The present invention generally relates to spinal implants and a method of fabricating the same, and in particular, relates to a spinal implant with porous and solid structures and the methods for fabricating them.
Back pain can be caused by many different maladies, not the least of which are problems that directly impact the intervertebral discs of the spine. Typical disc issues include, inter alia, degeneration, bulging, herniation, thinning and abnormal movement. One method of treatment of such disc problems that has been widely utilized in the field of spinal surgery is a spinal fusion procedure, whereby an affected disc is removed and the adjacent vertebral bodies are fused together through the use of interbody spacers, implants or the like. In some instances, it may also be necessary to remove and replace an entire vertebral body. This is often accomplished through the use of a larger implant that acts to fuse together the vertebral bodies adjacent the removed vertebral body.
The aforementioned implants often rely upon mechanical features to ensure engagement between the devices and the bone of the existing vertebral bodies. This coupled with the normal compressive load of the spine acts to keep the implant in place until bone can grow from the existing vertebral bodies into and through the implant. To encourage the bone growth, the implants are often pre-loaded with bone growth promoting material and thereafter placed into the spine. Bone growth promoting material may include naturally occurring bone, artificial materials or the like.
To further ensure a strong implant-bone connection, some existing implants include an area formed of porous material that allows bone to grow into it. Although there is little doubt that the bone growth into the implant is beneficial in maintaining an implant in place, these implants are often very difficult (and thusly, expensive) to manufacture. Additionally, existing implants that implement porous material do so in a limited manner Often times, because of manufacturing or strength concerns or the like, the porous material is limited to a thin layer covering the upper and lower surfaces of the implant, which only allows for a small amount of bone to grow into the implant.
Therefore, there exists a need for an improved spinal implant that provides sufficient porous material, yet maintains the necessary strength required of a spinal implant.
Disclosed herein are implants with solid and porous materials.
In a first aspect of the present invention, a spinal implant with a solid frame and an inner porous layer is provided. The spinal implant may include a solid frame having a medial or first side wall defining a medial or first side wall thickness, a lateral or second side wall defining a lateral or second side wall thickness, a posterior wall defining a posterior wall thickness and an anterior wall defining an anterior wall thickness. A porous inner layer may be disposed within the solid frame. The porous layer may have an exposed superior and an exposed inferior surface. An inner first cavity may extend in a superior-inferior direction and may be defined by the porous inner layer and the solid frame. The solid frame may have one or more ribs extending from the medial wall to the lateral wall above the superior and inferior surface. A porous posterior wall thickness and a porous anterior wall thickness may be less than the posterior wall thickness and the anterior wall thickness respectively. A porous medial wall thickness and porous lateral wall thickness may be greater than the medial wall thickness and the lateral wall thickness respectively.
In accordance with this first aspect, the spinal implant may have two or more inner cavities. Each cavity may extend in a superior-inferior direction and may be defined by the porous inner layer and the solid frame. The spinal implant may have an inner second cavity extending in a superior-inferior direction and may be defined by the porous inner layer and the solid frame. A crossbar may run in medial-lateral direction and separate the two cavities. The crossbar may be defined by the solid frame and may include a window to allow fluid communication between the first and second cavities. The window may be defined by the porous inner layer.
Further in accordance with the first aspect, the lateral wall thickness and the medial wall thickness may be at least 0.25 mm.
Still further in accordance with the first aspect, the lateral wall thickness and the medial wall thickness may vary along an anterior-posterior direction. The wall thickness may have a maximum thickness at the anterior and posterior ends and a minimum thickness in between the anterior and posterior ends.
Still further in accordance with the first aspect, the ribs may have a triangular cross-section, an apex of the triangular cross-section may away from the spinal implant. The ribs may engage with vertebral end plates of a first and a second vertebral body to secure spinal implant between the vertebral bodies. The spinal implant may have one or more cavities extending in a medial-lateral direction. The anterior wall and the posterior wall may include at least one hole to engage with a surgical insertion tool. The inner walls of the hole may be defined by the solid frame.
Still further in accordance with the first aspect, the anterior and posterior walls may include at least one hole in fluid communication with the inner cavity. The inner walls of the hole may be defined by the porous inner layer and the solid frame. The solid frame may be metal. The metal may be titanium.
Still further in accordance with the first aspect, the inner porous layer may have a mean pore diameter between 400 and 500 micron. The spinal implant may be manufactured by an additive manufacturing process.
In a second aspect of the present invention, a spinal implant with a solid frame and an inner porous layer is provided. The spinal implant may have a solid frame with a medial wall, a lateral wall, a posterior wall and an anterior wall. A porous inner layer may be disposed within the solid frame. The porous layer may have an exposed superior and an exposed inferior surface. The solid frame may have one or more ribs extending from the medial wall to the lateral wall above the superior and inferior surface.
In a third aspect of the present invention, an implant assembly is provided. The implant assembly may include an implant and an inserter. The inserter may have a shaft with a proximal end and a distal end with external threading and a post extending distally from a base of the inserter. The post may be parallel to the shaft. The implant may have a first and a second recess. The second recess may be configured to receive the post and the first recess may have internal threading to threadingly engage with the external threading to secure the inserter to the implant.
