This invention relates generally to medical devices and methods, and more specifically to devices and methods related to use of a spinal joint implant delivery device.
Chronic neck and back problems cause pain and disability for a large segment of today's population. Adverse spinal conditions may be characteristic of age. In particular, spinal stenosis and facet arthropathy may increase with age. Spinal stenosis results in a reduction of foraminal area, which may compress cervical nerve roots and cause radicular pain. Both neck extension and ipsilateral rotation, in contrast to neck flexion, may further reduce the foraminal area and contribute to pain, nerve root compression, and other neural injury.
Cervical disc herniations may be a factor in spinal stenosis and may predominantly present upper extremity radicular symptoms. In this case, treatment may take the form of closed traction. A number of closed traction devices are available that alleviate pain by pulling on the head to increase foraminal height. Cervical disc herniations may also be treated with anterior or posterior surgery to remove the herniated disc and replace it with an implant, bone graft, or combination of the same to support, fixate and promote cervical fusion.
It would be advantageous to have improved devices, systems, and methods for performing cervical spinal fusion procedures via anterior access approaches. Ideally, such devices, systems, and methods would allow for minimally invasive or less invasive access and fixation, as well as helping ensure proper placement of the fixation devices. At least some of these objects will be met by the embodiments described herein.
The various embodiments described herein provide devices, systems, and methods for accessing the cervical spine via an anterior approach and implanting a spinal fixation member between two vertebrae of the cervical spine in the disc or intervertebral joint space. The embodiments described below generally include a delivery device, through which or along which one or more spinal fixation devices and tools may be advanced. The delivery devices described herein generally include a distal end that can be anchored to the spinal fixation member. Once anchored to the spinal fixation member, the delivery device is operable to both advance and attach the spinal fixation member within a cervical disc joint space.
In one aspect, a delivery device for guiding a fixation member to a spine is provided. The delivery device may include an anchor shaft having a distal portion and a proximal portion extending from the distal portion, the distal portion being keyed or threaded to anchor onto the fixation member and a guide member operably associated with the anchor shaft.
In some embodiments, the guide member is slidably coupled with anchor shaft. The guide member may be a double or single cannulated member slidably coupled with the anchor shaft. In some aspects, the anchor shaft is a cannulated tube or solid rod. The delivery device may further comprise a screw guide operably connected to the anchor shaft. The screw guide may be formed monolithically or integrally with the guide member. The screw guide may include one or more integrally formed or removable angled lumen to set a trajectory for a bone screw. In some aspects, the guide member is a guidewire extending adjacent the anchor shaft and configured to anchor onto the fixation member. The guide member may define at least one drill/drive path therein.
In another aspect, a system for guiding and securing a fixation member to a spine is provided. The system may include an intervertebral implant delivery device including: an anchor shaft having a distal portion and a proximal portion extending from the distal portion, the distal portion being releasably affixed to anchor onto the fixation member and a guide member operably connected to the anchor shaft. The system may further include a drill or driver member having a first end and slidably coupled with the guide member adjacent the anchor shaft.
In some embodiments, the guide member is a single or double cannulated member slidably coupled with the anchor shaft and the drill or driver member. The drill or driver member may be releasably coupled with the guide member. In some aspects, the anchor shaft is a cannulated tube and the system further includes a guidewire slidably received within the cannulated anchor shaft. The guidewire is operable to guide and position a cannulated screw onto the fixation member.
In some aspects, the drill or driver member is cannulated to receive a shaft therein to preset an angle of the first end of the drill or driver member for bone screw insertion into the fixation member. The first end of the drill or driver member includes a coupling that permits the drill or driver member to rotate and articulate with a bone screw at a desired angle. The coupling is selected from a group consisting of a universal joint, a coil spring, or a relief cut tube portion.
In another aspect, a method of implanting a spinal fixation implant is provided. The method may include advancing a delivery device into a joint between two adjacent vertebrae. The delivery device includes a fixation member releasably attached to a distal end thereto. The method further includes advancing a drill or driver member adjacent the delivery device, and attaching the fixation member to at least one of the two adjacent vertebrae.
In some embodiments, the method further includes guiding a bone screw releasably attached to the drill or driver member into the fixation member at a desired angle.
