertion point 62 is shown having a generally planar or flat surface 64.
The first or upper wall, or surface 18, and the second or lower wall, or surface 20, each comprise a unique surface covered with or having one or more surface projections, referred to generally as a surface projection pattern or matrix (also referred to as a surface scaffold 66) when arranged together to form a unique pattern or matrix. While the upper surface 18 is shown having the entire surface covered with surface projection pattern/matrix or scaffold 66, the upper surface 18 may be configured to comprise less than the entire surface being covered by the surface projection pattern/matrix or scaffold 66. While the lower surface 20 is shown having the entire surface covered with surface projection pattern/matrix or scaffold 66, the lower surface 20 may be configured to comprise less than the entire surface being covered by the surface projection pattern/matrix or scaffold 66.
Referring to
If a single linear segment comprises branches, the branching might result in single branch, multiple branches, sub-branching in which one or more linear segments 66 of a branched segment may form additional branching, or combinations thereof. Any of the branched segments may be oriented in any direction, and orientated above or below other branched segments. The linear segments 68, whether as a single unit, part of a group having several linear segments extending from a single focus point or area, or as a single linear segment with one or more branches, are preferably arranged to form a complex pattern or matrix that forms pores 70, defined as openings or channels between one or more linear segments 68. The surface projection pattern or matrix 66 formed to comprise one or more pores 70 may also be defined as a porous scaffold. Preferably, the pores 70 formed in the porous scaffold are open pores, i.e. pores 70 that are connected to each other through various channels, such as voids 71A or interstices, 71B, see
The pore 70A may be formed from independent linear segments 68, one of which forms a linear segment bridge 66D with a linear segment 68 in close proximity. Additionally, or alternatively, the pore 70 may be formed or defined by a plurality of clumped together linear segments 68, see for example pore 70B,
In a preferred embodiment, the surface projection pattern or matrix 66 is at least 1 mm thick and within the lattice structure two distinct layers. The upper layer of the surface projection pattern or matrix 66 comprises of a layer of pore sizes ranging from about 600 to 1000 microns. The lower layer of the surface projection pattern or matrix 66 comprises of a layer of pore sizes ranging from about 50 to 5000 microns.
As used herein, a “pore size” may be defined by the size of an object, preferably a sphere, which fits within the pore, i.e. within the opening or slot formed by the linear segments 68 that define the pore. Accordingly, the pore sizes of the upper layer are sized to fit an object, such as a sphere 77, see
As used herein the term “about” defines a value of 10-20% above or below the stated value.
As illustrated in
It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention, and the invention is not to be considered limited to what is shown and described in the specification and any drawings/figures included herein.
One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary, and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
In accordance with 37 C.F.R. 1.76, a claim of priority is included in an Application Data Sheet filed concurrently herewith. Accordingly, the present invention claims priority to U.S. Provisional Patent Application No. 62/903,283, entitled “SPINAL IMPLANT WITH SURFACE PROJECTIONS”, filed Sep. 20, 2019. The contents of the above referenced application are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
9125756 | Ullrich, Jr. | Sep 2015 | B2 |
D907771 | Trudeau | Jan 2021 | S |
11179247 | Jebsen | Nov 2021 | B2 |
20050112397 | Rolfe | May 2005 | A1 |
20050177238 | Khandkar | Aug 2005 | A1 |
20100161061 | Hunt | Jun 2010 | A1 |
20100168798 | Clineff | Jul 2010 | A1 |
20130325142 | Hunter et al. | Dec 2013 | A1 |
20150018956 | Steinmann | Jan 2015 | A1 |
20160184103 | Fonte et al. | Jun 2016 | A1 |
20180104063 | Asaad | Apr 2018 | A1 |
20180110624 | Arnone | Apr 2018 | A1 |
20180193152 | Bauer | Jul 2018 | A1 |
20190117410 | Parry | Apr 2019 | A1 |
20190133783 | Unger | May 2019 | A1 |
20190159818 | Schneider | May 2019 | A1 |
20190343648 | Ryan | Nov 2019 | A1 |
20190343652 | Petersheim | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
106510904 | Jun 2018 | CN |
108670507 | Oct 2018 | CN |
0561263 | Sep 1993 | EP |
1961433 | Aug 2008 | EP |
WO2009034429 | Mar 2009 | WO |
WO2011022550 | Feb 2011 | WO |
WO 2011060312 | May 2011 | WO |
WO2017106780 | Jun 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20210085470 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62903283 | Sep 2019 | US |