In a fourth aspect of the present invention, a method of placing a spinal implant using an inserter is provided. The method according to this embodiment may include the steps of placing a distal end of a post of the inserter in a first recess of the spinal implant, securing the spinal implant to the inserter by engaging a distal tip of a shaft of an inserter in a second recess of the spinal implant, placing the spinal implant to a target location using the inserter, and disengaging the post and the shaft of the inserter from the spinal implant.
A more complete appreciation of the subject matter of the present invention and the various advantages thereof can be realized by reference to the following detailed description, in which reference is made to the following accompanying drawings:
Reference will now be made to the embodiments of the present invention illustrated in the accompanying drawings. Wherever possible, the same or like reference numbers will be used throughout the drawings to refer to the same or like features. It should be noted that the drawings are in simplified form and are not drawn to precise scale. Additionally, the term “a,” as used in the specification, means “at least one.” The terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import.
In describing preferred embodiments of the disclosure, reference will be made to directional nomenclature used in describing the human body. It is noted that this nomenclature is used only for convenience and that it is not intended to be limiting with respect to the scope of the invention. For example, as used herein, when referring to bones or other parts of the body, the term “anterior” means toward the front of the body and the term “posterior” means toward the back of the body. The term “medial” means toward the midline of the body and the term “lateral” means away from the midline of the body. In some instances, embodiments disclosed herein may be located at the midline of the body. In these instances, the term “medial” means toward the left side of the embodiment and the term “lateral” means toward the right side of the embodiment when viewed in an anterior-posterior direction. The term “superior” means closer to the head and the term “inferior” means more distant from the head.
As shown in
As best shown in
A lateral window 120 extends across medial solid wall 106 and lateral solid wall 108. Lateral window 120 reduces the stiffness of implant 100 and also allows for visualization through the lateral aspect of the implant under fluoroscopy imaging. The lateral window may be tapered or configured in any other shape to achieve these functions. A first hole 122 and a second threaded hole 124 are present on anterior solid wall 102 and posterior solid wall 104. In other embodiments, either or both holes may be threaded or unthreaded. First hole 122 is an anti-rotation slot facilitating precise insertion of the spinal implant. First hole 122 may also be a second lateral window to reduce the stiffness of implant 100 and also allow visualization through the anterior aspect of the implant under fluoroscopy imaging Second threaded holed 124 is configured to engage with an insertion tool (not shown) to implant spinal implant 100. As best shown in
Referring now to
Details of serration 316 are shown in
Referring now to
Referring now to
Referring now to
Referring now to
The implants described above are each offered in a number of footprints, heights, and lordotic angles to adapt to a variety of patient anatomies.
The implants described above can be manufactured by 3D printing methods or additive manufacturing processes.
The solid and porous portions of the implants described herein are preferably of material suitable for implantation in a patient and capable of providing the necessary strength and durability required for such application. For instance, in certain embodiments, the solid and porous portions are constructed from titanium. However, any other suitable metals or non-metals may be used, and it is contemplated to utilize different materials for the solid and porous portions. The porous surfaces may an average pore diameter between 100-1000 microns with a 30-80% porosity, while a preferred embodiment would have a porosity between 50-70%. The porous surfaces may also have any thickness, for instance between 500-4500 microns, and preferably between 500-1500 microns. This results in a surface that is both strong enough for use in a spinal implant and maximizes bone growth potential. The porous portions of implant 10, as well as the solid portions, can be created through the use of a 3D printing process such as is disclosed in U.S. Pat. Nos. 7,537,664 and 8,147,861; 8,727,387; 8,350,186; 9,135,374; 9,180,010; and U.S. Patent Application Publication No. 2006/0147332, the disclosures of which are hereby incorporated by reference herein. It is also contemplated to form any porous portion via another known or hereafter developed procedure, such as laser etching.
Referring now to
Furthermore, although the invention disclosed herein has been described with reference to particular features, it is to be understood that these features are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications, including changes in the sizes of the various features described herein, may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention. In this regard, the present invention encompasses numerous additional features in addition to those specific features set forth in the paragraphs below. Moreover, the foregoing disclosure should be taken by way of illustration rather than by way of limitation as the present invention is defined in the examples of the numbered paragraphs, which describe features in accordance with various embodiments of the invention, set forth in the claims below.