In some aspects, an apparatus for guiding a fixation member to a cervical disc joint space in a spine in a surgical procedure, such as an ACDF procedure is disclosed. The apparatus includes a delivery device. The delivery device includes an anchor shaft comprising a central lumen defining a longitudinal axis, a distal portion and a proximal portion extending from the distal portion; and a guide member operably associated with the anchor shaft, the guide member defining a first lumen coaxial with the central lumen, two angled lumen offset from the first lumen and at least one fixation member engagement feature. The apparatus further includes a fixation member having at least one threaded opening and at least one guide member engagement feature such that when the guide member engagement feature receives the fixation member engagement feature, the engagement hinders rotation of the fixation member relative to the guide member.
In some aspects, the apparatus, and more specifically the delivery device, further includes a rod member having at least one threaded end extending at least partially through the central lumen of the anchor shaft to releasably engage the threaded opening of the fixation member.
In some aspects, the apparatus, and more specifically the delivery device, further includes a handle, the handle operably coupled to the proximal portion of the anchor shaft and rotatably coupled to the rod, wherein rotation of the rod releasably engages the rod with the fixation member.
In various aspects, the at least one fixation member engagement feature includes at least one, and preferably two slots. In some aspects, the first angled lumen defines a first trajectory that is angled relative to the longitudinal axis and the second angled lumen defines a second trajectory that is angled relative to the longitudinal axis. The first trajectory may be different from the second trajectory.
In an aspect, the fixation member further comprises two angled threaded apertures offset from the at least one threaded opening, the two angled threaded apertures coextensive or coaxial with a respective angled lumen of the guide member when the guide member and the fixation member are engaged.
In some aspects, when the guide member and the fixation member are engaged, the opening of the fixation member is coextensive or coaxial with the central lumen of the anchor shaft. In various aspects, a surface of the guide member and a surface of the fixation member abut each other. In various aspects, the guide member is slidably coupled with anchor shaft.
In one aspect, a system for guiding and securing a fixation member to a cervical disc joint space in a spine in a surgical procedure, such as an ACDF procedure is disclosed. The system includes a fixation member delivery device. The delivery device includes an anchor shaft comprising a central lumen defining a longitudinal axis, a distal portion and a proximal portion extending from the distal portion; and a guide member operably associated with the anchor shaft, the guide member defining a first lumen coaxial with the central lumen, two angled lumen offset from the first lumen and at least one fixation member engagement feature. In some aspects, the system further includes a fixation member having at least one threaded opening and at least one guide member engagement feature such that when the guide member engagement feature receives the fixation member engagement feature, the engagement hinders rotation of the fixation member relative to the guide member. In some aspects, the system may also include a drive member having a first end operably associated with the guide member adjacent the anchor shaft.
In some aspects of the system, the delivery device further comprises a rod member having at least one threaded end extending at least partially through the central lumen of the anchor shaft to releasably engage the threaded opening of the fixation member.
In some aspects of the system, the device further comprises a handle, the handle operably coupled to the proximal portion of the anchor shaft and rotatably coupled to the rod, wherein rotation of the rod releasably engages the rod with the fixation member.
In some aspects of the system, the fixation member further comprises two angled threaded apertures offset from the at least one threaded opening, the two angled threaded apertures coextensive or coaxial with a respective angled lumen of the guide member when the guide member and the fixation member are engaged. The first trajectory may guide a first fastener to a superior vertebral surface and the second trajectory guides a second fastener to an inferior vertebral surface.
In some aspects, the system further comprises at least one fastener, the at least one fastener received in one of the two angled threaded apertures of the fixation member to secure the fixation member to a vertebral surface. In some aspects, the fastener is an anti-backout screw or a self-locking screw, with an interference thread at the head of the screw.
In some aspects, the first end of the drive member includes a coupling that permits the drive member to rotate and/or articulate with a fastener at a desired angle to deploy the fastener at a desired angle with minimal tissue retraction.
In some aspects, the coupling is selected from a group consisting of a universal joint, a coil spring, or a relief cut tube portion.
A method of implanting a spinal fixation implant is disclosed. In some aspects, the method includes advancing a delivery apparatus into a disc joint space between two adjacent vertebrae in an ACDF procedure. The delivery apparatus includes an anchor shaft comprising a central lumen defining a longitudinal axis, a distal portion and a proximal portion extending from the distal portion; a guide member operably associated with the anchor shaft, the guide member defining a first lumen coaxial with the central lumen, two angled lumen offset from the first lumen and at least one fixation member engagement feature; and a fixation member having at least one threaded opening and at least one guide member engagement feature such that when the guide member engagement feature receives the fixation member engagement feature, the engagement hinders rotation of the fixation member relative to the guide member.
