The present invention relates generally to skeletal implants. More particularly, the present invention relates to implants for stabilizing intervertebral joints.
Chronic back problems cause pain and disability for a large segment of the population. In many cases, chronic back problems are caused by intervertebral disc disease. When an intervertebral disc is diseased, the vertebrae between which the disc is positioned may be inadequately supported, resulting in persistent pain. Stabilization and/or arthrodesis of the intervertebral joint can reduce the pain and debilitating effects associated with disc disease.
Spinal stabilization systems and procedures have been developed to stabilize diseased intervertebral joints and, in some cases, to fuse the vertebrae that are adjacent the diseased joint space. Most fusion techniques include removing some or all of the disc material from the affected joint, and stabilizing the joint by inserting an implant (e.g., a bone graft or other material to facilitate fusion of the vertebrae) in the cleaned intervertebral space.
Spinal implants can be inserted into the intervertebral space through an anterior approach, a lateral (transverse) approach, a posterior approach, or postero-lateral approach. The anterior approach involves a surgeon seeking access to the spine through the front (i.e., abdominal area) of the patient. The posterior approach involves a surgeon seeking access to the spine through the back of the patient. The postero-lateral approach is similar to the posterior approach with access coming more from either or both sides of the patient. A variety of different anterior, posterior and posterior-lateral techniques are known.
While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to these embodiments. On the contrary, the invention includes all alternatives, modifications and equivalents as may be included within the spirit and scope of the present invention.
A spinal implant is provided having at least one piece of cortical bone. The body has a tapered leading end, a trailing end and first and second sides. The body further includes superior and inferior surfaces that are inclined relative to one another. A first plurality of grooves is formed in the superior surface and a second plurality of grooves is formed in the inferior surface. Each of the grooves of the first and second pluralities of grooves include first and second faces converging toward and intersecting one another, and each groove has a maximum cross-sectional width. Each adjacent pair of the grooves of the first and second pluralities of the grooves is separated by a generally planar portion of the superior and inferior surfaces, respectively. Each of the generally planar portions has a width that is equal to or greater than the maximum cross-sectional width of each of the grooves of the respective adjacent pair of the grooves.
In one embodiment, the body is generally ring-shaped with the trailing ends and the sides being convex. In this embodiment, the implant may further include an opening extending completely through the implant between the superior and inferior surfaces.
In another embodiment, the implant is crescent-shaped and includes two pieces of cortical bone secured to one another with at least one mechanical connector. In this embodiment, the leading end, trailing end and one of the sides are convex, while the other side is concave.
In another embodiment, the implant further includes an insert made of cancellous bone, wherein the body may be generally U-shaped and is positioned about at least a portion of the insert. The body and the insert are secured to one another by at least one mechanical connector.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and a detailed description of the embodiments given below, serve to explain the principles of the invention.
The present invention is directed to skeletal implants and methods for placing implants between bones desired to be fused. It is preferred for the implants to be used for vertebral/spinal applications such as fusing cervical, thoracic and/or lumbar intervertebral joints. In the case of fusing an intervertebral joint, implants in accordance with the principles of the present invention can be implanted using an anterior, posterior or postero-lateral approach to the patient's vertebrae.
As used herein, an “implant” includes any implant suitable for facilitating fusion between adjacent bones and includes implants prepared from known implant materials including, non-bone material such as titanium, stainless steel, porous tantalum or other metal, bio-glass, calcium phosphate, ceramic, carbon fiber-based polymers, polymeric materials such as PEEK and biodegradable polymers. However, it is preferred for implants in accordance with the principles of the present invention to be derived from natural bone tissue (e.g., allograft and xenograft bone). It is most preferred for implants in accordance with the principles of the present invention to be derived from natural bone such as from a cadaveric allograft bone source. For example, the implants can be derived by cross-sectioning cortical rings from cadaveric allograft long bones such as femur, tibia or fibula bones or from other bone sources such as the illium. Alternatively, the implants can be formed/molded from ground, sintered or composite bone material. Xenograft bones (e.g., from a bovine source) also can be used.
The term “allograft” will be understood to mean a bone implant from a donor transplanted to a genetically dissimilar recipient of the same species. The term “xenograft” will be understood to mean a bone implant from a donor transplanted to a recipient of a different species.
A first plurality of grooves 28 are formed in the superior surface 22 and a second plurality of the grooves 28 are formed in the inferior surface 24. Grooves 28 facilitate bony ingrowth that promotes fusion of implant 10 to adjacent vertebrae. The grooves 28 formed in the superior surface 22 and the inferior surface 24 extend in a lateral, or side-to-side, direction and may be parallel to one another. As shown in
Referring to FIGS. 1 and 3-5, each adjacent pair of grooves 28 formed in the superior surface 22 is separated by a generally planar portion of the superior surface 22, with one of these generally planar portions designated 22a in
The maximum cross-sectional width “W1” of each groove 28 on the superior 22 and inferior 24 surfaces may be the same and the spacing “D1” between each adjacent pair of grooves 28 may be the same. However, it is within the scope of the present invention to have grooves with different widths and different spacings between various adjacent pairs of grooves 28. In either event, the width “W2” of the substantially planar portions of the superior 22 and inferior 24 surfaces, such as portions 22a, 24a respectively, is selected so that it is greater than or equal to the maximum cross-sectional width “W1” of each groove 28 of the adjacent pair of grooves 28. For example, width “W2” of generally planar portion 22a shown in
As best seen in
Leading end 14 is tapered and includes a first inclined surface 42 that slopes downwardly from the inferior surface 24 to an intermediate surface 44, which is a posterior surface in an exemplary embodiment. Leading end 14 includes a second inclined surface 46, that slopes upwardly from the inferior surface 24 to the intermediate surface 44. The tapered configuration of leading end 14 facilitates insertion of implant 10 into a disc space between adjacent vertebrae. In another embodiment, the superior 22 and inferior 24 surfaces are parallel to one another.