This application is a continuation of U.S. patent application Ser. No. 16/135,432, filed on Sep. 19, 2018, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/560,910, filed on Sep. 20, 2017, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3486505 | Morrison | Dec 1969 | A |
3641590 | Michele | Feb 1972 | A |
3852045 | Wheeler et al. | Dec 1974 | A |
3855638 | Pilliar | Dec 1974 | A |
4047524 | Hall | Sep 1977 | A |
4501269 | Bagby | Feb 1985 | A |
4612160 | Donlevy et al. | Sep 1986 | A |
4653489 | Tronzo | Mar 1987 | A |
4681589 | Tronzo | Jul 1987 | A |
4718914 | Frey et al. | Jan 1988 | A |
4743262 | Tronzo | May 1988 | A |
4820305 | Harms et al. | Apr 1989 | A |
4834757 | Brantigan | May 1989 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
5071437 | Steffee | Dec 1991 | A |
5156628 | Kranz | Oct 1992 | A |
5180381 | Aust et al. | Jan 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5263986 | Noiles et al. | Nov 1993 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5314477 | Marnay | May 1994 | A |
5370692 | Fink et al. | Dec 1994 | A |
5431658 | Moskovich | Jul 1995 | A |
5443514 | Steffee | Aug 1995 | A |
5443515 | Cohen et al. | Aug 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5504300 | Devanathan et al. | Apr 1996 | A |
5507816 | Bullivant | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5609635 | Michelson | Mar 1997 | A |
5672284 | Devanathan et al. | Sep 1997 | A |
5683394 | Rinner | Nov 1997 | A |
5702449 | McKay | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5709683 | Bagby | Jan 1998 | A |
5713899 | Marnay et al. | Feb 1998 | A |
5723011 | Devanathan et al. | Mar 1998 | A |
5734959 | Krebs et al. | Mar 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5961554 | Janson et al. | Oct 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6039762 | McKay | Mar 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6152927 | Farris et al. | Nov 2000 | A |
6193721 | Michelson | Feb 2001 | B1 |
6206924 | Timm | Mar 2001 | B1 |
6235059 | Benezech et al. | May 2001 | B1 |
6241769 | Nicholson et al. | Jun 2001 | B1 |
6241771 | Gresser et al. | Jun 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6336928 | Guerin et al. | Jan 2002 | B1 |
6364880 | Michelson | Apr 2002 | B1 |
6432107 | Ferree | Aug 2002 | B1 |
6447524 | Knodel et al. | Sep 2002 | B1 |
6447546 | Bramlet et al. | Sep 2002 | B1 |
6447547 | Michelson | Sep 2002 | B1 |
6454769 | Wagner et al. | Sep 2002 | B2 |
6458158 | Anderson et al. | Oct 2002 | B1 |
6471725 | Ralph et al. | Oct 2002 | B1 |
6485521 | Say et al. | Nov 2002 | B1 |
6503250 | Paul | Jan 2003 | B2 |
6533786 | Needham et al. | Mar 2003 | B1 |
6533818 | Weber et al. | Mar 2003 | B1 |
6547823 | Scarborough et al. | Apr 2003 | B2 |
6569201 | Moumene et al. | May 2003 | B2 |
6572654 | Santilli | Jun 2003 | B1 |
6582468 | Gauchet | Jun 2003 | B1 |
6602255 | Campbell et al. | Aug 2003 | B1 |
6623525 | Ralph et al. | Sep 2003 | B2 |
6673075 | Santilli | Jan 2004 | B2 |
6679887 | Nicholson et al. | Jan 2004 | B2 |
6716245 | Pasquet et al. | Apr 2004 | B2 |
6726720 | Ross et al. | Apr 2004 | B2 |
6740118 | Eisermann et al. | May 2004 | B2 |
6740186 | Hawkins et al. | May 2004 | B2 |
6743256 | Mason | Jun 2004 | B2 |
6767367 | Michelson | Jul 2004 | B1 |
6790233 | Brodke et al. | Sep 2004 | B2 |
6800093 | Nicholson et al. | Oct 2004 | B2 |
6843805 | Webb et al. | Jan 2005 | B2 |
6863689 | Ralph et al. | Mar 2005 | B2 |
6890335 | Grabowski et al. | May 2005 | B2 |
6890355 | Michelson | May 2005 | B2 |
6945448 | Medlin et al. | Sep 2005 | B2 |
6970233 | Blatchford | Nov 2005 | B2 |
7044972 | Mathys, Jr. et al. | May 2006 | B2 |
7048766 | Ferree | May 2006 | B2 |
7056344 | Huppert et al. | Jun 2006 | B2 |
7056345 | Kuslich | Jun 2006 | B2 |
7060097 | Fraser et al. | Jun 2006 | B2 |