In some aspects, the method further includes advancing a drill/drive member adjacent the delivery apparatus, the drill/drive member having a fastener releasably attached to a first end of the drill/drive member. In some aspects, advancing the fastener through the one of the two angled lumen of the guide member to attach the fixation member to at least one of the two adjacent vertebrae. In some aspects, the first end of the drill/drive member includes a coupling that permits the drill/drive member to rotate and/or articulate with a fastener at a desired angle to deploy the fastener at a desired angle with minimal tissue retraction. In some aspects, the coupling is selected from a group consisting of a universal joint, a coil spring, or a relief cut tube portion. In some aspects, the fastener is an anti-backout screw or a self-locking screw, with an interference thread at the head of the screw.
Additional embodiments and features are set forth in part in the description that follows, and will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed subject matter. A further understanding of the nature and advantages of the present disclosure may be realized by reference to the remaining portions of the specification and drawings, which form part of the disclosure. One of skill in the art will understand that each of the various aspects and features of the disclosure may advantageously be used separately in some instances, or in combination with other aspects and features of the disclosure in other instances.
The accompanying drawings, which are incorporated into and constitute a part of the specification, illustrate embodiments of the disclosure and, together with the general description above and the detailed description below, serve to explain the principles of these embodiments.
A herniated or degenerative disc may cause pain, tingling, numbness and/or weakness. Such a disc may be removed through an incision in the front of the spine through the throat area (also known as an anterior approach) to relieve spinal cord or nerve root pressure. After the disc is removed, a bone graft is inserted to fuse together the bones above and below the disc space. This procedure is generally known as Anterior Cervical Discectomy and Fusion (ACDF).
The various embodiments described herein provide devices, systems, and methods for accessing the cervical spine via an anterior approach and implanting a spinal fixation member (e.g., a cage, spacer, graft, implant or etc.) between two adjacent vertebrae after a herniated or degenerated disc is removed. The devices, systems and apparatus may be single use and/or disposable or include single use and/or disposable components. The embodiments allow for an anterior approach using minimally invasive or less invasive techniques. The embodiments described below generally include a delivery device, through which or along which one or more fixation devices may be advanced.
According to the present disclosure, a surgeon may advance the delivery device into the disc space from outside the patient though a minimally invasive or less invasive incision, and then may hold the delivery device via a handle or proximal end residing outside the patient. The delivery device can be used to advance drills, awls, plates, rods, and/or screws from a percutaneous approach with or without direct visualization. Some of the devices, systems, and methods described herein may include, be performed using, or be similar to, one or more components of the DTRAX® Spinal System, from Providence Medical Technology, Inc. (www.providencemt.com). Various components of the DTRAX® Spinal System may be modified or adjusted, according to various embodiments, for uses described herein.
Referring to
In the embodiments described below, the anchor shaft 102 may be used as a primary portal and/or anchor for introduction of subsequent instruments in a screw delivery system 110. For example, as shown in the embodiments of
With reference to
With continued reference to
With reference to
With continued reference to
As illustrated in
With reference to
Referring now to
With reference now to
With reference to
Referring to
Referring now to
Turning now to
As illustrated in
The handle 500 is configured to release the cage or fixation member 308 attached or coupled to the screw guide 400 at the distal end of the device 300 (see
As depicted in
As indicated throughout, the fixation member may be releasably coupled with the delivery device. The fixation member 308 may be sized and shaped to fit snugly (e.g., a friction fit) into or otherwise engage or abut adjacent vertebrae in a disc joint space between two adjacent vertebrae (see e.g.,
The fixation member 308 may be generally cuboid in shape and may include engagement features 334 to retain the fixation member 308 fixedly within the disc joint space. For example, the top and bottom surfaces 316, 318 may include a plurality of directional projections 334 that allow the fixation member 308 to be inserted into a disc space but also limit its removal. For instance, the projections 334 may be shaped to resemble a sawtooth waveform in cross-section (see
In some embodiments, and as shown in
As shown in
As illustrated in
With continued reference to
As illustrated in
Turning back to
As can be understood from
Referring back to
The delivery device 100, 300, drill or driver member 172, 772 and fixation member 108, 308 may be formed from a variety of materials and means. For example, the delivery device 100, 300, including the anchor shaft 102, 302 guide member 150, screw guide 168, and guidewires 196, 222, may be formed from stainless steel, titanium alloy, cobalt chromium alloy, ceramics, plastics (e.g., polyethylene), or other material suitable for use in sterile surgical environments. The drill or driver member 172, 772 and fixation member 108, 308 may be similarly configured. In some embodiments, the delivery device 100, 300 and the drill or driver member 172, 772 may include hydrophilic and/or hydrophobic coatings for lubrication needs. The devices, systems and apparatus may be single use and/or disposable or include single use and/or disposable components.