Body 52 further includes a superior surface 68 and a first plurality of grooves 70 formed therein. A second plurality of the grooves 70 are formed in an inferior surface 72 of body 52. Grooves 70 facilitate bony ingrowth that promotes fusion of implant 50 to adjacent vertebrae. The grooves 70 formed in the superior surface 68 may be parallel to one another and some of the grooves 70 extend between the leading end 60 and the trailing end 62. Similarly, the grooves 70 formed in the inferior surface 72 may be parallel to one another and some of the grooves 70 extend between the leading end 60 and the trailing end 62. Grooves 70 may be shaped and sized the same as grooves 30, of implant 10, and a generally planar portion of superior surface 68, such as portion 68a in
Superior surface 68 and inferior surface 72 are inclined relative to one another, and diverge away from one another between sides 66 and 64 of body 52 defining an included, or lordotic, angle 74 between surfaces 68, 72. Lordotic angle 74 is shown in
As best seen in
Body 102 includes a tapered leading end 110, a trailing end 112 and opposing sides 114, 116. As best seen in
A substantially planar portion of the superior 118 and inferior 120 surfaces, such as portion 118a, 120a (
The superior surface 118 and inferior surface 120 are inclined relative to one another, and diverge away from one another from the leading end 110 to the trailing end 112 of body 102. Accordingly, an included, or lordotic, angle 125 exists between the superior 118 and inferior 120 surfaces. The superior 118 and inferior 120 surfaces of insert 104 are similarly inclined. Accordingly, the body 102 and insert 104, which may be flush with the superior 118 and inferior 120 surfaces of body 102, have a height “H5” at the trailing end 112 of body 102 that is higher than a height “H6” at the leading end 110 of body 102. This configuration accommodates the lordosis of the spine. The leading end 110 of body 102 includes an inclined surface 130 that slopes downwardly from the superior surface 118 to an intermediate surface 132. A second inclined surface 134 slopes upwardly from the inferior surface 120 to the intermediate surface 132. The leading end of insert 104 is similarly configured. The configuration of leading end 110 of body 102 and the leading end of insert 104 facilitate insertion of implant 100 into the disc space between adjacent vertebrae, such as between adjacent cervical vertebrae in an exemplary embodiment. In another embodiment, the superior 118 and inferior 120 surfaces are parallel to one another.
The implants 10, 50, 100 can be inserted by a variety of surgical approaches, including, but not limited to an anterior approach, a lateral (transverse) approach, a posterior approach, or postero-lateral approach by engaging the implants 10, 50, 100 with an instrument, such as an inserter. The implants 10, 50, 100 can include grooves, indentations, slots or other surface deficits that allow the inserter to engage the implants 10, 50, 100. For example, the trailing end 16, 62, 112 (of body 102) of the implant can include holes, such as a circular hole or holes that mate with prongs on the inserter. Alternatively, the trailing end 16, 62, 112 (of body 102) can include two or more square or rectangular surface deficits cut into the superior 22, 68, 118 (of body 102) and inferior surfaces 24, 72, 120 (of body 102) that can be engaged by the inserter. In other embodiments, slots or grooves can be formed in each of the sides 18, 64, 114 (of body 102) and 20, 66, 116 (of body 102). The slots or grooves can be partially formed into and engaged at the trailing end 16, 62, 112 (of body 102) by the inserter. The slots or grooves can be formed such that a portion of the implant 10, 50, 100 forms a positive stop for the inserter instrument. Alternatively, the slots or grooves can extend the length of the sides 18, 64, 114 (of body 102) and 20, 66, 116 (of body 102). In an exemplary embodiment, implant 10 includes an indentation 27 formed in each of the sides 18, 20 as shown in
While the present invention has been illustrated by the description of and exemplary embodiments thereof, and while the embodiments have been described in considerable detail, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope or spirit of Applicants' general inventive concept.
This application claims priority to U.S. Design patent application Ser. No. 29/276,676, “Spinal Implant”, filed Feb. 1, 2007; U.S. Design patent application Ser. No. 29/277,221, “Spinal Implant”, filed Feb. 19, 2007; and U.S. Design patent application Ser. No. 29/277,352, “Spinal Implant”, filed Feb. 22, 2007, each disclosure of which is expressly incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 29276676 | Feb 2007 | US |
Child | 11767673 | US | |
Parent | 29277221 | Feb 2007 | US |
Child | 29276676 | US | |
Parent | 29277352 | Feb 2007 | US |
Child | 29277221 | US |