7118580 | Beyersdorff et al. | Oct 2006 | B1 |
7128761 | Kuras et al. | Oct 2006 | B2 |
7135042 | Stoll | Nov 2006 | B2 |
7169150 | Shipp et al. | Jan 2007 | B2 |
7204852 | Marnay et al. | Apr 2007 | B2 |
7235101 | Berry et al. | Jun 2007 | B2 |
7238203 | Bagga et al. | Jul 2007 | B2 |
7241313 | Unwin et al. | Jul 2007 | B2 |
7255713 | Malek | Aug 2007 | B2 |
7278997 | Mueller et al. | Oct 2007 | B1 |
7303564 | Freid et al. | Dec 2007 | B2 |
7320707 | Zucherman et al. | Jan 2008 | B2 |
7331995 | Eisermann et al. | Feb 2008 | B2 |
7364589 | Eisermann | Apr 2008 | B2 |
7497876 | Tuke et al. | Mar 2009 | B2 |
7500976 | Suh | Mar 2009 | B2 |
7501073 | Wen et al. | Mar 2009 | B2 |
7503934 | Eisermann et al. | Mar 2009 | B2 |
7503935 | Zucherman et al. | Mar 2009 | B2 |
7537664 | O'Neill et al. | May 2009 | B2 |
7563284 | Coppes et al. | Jul 2009 | B2 |
7588600 | Benzel et al. | Sep 2009 | B2 |
7594931 | Louis et al. | Sep 2009 | B2 |
7611538 | Belliard et al. | Nov 2009 | B2 |
7625375 | Garden et al. | Dec 2009 | B2 |
7635447 | Hamman et al. | Dec 2009 | B2 |
7658766 | Melkent et al. | Feb 2010 | B2 |
7662186 | Bagga et al. | Feb 2010 | B2 |
7670359 | Yundt | Mar 2010 | B2 |
7670375 | Schaller | Mar 2010 | B2 |
7686806 | Rhyne | Mar 2010 | B2 |
7695516 | Zeegers | Apr 2010 | B2 |
7749271 | Fischer et al. | Jul 2010 | B2 |
7763076 | Navarro et al. | Jul 2010 | B2 |
7766947 | Hawkes et al. | Aug 2010 | B2 |
7842088 | Rashbaum et al. | Nov 2010 | B2 |
7857839 | Duong et al. | Dec 2010 | B2 |
7862597 | Gause et al. | Jan 2011 | B2 |
7883661 | Hamman et al. | Feb 2011 | B2 |
7896919 | Belliard et al. | Mar 2011 | B2 |
7918382 | Charlebois et al. | Apr 2011 | B2 |
7922765 | Reiley | Apr 2011 | B2 |
8021403 | Wall et al. | Sep 2011 | B2 |
8034076 | Criscuolo et al. | Oct 2011 | B2 |
8043346 | Markworth | Oct 2011 | B2 |
8083796 | Raiszadeh et al. | Dec 2011 | B1 |
8092499 | Roth | Jan 2012 | B1 |
8100974 | Duggal et al. | Jan 2012 | B2 |
8105366 | Null et al. | Jan 2012 | B2 |
8123808 | Dewey et al. | Feb 2012 | B2 |
8147861 | Jones et al. | Apr 2012 | B2 |
8162950 | Digeser et al. | Apr 2012 | B2 |
8167946 | Michelson | May 2012 | B2 |
8191760 | Charlebois et al. | Jun 2012 | B2 |
8202305 | Reiley | Jun 2012 | B2 |
8231676 | Trudeau et al. | Jul 2012 | B2 |
8236034 | Binder et al. | Aug 2012 | B2 |
8262737 | Bagga et al. | Sep 2012 | B2 |
8266780 | Bollinger et al. | Sep 2012 | B2 |
8268100 | O'Neill et al. | Sep 2012 | B2 |
8303879 | Bertele et al. | Nov 2012 | B2 |
8308805 | Lynn et al. | Nov 2012 | B2 |
8343224 | Lynn et al. | Jan 2013 | B2 |
8349015 | Bae et al. | Jan 2013 | B2 |
8350186 | Jones et al. | Jan 2013 | B2 |
8361126 | Perrow et al. | Jan 2013 | B2 |
8361150 | Zhang et al. | Jan 2013 | B2 |
8361153 | Ralph et al. | Jan 2013 | B2 |
8361380 | Hamman et al. | Jan 2013 | B2 |
8388663 | Bush, Jr. et al. | Mar 2013 | B2 |
8388667 | Reiley et al. | Mar 2013 | B2 |
8403969 | Wallenstein et al. | Mar 2013 | B2 |
8403991 | Ullrich, Jr. et al. | Mar 2013 | B2 |
8414648 | Reiley | Apr 2013 | B2 |
8414650 | Bertele et al. | Apr 2013 | B2 |
8414651 | Tyber et al. | Apr 2013 | B2 |
8414654 | Ganey | Apr 2013 | B1 |
8414820 | Bertele et al. | Apr 2013 | B2 |
8419777 | Walker et al. | Apr 2013 | B2 |
8425570 | Reiley | Apr 2013 | B2 |
8425604 | Trieu | Apr 2013 | B2 |
8430930 | Hunt | Apr 2013 | B2 |
8435301 | Gerber et al. | May 2013 | B2 |
8435302 | Ulrich, Jr. et al. | May 2013 | B2 |
8444693 | Reiley | May 2013 | B2 |
8470004 | Reiley | Jun 2013 | B2 |
8470042 | Zhang et al. | Jun 2013 | B2 |
8480749 | Ullrich, Jr. et al. | Jul 2013 | B2 |
8486115 | Fisher et al. | Jul 2013 | B2 |
8496710 | Bagga et al. | Jul 2013 | B2 |
8500782 | Kovach et al. | Aug 2013 | B2 |
8500811 | Blain et al. | Aug 2013 | B2 |
8500819 | Meridew et al. | Aug 2013 | B2 |