All relative and directional references (including: upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, side, above, below, front, middle, back, vertical, horizontal, and so forth) are given by way of example to aid the reader's understanding of the particular embodiments described herein. They should not be read to be requirements or limitations, particularly as to the position, orientation, or use unless specifically set forth in the claims. Connection references (e.g., attached, coupled, connected, joined, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other unless specifically set forth in the claims.
Those skilled in the art will appreciate that the presently disclosed embodiments teach by way of example and not by limitation. Therefore, the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. Thus, it is intended that the scope of the present disclosure should not be limited by the particular embodiments described above.
This application claims priority to U.S. Patent Application No. 62/240,754, filed Oct. 13, 2015 and entitled Spinal Joint Implant Delivery Device and to U.S. Patent Application No. 62/351,795, filed Jun. 17, 2016 and entitled Spinal Joint Implant Delivery Device, each of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/056891 | 10/13/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/066475 | 4/20/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1934962 | Barry | Nov 1933 | A |
2708376 | Booth | May 1955 | A |
2984241 | Carlson | May 1961 | A |
3486505 | Morrison | Dec 1969 | A |
4479491 | Martin | Oct 1984 | A |
4530355 | Griggs | Jul 1985 | A |
4772287 | Ray et al. | Sep 1988 | A |
4877020 | Vich | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
5015247 | Michelson | May 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5100405 | McLaren | Mar 1992 | A |
5135528 | Winston | Aug 1992 | A |
5236460 | Barber | Aug 1993 | A |
5484437 | Michelson | Jan 1996 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5505732 | Michelson | Apr 1996 | A |
5527312 | Ray | Jun 1996 | A |
5549679 | Kuslich et al. | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5593409 | Michelson | Jan 1997 | A |
5632747 | Scarborough et al. | May 1997 | A |
5649945 | Ray et al. | Jul 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5720748 | Kuslich et al. | Feb 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5792044 | Foley et al. | Aug 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5879353 | Terry | Mar 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5891147 | Moskovitz | Apr 1999 | A |
5895426 | Scarborough et al. | Apr 1999 | A |
5899908 | Kuslich et al. | May 1999 | A |
5928238 | Scarborough et al. | Jul 1999 | A |
5953820 | Vasudeva | Sep 1999 | A |
5961522 | Mehdizadeh | Oct 1999 | A |
5976146 | Ogawa et al. | Nov 1999 | A |
6008433 | Stone | Dec 1999 | A |
6033405 | Winslow et al. | Mar 2000 | A |
6045580 | Scarborough et al. | Apr 2000 | A |
6063088 | Winslow | May 2000 | A |
RE36758 | Fitz | Jun 2000 | E |
6080155 | Michelson | Jun 2000 | A |
6090143 | Meriwether et al. | Jul 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6096046 | Weiss | Aug 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6113602 | Sand | Sep 2000 | A |
6149650 | Michelson | Nov 2000 | A |
RE37005 | Michelson et al. | Dec 2000 | E |
6159245 | Meriwether et al. | Dec 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6179873 | Zientek | Jan 2001 | B1 |
6190388 | Michelson et al. | Feb 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6210412 | Michelson | Apr 2001 | B1 |
RE37161 | Michelson et al. | May 2001 | E |
6224595 | Michelson | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6245108 | Biscup | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
D444878 | Walter | Jul 2001 | S |
D445188 | Walter | Jul 2001 | S |
6264656 | Michelson | Jul 2001 | B1 |
6267763 | Castro | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6283966 | Boufbur | Sep 2001 | B1 |
6315795 | Scarborough et al. | Nov 2001 | B1 |
6325827 | Lin | Dec 2001 | B1 |
6371984 | Van Dyke et al. | Apr 2002 | B1 |
6371988 | Pafford et al. | Apr 2002 | B1 |
6402784 | Wardlaw | Jun 2002 | B1 |
6423063 | Bonutti | Jul 2002 | B1 |
6423083 | Reiley et al. | Jul 2002 | B2 |
6425919 | Lambrecht | Jul 2002 | B1 |
6436098 | Michelson | Aug 2002 | B1 |
6436142 | Paes et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6451023 | Salazar et al. | Sep 2002 | B1 |
6454807 | Jackson | Sep 2002 | B1 |
6478796 | Zucherman et al. | Nov 2002 | B2 |
6500206 | Bryan | Dec 2002 | B1 |
6514256 | Zucherman et al. | Feb 2003 | B2 |
6530955 | Boyle et al. | Mar 2003 | B2 |
6558390 | Cragg | May 2003 | B2 |
6565574 | Michelson | May 2003 | B2 |
6569186 | Winters et al. | May 2003 | B1 |
6575919 | Reiley et al. | Jun 2003 | B1 |
6575979 | Cragg | Jun 2003 | B1 |
6579319 | Goble et al. | Jun 2003 | B2 |
6582432 | Michelson | Jun 2003 | B1 |
6607530 | Carl et al. | Aug 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
6626905 | Schmiel et al. | Sep 2003 | B1 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6635060 | Hanson et al. | Oct 2003 | B2 |
6641582 | Hanson et al. | Nov 2003 | B1 |
6648893 | Dudasik | Nov 2003 | B2 |
6652584 | Michelson | Nov 2003 | B2 |
6663647 | Reiley et al. | Dec 2003 | B2 |
6666866 | Martz et al. | Dec 2003 | B2 |
6679886 | Weikel et al. | Jan 2004 | B2 |
6682535 | Hoogland | Jan 2004 | B2 |
6685742 | Jackson | Feb 2004 | B1 |
6709458 | Michelso | Mar 2004 | B2 |
6712853 | Kuslich | Mar 2004 | B2 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6723095 | Hammerslag | Apr 2004 | B2 |
6733534 | Sherman | May 2004 | B2 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6751875 | Jones | Jun 2004 | B2 |
6770074 | Michelson | Aug 2004 | B2 |
6793679 | Michelson | Sep 2004 | B2 |
6805715 | Reuter et al. | Oct 2004 | B2 |
6808537 | Michelson | Oct 2004 | B2 |
6823871 | Schmieding | Nov 2004 | B2 |
6840941 | Rogers et al. | Jan 2005 | B2 |
6851430 | Tsou | Feb 2005 | B2 |
6875213 | Michelson | Apr 2005 | B2 |
6899719 | Reiley et al. | May 2005 | B2 |
6921403 | Cragg et al. | Jul 2005 | B2 |
6923813 | Phillips et al. | Aug 2005 | B2 |
6958077 | Suddaby | Oct 2005 | B2 |
6962606 | Michelson | Nov 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6966930 | Arnin et al. | Nov 2005 | B2 |
6972035 | Michelson | Dec 2005 | B2 |
6979333 | Hammerslag | Dec 2005 | B2 |
6986772 | Michelson | Jan 2006 | B2 |
7001385 | Bonutti | Feb 2006 | B2 |
7008453 | Michelson | Mar 2006 | B1 |
7033362 | McGahan et al. | Apr 2006 | B2 |
7033392 | Schmiel et al. | Apr 2006 | B2 |
7033394 | Michelson | Apr 2006 | B2 |
7066961 | Michelson | Jun 2006 | B2 |
D524443 | Blain | Jul 2006 | S |
7083623 | Michelson | Aug 2006 | B2 |