8530560 | Kerr et al. | Sep 2013 | B2 |
8535354 | Cummins | Sep 2013 | B2 |
8545568 | Ulrich, Jr. et al. | Oct 2013 | B2 |
8551173 | Lechmann et al. | Oct 2013 | B2 |
8551176 | Ullrich, Jr. et al. | Oct 2013 | B2 |
8556944 | Dube et al. | Oct 2013 | B2 |
8556981 | Jones et al. | Oct 2013 | B2 |
8562684 | Ullrich, Jr. et al. | Oct 2013 | B2 |
8562685 | Ullrich, Jr. et al. | Oct 2013 | B2 |
8585765 | Ullrich, Jr. et al. | Nov 2013 | B2 |
8585766 | Ullrich, Jr. et al. | Nov 2013 | B2 |
8585767 | Ullrich, Jr. et al. | Nov 2013 | B2 |
8591590 | Ullrich, Jr. et al. | Nov 2013 | B2 |
8617246 | Malone | Dec 2013 | B2 |
8617248 | Ullrich, Jr. et al. | Dec 2013 | B2 |
8632604 | Brooks | Jan 2014 | B2 |
8636803 | Hibri et al. | Jan 2014 | B2 |
8663332 | To et al. | Mar 2014 | B1 |
8668723 | Altarac et al. | Mar 2014 | B2 |
8673016 | Liu | Mar 2014 | B2 |
8709088 | Kleiner et al. | Apr 2014 | B2 |
8727387 | Knapp | May 2014 | B2 |
8734462 | Reiley et al. | May 2014 | B2 |
8747412 | Bae et al. | Jun 2014 | B2 |
8758442 | Ullrich, Jr. et al. | Jun 2014 | B2 |
8758443 | Ullrich, Jr. et al. | Jun 2014 | B2 |
8814939 | Ullrich, Jr. et al. | Aug 2014 | B2 |
8814978 | Hamman et al. | Aug 2014 | B2 |
8821555 | Bae et al. | Sep 2014 | B2 |
8827986 | Shachar et al. | Sep 2014 | B2 |
8834571 | Bagga et al. | Sep 2014 | B2 |
8840623 | Reiley | Sep 2014 | B2 |
8845736 | Zhang et al. | Sep 2014 | B2 |
8864831 | Lee et al. | Oct 2014 | B2 |
8870957 | Vraney et al. | Oct 2014 | B2 |
8900277 | Perrow et al. | Dec 2014 | B2 |
8906077 | Bush, Jr. et al. | Dec 2014 | B2 |
8906093 | Malone | Dec 2014 | B2 |
8906095 | Christensen et al. | Dec 2014 | B2 |
8940053 | Ullrich, Jr. et al. | Jan 2015 | B2 |
8979934 | Kirschman | Mar 2015 | B2 |
8985430 | Charlebois et al. | Mar 2015 | B2 |
8992619 | Patterson et al. | Mar 2015 | B2 |
9060876 | To et al. | Jun 2015 | B1 |
9078718 | Campbell | Jul 2015 | B2 |
9089428 | Bertele et al. | Jul 2015 | B2 |
9135374 | Jones et al. | Sep 2015 | B2 |
9138275 | Bae et al. | Sep 2015 | B2 |
9138276 | Bae et al. | Sep 2015 | B2 |
9180010 | Dong et al. | Nov 2015 | B2 |
9320549 | Fraser et al. | Apr 2016 | B2 |
9351775 | Bush, Jr. et al. | May 2016 | B2 |
9375237 | Keegan et al. | Jun 2016 | B2 |
9381044 | Robinson et al. | Jul 2016 | B2 |
9387087 | Tyber | Jul 2016 | B2 |
9615733 | Nottmeier | Apr 2017 | B2 |
9629664 | Altarac et al. | Apr 2017 | B2 |
9655665 | Perrow | May 2017 | B2 |
9730807 | Donaldson | Aug 2017 | B2 |
9782270 | Wickham | Oct 2017 | B2 |
9788968 | Bae et al. | Oct 2017 | B2 |
9925051 | Bae et al. | Mar 2018 | B2 |
10070970 | Lynn et al. | Sep 2018 | B2 |
10835388 | Milz | Nov 2020 | B2 |
20020004683 | Michelson | Jan 2002 | A1 |
20020035400 | Bryan et al. | Mar 2002 | A1 |
20020165613 | Lin et al. | Nov 2002 | A1 |
20030045940 | Eberlein et al. | Mar 2003 | A1 |
20030055505 | Sicotte et al. | Mar 2003 | A1 |
20030083748 | Lee et al. | May 2003 | A1 |
20030195517 | Michelson | Oct 2003 | A1 |
20030195632 | Foley et al. | Oct 2003 | A1 |
20040059318 | Zhang et al. | Mar 2004 | A1 |
20040117022 | Marnay et al. | Jun 2004 | A1 |
20040122426 | Michelson | Jun 2004 | A1 |
20040133279 | Krueger et al. | Jul 2004 | A1 |
20040148028 | Ferree et al. | Jul 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040181226 | Michelson | Sep 2004 | A1 |
20040193269 | Fraser et al. | Sep 2004 | A1 |
20040193271 | Fraser et al. | Sep 2004 | A1 |
20040199254 | Louis et al. | Oct 2004 | A1 |
20040204712 | Kolb et al. | Oct 2004 | A1 |
20040210218 | Dixon et al. | Oct 2004 | A1 |
20040215195 | Shipp et al. | Oct 2004 | A1 |
20040220566 | Bray | Nov 2004 | A1 |
20040220571 | Assaker et al. | Nov 2004 | A1 |
20040220668 | Eisermann et al. | Nov 2004 | A1 |
20040220670 | Eisermann et al. | Nov 2004 | A1 |
20040225360 | Malone | Nov 2004 | A1 |