7096972 | Orozco, Jr. | Aug 2006 | B2 |
7101398 | Dooris et al. | Sep 2006 | B2 |
7115128 | Michelson | Oct 2006 | B2 |
7118598 | Michelson | Oct 2006 | B2 |
7128760 | Michelson | Oct 2006 | B2 |
7156877 | Lotz et al. | Jan 2007 | B2 |
7166110 | Yundt | Jan 2007 | B2 |
7175023 | Martin | Feb 2007 | B2 |
7179263 | Zdeblick et al. | Feb 2007 | B2 |
7207991 | Michelson | Apr 2007 | B2 |
D541940 | Blain | May 2007 | S |
7220280 | Kast et al. | May 2007 | B2 |
7261739 | Ralph et al. | Aug 2007 | B2 |
7264622 | Michelson | Sep 2007 | B2 |
7273498 | Bianchi et al. | Sep 2007 | B2 |
7288093 | Michelson | Oct 2007 | B2 |
7291149 | Michelson | Nov 2007 | B1 |
7300440 | Zdeblick et al. | Nov 2007 | B2 |
7326211 | Padget et al. | Feb 2008 | B2 |
7326214 | Michelson | Feb 2008 | B2 |
7371238 | Soboleski et al. | May 2008 | B2 |
7399303 | Michelson | Jul 2008 | B2 |
7410501 | Michelson | Aug 2008 | B2 |
7431722 | Michelson | Oct 2008 | B1 |
7445636 | Michelson | Nov 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7452369 | Barry | Nov 2008 | B2 |
7465304 | Haufe et al. | Dec 2008 | B1 |
7476226 | Weikel et al. | Jan 2009 | B2 |
7476251 | Zucherman et al. | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7491205 | Michelson | Feb 2009 | B1 |
7491240 | Carver et al. | Feb 2009 | B1 |
7500992 | Li | Mar 2009 | B2 |
7517358 | Peterson | Apr 2009 | B2 |
7524333 | Lambrecht et al. | Apr 2009 | B2 |
7569054 | Michelson | Aug 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7580743 | Bourlion et al. | Aug 2009 | B2 |
7591851 | Winslow et al. | Sep 2009 | B2 |
7601170 | Winslow et al. | Oct 2009 | B2 |
7608077 | Cragg et al. | Oct 2009 | B2 |
7608107 | Michelson | Oct 2009 | B2 |
7615079 | Flickinger et al. | Nov 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7632291 | Stephens et al. | Dec 2009 | B2 |
7641664 | Pagano | Jan 2010 | B2 |
7645232 | Shluzas | Jan 2010 | B2 |
7648509 | Stark | Jan 2010 | B2 |
7648523 | Mirkovic et al. | Jan 2010 | B2 |
7655027 | Michelson | Feb 2010 | B2 |
7655043 | Peterman et al. | Feb 2010 | B2 |
7662173 | Cragg et al. | Feb 2010 | B2 |
D611147 | Hanson et al. | Mar 2010 | S |
7682378 | Truckai et al. | Mar 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7686807 | Padget et al. | Mar 2010 | B2 |
7699878 | Pavlov et al. | Apr 2010 | B2 |
D615653 | Horton | May 2010 | S |
7708761 | Petersen | May 2010 | B2 |
7722619 | Michelson | May 2010 | B2 |
D619719 | Pannu | Jul 2010 | S |
7763024 | Bertagnoli et al. | Jul 2010 | B2 |
7763050 | Winslow et al. | Jul 2010 | B2 |
7776090 | Winslow et al. | Aug 2010 | B2 |
D623748 | Horton et al. | Sep 2010 | S |
D623749 | Horton et al. | Sep 2010 | S |
7789898 | Peterman | Sep 2010 | B2 |
D627468 | Richter et al. | Nov 2010 | S |
7824431 | McCormack | Nov 2010 | B2 |
7837713 | Peterson | Nov 2010 | B2 |
7846183 | Blain | Dec 2010 | B2 |
7846184 | Sasso et al. | Dec 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7862589 | Thramann | Jan 2011 | B2 |
7867277 | Tohmeh | Jan 2011 | B1 |
D631967 | Horton | Feb 2011 | S |
7879098 | Simmons, Jr. | Feb 2011 | B1 |
7887565 | Michelson | Feb 2011 | B2 |
7892261 | Bonutti | Feb 2011 | B2 |
7892286 | Michelson | Feb 2011 | B2 |
7896803 | Schara et al. | Mar 2011 | B2 |
7896903 | Link | Mar 2011 | B2 |
7901439 | Horton | Mar 2011 | B2 |
7914530 | Michelson | Mar 2011 | B2 |
7918891 | Curran et al. | Apr 2011 | B1 |
7922729 | Michelson | Apr 2011 | B2 |
7922766 | Grob et al. | Apr 2011 | B2 |
7935136 | Alamin et al. | May 2011 | B2 |
7938857 | Krueger et al. | May 2011 | B2 |
7942903 | Moskowitz et al. | May 2011 | B2 |
7988712 | Hale et al. | Aug 2011 | B2 |
7988714 | Puekert et al. | Aug 2011 | B2 |
7998174 | Malandain et al. | Aug 2011 | B2 |
8007534 | Michelson | Aug 2011 | B2 |
8029540 | Winslow et al. | Oct 2011 | B2 |
8043334 | Fisher et al. | Oct 2011 | B2 |
8052728 | Hestad | Nov 2011 | B2 |
8062303 | Berry et al. | Nov 2011 | B2 |
8066705 | Michelson | Nov 2011 | B2 |
D650481 | Gottlieb et al. | Dec 2011 | S |
8097034 | Michelson | Jan 2012 | B2 |
8100944 | Lauryssen et al. | Jan 2012 | B2 |
D653757 | Binder | Feb 2012 | S |
8114158 | Carl et al. | Feb 2012 | B2 |
8118838 | Winslow et al. | Feb 2012 | B2 |
8128660 | Mitchel et al. | Mar 2012 | B2 |
8133261 | Fisher et al. | Mar 2012 | B2 |
8142503 | Malone | Mar 2012 | B2 |
8147553 | Vresilovic et al. | Apr 2012 | B2 |
8162981 | Vestgaarden | Apr 2012 | B2 |
8172877 | Winslow et al. | May 2012 | B2 |
8177872 | Nelson et al. | May 2012 | B2 |
8197513 | Fisher et al. | Jun 2012 | B2 |
8206418 | Triplett et al. | Jun 2012 | B2 |
8267966 | McCormack et al. | Sep 2012 | B2 |
D674900 | Janice et al. | Jan 2013 | S |
8348979 | McCormack | Jan 2013 | B2 |
8361152 | McCormack et al. | Jan 2013 | B2 |
8366748 | Kleiner | Feb 2013 | B2 |
D677791 | Danacioglu et al. | Mar 2013 | S |
8394107 | Fanger et al. | Mar 2013 | B2 |
8394129 | Morgenstern et al. | Mar 2013 | B2 |
D681205 | Farris et al. | Apr 2013 | S |
8425558 | McCormack et al. | Apr 2013 | B2 |
8512347 | McCormack et al. | Aug 2013 | B2 |
8523908 | Malone | Sep 2013 | B2 |
8529609 | Helgerson et al. | Sep 2013 | B2 |
8623054 | McCormack et al. | Jan 2014 | B2 |
8668722 | Pavlov et al. | Mar 2014 | B2 |
8753345 | Mccormack et al. | Jun 2014 | B2 |
8753347 | McCormack et al. | Jun 2014 | B2 |
8764755 | Michelson | Jul 2014 | B2 |
8828062 | McCormack et al. | Sep 2014 | B2 |
8834530 | McCormack | Sep 2014 | B2 |
8845727 | Gottlieb et al. | Sep 2014 | B2 |
8870882 | Kleiner | Oct 2014 | B2 |
D723690 | McCormack et al. | Mar 2015 | S |
D723691 | McCormack et al. | Mar 2015 | S |
8998905 | Marik et al. | Apr 2015 | B2 |
9005288 | Mccormack et al. | Apr 2015 | B2 |
9011492 | McCormack et al. | Apr 2015 | B2 |
D732667 | McCormack et al. | Jun 2015 | S |
9186193 | Kleiner et al. | Nov 2015 | B2 |
D745156 | McCormack et al. | Dec 2015 | S |
9211198 | Michelson | Dec 2015 | B2 |
9220608 | McKay | Dec 2015 | B2 |
D750249 | Grimberg, Jr. et al. | Feb 2016 | S |
9271765 | Blain | Mar 2016 | B2 |
9333086 | McCormack et al. | May 2016 | B2 |
9358127 | Duffield et al. | Jun 2016 | B2 |
9381049 | McCormack et al. | Jul 2016 | B2 |
9427264 | Kleiner et al. | Aug 2016 | B2 |
9504583 | Blain | Nov 2016 | B2 |
9622791 | Mccormack et al. | Apr 2017 | B2 |
9622873 | Mccormack | Apr 2017 | B2 |
9622874 | Mccormack et al. | Apr 2017 | B2 |
9629665 | Mccormack et al. | Apr 2017 | B2 |
9717403 | Kleiner et al. | Aug 2017 | B2 |
10039649 | Mccormack et al. | Aug 2018 | B2 |
10111670 | Lorenzo et al. | Oct 2018 | B2 |
10149673 | Mccormack et al. | Dec 2018 | B2 |
10172721 | Mccormack et al. | Jan 2019 | B2 |
D841165 | Mccormack et al. | Feb 2019 | S |
10201375 | Mccormack et al. | Feb 2019 | B2 |
10219910 | Mccormack | Mar 2019 | B2 |