20040230307 | Eisermann | Nov 2004 | A1 |
20040258732 | Shikinami | Dec 2004 | A1 |
20040260286 | Ferree | Dec 2004 | A1 |
20050004672 | Pafford et al. | Jan 2005 | A1 |
20050033294 | Garden et al. | Feb 2005 | A1 |
20050033435 | Belliard et al. | Feb 2005 | A1 |
20050043802 | Eisermann et al. | Feb 2005 | A1 |
20050049593 | Duong et al. | Mar 2005 | A1 |
20050049595 | Suh et al. | Mar 2005 | A1 |
20050060034 | Berry et al. | Mar 2005 | A1 |
20050070900 | Serhan et al. | Mar 2005 | A1 |
20050075633 | Ross | Apr 2005 | A1 |
20050123672 | Justin et al. | Jun 2005 | A1 |
20050143820 | Zucherman et al. | Jun 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050149193 | Zucherman et al. | Jul 2005 | A1 |
20050154460 | Yundt | Jul 2005 | A1 |
20050165408 | Puno et al. | Jul 2005 | A1 |
20050177238 | Khandkar et al. | Aug 2005 | A1 |
20050192586 | Zucherman et al. | Sep 2005 | A1 |
20050216081 | Taylor | Sep 2005 | A1 |
20060004453 | Bartish et al. | Jan 2006 | A1 |
20060036250 | Lange et al. | Feb 2006 | A1 |
20060085071 | Lechmann et al. | Apr 2006 | A1 |
20060089656 | Allard et al. | Apr 2006 | A1 |
20060116769 | Marnay et al. | Jun 2006 | A1 |
20060116770 | White et al. | Jun 2006 | A1 |
20060122603 | Kolb | Jun 2006 | A1 |
20060129238 | Paltzer | Jun 2006 | A1 |
20060136063 | Zeegers | Jun 2006 | A1 |
20060147332 | Jones et al. | Jul 2006 | A1 |
20060178745 | Bartish et al. | Aug 2006 | A1 |
20060195097 | Evans et al. | Aug 2006 | A1 |
20060212121 | Ferree | Sep 2006 | A1 |
20060293668 | May et al. | Dec 2006 | A1 |
20070050032 | Gittings et al. | Mar 2007 | A1 |
20070050033 | Reo et al. | Mar 2007 | A1 |
20070055378 | Ankney et al. | Mar 2007 | A1 |
20070073404 | Rashbaum et al. | Mar 2007 | A1 |
20070118145 | Fischer et al. | May 2007 | A1 |
20070123884 | Abdou | May 2007 | A1 |
20070123985 | Errico et al. | May 2007 | A1 |
20070142914 | Jones et al. | Jun 2007 | A1 |
20070173816 | Metz-Stavenhagen | Jul 2007 | A1 |
20070173940 | Hestad et al. | Jul 2007 | A1 |
20070179609 | Goble et al. | Aug 2007 | A1 |
20070233244 | Lopez et al. | Oct 2007 | A1 |
20070233261 | Lopez et al. | Oct 2007 | A1 |
20070239278 | Heinz | Oct 2007 | A1 |
20070270968 | Baynham et al. | Nov 2007 | A1 |
20080004709 | O'Neill et al. | Jan 2008 | A1 |
20080015702 | Lakin et al. | Jan 2008 | A1 |
20080051901 | de Villiers et al. | Feb 2008 | A1 |
20080051902 | Dwyer | Feb 2008 | A1 |
20080097435 | DeRidder et al. | Apr 2008 | A1 |
20080109005 | Trudeau et al. | May 2008 | A1 |
20080154377 | Voellmicke | Jun 2008 | A1 |
20080161927 | Savage et al. | Jul 2008 | A1 |
20080183292 | Trieu | Jul 2008 | A1 |
20080249575 | Waugh et al. | Oct 2008 | A1 |
20080262623 | Bagga et al. | Oct 2008 | A1 |
20080269756 | Tomko et al. | Oct 2008 | A1 |
20080306595 | McLeod et al. | Dec 2008 | A1 |
20090005870 | Hawkins et al. | Jan 2009 | A1 |
20090088849 | Armstrong et al. | Apr 2009 | A1 |
20090093885 | Levieux et al. | Apr 2009 | A1 |
20090105832 | Allain et al. | Apr 2009 | A1 |
20090112323 | Hestad et al. | Apr 2009 | A1 |
20090138015 | Conner et al. | May 2009 | A1 |
20090164020 | Janowski et al. | Jun 2009 | A1 |
20090198184 | Martin et al. | Aug 2009 | A1 |
20090240333 | Trudeau et al. | Sep 2009 | A1 |
20090287257 | Hagen | Nov 2009 | A1 |
20090306717 | Kercher et al. | Dec 2009 | A1 |
20100004747 | Lin | Jan 2010 | A1 |
20100042218 | Nebosky et al. | Feb 2010 | A1 |
20100042221 | Boyd | Feb 2010 | A1 |
20100076559 | Bagga et al. | Mar 2010 | A1 |
20100094426 | Grohowski, Jr. et al. | Apr 2010 | A1 |
20100137916 | Hynes et al. | Jun 2010 | A1 |
20100137990 | Apatsidis et al. | Jun 2010 | A1 |
20100185292 | Hochschuler et al. | Jul 2010 | A1 |
20100211119 | Refai et al. | Aug 2010 | A1 |
20100222750 | Cheng | Sep 2010 | A1 |
20100256773 | Thijs et al. | Oct 2010 | A1 |
20100262244 | Savage-Erickson et al. | Oct 2010 | A1 |
20100262245 | Alfaro et al. | Oct 2010 | A1 |
20100268343 | Dewey et al. | Oct 2010 | A1 |
20110004256 | Biedermann et al. | Jan 2011 | A1 |
20110004307 | Ahn et al. | Jan 2011 | A1 |
20110029081 | Malone | Feb 2011 | A1 |
20110071635 | Zhang et al. | Mar 2011 | A1 |
20110092948 | Shachar et al. | Apr 2011 | A1 |
20110106159 | Nazeck | May 2011 | A1 |
20110160866 | Laurence et al. | Jun 2011 | A1 |
20110196494 | Yedlicka et al. | Aug 2011 | A1 |
20110196495 | Hunt | Aug 2011 | A1 |
20110224796 | Weiland et al. | Sep 2011 | A1 |
20110282392 | Murphy et al. | Nov 2011 | A1 |
20110282454 | Ullrich, Jr. et al. | Nov 2011 | A1 |
20110301709 | Kraus et al. | Dec 2011 | A1 |
20110313532 | Hunt | Dec 2011 | A1 |
20120029432 | Sweeney | Feb 2012 | A1 |
20120071933 | DeRidder | Mar 2012 | A1 |
20120078315 | Sweeney | Mar 2012 | A1 |
20120078371 | Gamache et al. | Mar 2012 | A1 |
20120078373 | Gamache et al. | Mar 2012 | A1 |
20120123544 | Suh et al. | May 2012 | A1 |
20120215315 | Hochschuler et al. | Aug 2012 | A1 |
20120253406 | Bae et al. | Oct 2012 | A1 |
20120265306 | Trieu | Oct 2012 | A1 |
20120277876 | Ullrich, Jr. et al. | Nov 2012 | A1 |
20120303127 | Ullrich, Jr. et al. | Nov 2012 | A1 |
20120312778 | Ullrich, Jr. et al. | Dec 2012 | A1 |
20120312779 | Patterson et al. | Dec 2012 | A1 |
20120330420 | Brodke et al. | Dec 2012 | A1 |
20130030529 | Hunt | Jan 2013 | A1 |
20130123925 | Patterson et al. | May 2013 | A1 |
20130123935 | Hunt et al. | May 2013 | A1 |
20130158672 | Hunt | Jun 2013 | A1 |
20130184822 | Kleiner | Jul 2013 | A1 |
20130218282 | Hunt | Aug 2013 | A1 |
20130226302 | Bae et al. | Aug 2013 | A1 |
20130274886 | Matsumoto et al. | Oct 2013 | A1 |
20130282122 | Ullrich, Jr. et al. | Oct 2013 | A1 |
20130292357 | Ullrich, Jr. et al. | Nov 2013 | A1 |
20130304218 | Ullrich, Jr. et al. | Nov 2013 | A1 |
20130306591 | Ullrich, Jr. et al. | Nov 2013 | A1 |
20130338777 | Bagga et al. | Dec 2013 | A1 |
20140025169 | Lechmann et al. | Jan 2014 | A1 |
20140031942 | Ullrich, Jr. et al. | Jan 2014 | A1 |
20140046449 | Ullrich, Jr. et al. | Feb 2014 | A1 |
20140052258 | Ball et al. | Feb 2014 | A1 |
20140114415 | Tyber | Apr 2014 | A1 |
20140114421 | Ullrich, Jr. et al. | Apr 2014 | A1 |
20140121776 | Hunt | May 2014 | A1 |
20140128924 | Perrow et al. | May 2014 | A1 |
20140200670 | Chin et al. | Jul 2014 | A1 |
20140277461 | Nebosky et al. | Sep 2014 | A1 |
20140277464 | Richter et al. | Sep 2014 | A1 |
20140277482 | Gfeller et al. | Sep 2014 | A1 |
20140277491 | Fang et al. | Sep 2014 | A1 |
20140277511 | Ullrich, Jr. et al. | Sep 2014 | A1 |
20140277512 | Ullrich, Jr. et al. | Sep 2014 | A1 |
20140288649 | Hunt | Sep 2014 | A1 |
20140288650 | Hunt | Sep 2014 | A1 |
20140350682 | Bagga et al. | Nov 2014 | A1 |
20150012100 | Ullrich, Jr. et al. | Jan 2015 | A1 |
20150018956 | Steinmann et al. | Jan 2015 | A1 |
20150032220 | Tyber et al. | Jan 2015 | A1 |
20150045903 | Neal | Feb 2015 | A1 |
20150073422 | Chegini et al. | Mar 2015 | A1 |
20150157465 | Kirschman | Jun 2015 | A1 |
20150202047 | Patterson et al. | Jul 2015 | A1 |
20150202051 | Tanaka et al. | Jul 2015 | A1 |
20150230832 | Fraser et al. | Aug 2015 | A1 |
20160038301 | Wickham | Feb 2016 | A1 |
20160081818 | Waugh et al. | Mar 2016 | A1 |
20160199190 | Sharifi-Mehr et al. | Jul 2016 | A1 |
20160199193 | Willis et al. | Jul 2016 | A1 |
20170049491 | Ross et al. | Feb 2017 | A1 |
20170119537 | Tepper et al. | May 2017 | A1 |
20170182222 | Paddock et al. | Jun 2017 | A1 |
20170224388 | Walker et al. | Aug 2017 | A1 |
20170238974 | Konieczynski et al. | Aug 2017 | A1 |
20190008655 | Body | Jan 2019 | A1 |
20190083270 | Milz | Mar 2019 | A1 |
20210038404 | Milz | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
10052008 | Aug 2002 | DE |
202013007361 | Mar 2014 | DE |
0179695 | Apr 1986 | EP |
0505634 | Sep 1992 | EP |
1327423 | Jul 2003 | EP |
1790298 | May 2007 | EP |
1872746 | Jan 2008 | EP |
2858546 | Feb 2005 | FR |
H08503876 | Apr 1996 | JP |
03005939 | Jan 2003 | WO |
03039400 | May 2003 | WO |
03053290 | Jul 2003 | WO |
2003092507 | Nov 2003 | WO |
2004071359 | Aug 2004 | WO |
2004080355 | Sep 2004 | WO |
2004108015 | Dec 2004 | WO |
2005051243 | Jun 2005 | WO |
2005071190 | Aug 2005 | WO |
2006033067 | Mar 2006 | WO |
2006051547 | May 2006 | WO |
2006074414 | Jul 2006 | WO |
2006086494 | Aug 2006 | WO |
2006121795 | Nov 2006 | WO |
2007028098 | Mar 2007 | WO |
2007087366 | Aug 2007 | WO |
2008014453 | Jan 2008 | WO |
2008021955 | Feb 2008 | WO |
2009099559 | Aug 2009 | WO |
2010021612 | Feb 2010 | WO |
2010028045 | Mar 2010 | WO |
2010052283 | May 2010 | WO |
2010121149 | Oct 2010 | WO |
2013133729 | Sep 2013 | WO |
2014018325 | Jan 2014 | WO |
Entry |
---|
Search Report for European Application No. 21158679.7 dated Sep. 24, 2021. 3 pgs. |
Australian Examination Report for AU2017216532 dated Oct. 23, 2018. |
Bobyn JD. Next generation porous metals forbiologic fixation. In: Glassman AH, Lachiewicz PF, Tanzer, M, eds. Orthopaedic Knowledge Update: Hip and Knee Reconstruction 4. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2011:45-58. |
Bobyn, J. D., G. J. Stackpool, S. A. Hacking, M. Tanzer, and J. J. Krygier. “Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial.” The Journal of Bone and Joint Surgery81.5 (1999): 907-14. |
Callaghan, J. J. (1993). “The clinical results and basic science of total hip arthroplasty with porous-coated prostheses.” J Bone Joint Surg Am 75(2): 299-310. |
Charles L. Bush, U.S. Appl. No. 62/653,877, filed Apr. 6, 2018, titled “Faceted Bone Plate”. |
European Search Report for U.S. Appl. No. 16/170,075 dated Oct. 21, 2016. |
European Search Report dated Sep. 26, 2012 for PCT/US2010022494. |
Extended European Search Report for U.S. Appl. No. 14/152,779 dated Mar. 18, 2014. |
Extended European Search Report for Application No. 15161713.1 dated Jun. 29, 2015. |
Extended European Search Report for Application No. 16151374.2 dated Jun. 8, 2016. |
Extended European Search Report for U.S. Appl. No. 16/151,375 dated Jun. 8, 2016. |
Extended European Search Report for Application No. EP16171066 dated Dec. 14, 2016. |
Extended European Search Report for Application No. EP16189379 dated Jun. 6, 2017. |
Extended European Search Report for Application No. EP16202603 dated May 31, 2017. |
Harris, W. H. and M. Jasty (1985). “Bone ingrowth into porous coated canine acetabular replacements: the effect of pore size, apposition, and dislocation.” Hip: 214-34. |
International Search Report and Writen Opinion, PCT/US2010/044988, dated Feb. 4, 2011. |
International Search Report and Written Opinion for Application No. PCT/US2010/055259, dated Apr. 7, 2011. |
International Search Report and Written Opinion, PCT/US2010/22494, dated Oct. 25, 2010. |
Karageorgiou, V., and D. Kaplan. “Porosity of 3D Biomaterial Scaffolds and Osteogenesis”, Biomaterials 26.27 (2005): 5474-491. |
Kujala, S. et al. (2003): “Effect of porosity on the osteointegration and bone ingrowth of a weightbearing nickel-titanium bone graft substitute”, Biomaterials, 24(25), Nov. 2003, pp. 4691-4697. |
Sharifi-Mehr et al., U.S. Appl. No. 14/994,697, filed Jan. 13, 2016. |
Willis et al., U.S. Appl. No. 14/994,749, filed Jan. 13, 2016. |
Wu, s et al (2013). Porous Ti6Al4V Cage Has Better Osseointegration and Less Micromotion Than a PEEK cage in Sheep Vertebral Fusion. Artificial organs 37(12). |
Number | Date | Country | |
---|---|---|---|
20210038404 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62560910 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16135432 | Sep 2018 | US |
Child | 17071539 | US |