10226285 | Mccormack et al. | Mar 2019 | B2 |
10238501 | Mccormack et al. | Mar 2019 | B2 |
10456175 | McCormack et al. | Oct 2019 | B2 |
20010004710 | Felt et al. | Jun 2001 | A1 |
20010047208 | Michelson | Nov 2001 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020068941 | Hanson et al. | Jun 2002 | A1 |
20020107519 | Dixon et al. | Aug 2002 | A1 |
20020143343 | Castro | Oct 2002 | A1 |
20020147496 | Belef et al. | Oct 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020165612 | Gerber et al. | Nov 2002 | A1 |
20020169471 | Ferdinand | Nov 2002 | A1 |
20030023312 | Thalgott | Jan 2003 | A1 |
20030028251 | Mathews | Feb 2003 | A1 |
20030032962 | McGahan et al. | Feb 2003 | A1 |
20030033017 | Lotz et al. | Feb 2003 | A1 |
20030105526 | Bryant et al. | Jun 2003 | A1 |
20030109928 | Pasquet et al. | Jun 2003 | A1 |
20030139816 | Michelson | Jul 2003 | A1 |
20030144737 | Sherman | Jul 2003 | A1 |
20030158553 | Michelson | Aug 2003 | A1 |
20030225416 | Bonvallet et al. | Dec 2003 | A1 |
20040059337 | Hanson et al. | Mar 2004 | A1 |
20040073217 | Michelson | Apr 2004 | A1 |
20040087948 | Suddaby | May 2004 | A1 |
20040087956 | Weikel et al. | May 2004 | A1 |
20040106999 | Mathews | Jun 2004 | A1 |
20040133277 | Michelson | Jul 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040162562 | Martz | Aug 2004 | A1 |
20040215344 | Hochshculer et al. | Oct 2004 | A1 |
20050010294 | Michelson | Jan 2005 | A1 |
20050015149 | Michelson | Jan 2005 | A1 |
20050027358 | Suddaby | Feb 2005 | A1 |
20050033432 | Gordon et al. | Feb 2005 | A1 |
20050049705 | Hale et al. | Mar 2005 | A1 |
20050055096 | Serhan et al. | Mar 2005 | A1 |
20050065518 | Michelson | Mar 2005 | A1 |
20050065519 | Michelson | Mar 2005 | A1 |
20050065608 | Michelson | Mar 2005 | A1 |
20050065609 | Wardlaw | Mar 2005 | A1 |
20050080422 | Otte et al. | Apr 2005 | A1 |
20050090829 | Martz et al. | Apr 2005 | A1 |
20050090901 | Studer | Apr 2005 | A1 |
20050119680 | Dykes | Jun 2005 | A1 |
20050124993 | Chappuis | Jun 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050159650 | Raymond et al. | Jul 2005 | A1 |
20050159746 | Grob et al. | Jul 2005 | A1 |
20050177240 | Blain | Aug 2005 | A1 |
20050182417 | Pagano | Aug 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050234455 | Binder | Oct 2005 | A1 |
20050240188 | Chow et al. | Oct 2005 | A1 |
20050251146 | Martz et al. | Nov 2005 | A1 |
20050251257 | Mitchell et al. | Nov 2005 | A1 |
20050267480 | Suddaby | Dec 2005 | A1 |
20060004367 | Alamin et al. | Jan 2006 | A1 |
20060015184 | Winterbottom et al. | Jan 2006 | A1 |
20060036243 | Sasso et al. | Feb 2006 | A1 |
20060036247 | Michelson | Feb 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060041311 | McLeer | Feb 2006 | A1 |
20060058793 | Michelson | Mar 2006 | A1 |
20060058878 | Michelson | Mar 2006 | A1 |
20060069442 | Michelson | Mar 2006 | A1 |
20060079905 | Beyar et al. | Apr 2006 | A1 |
20060079962 | Michelson | Apr 2006 | A1 |
20060085068 | Barry | Apr 2006 | A1 |
20060085074 | Raiszadeh | Apr 2006 | A1 |
20060095028 | Bleich | May 2006 | A1 |
20060095036 | Hammerslag | May 2006 | A1 |
20060111779 | Peterson | May 2006 | A1 |
20060111780 | Petersen | May 2006 | A1 |
20060111781 | Petersen | May 2006 | A1 |
20060142762 | Michelson | Jun 2006 | A1 |
20060149289 | Winslow et al. | Jul 2006 | A1 |
20060184172 | Michelson | Aug 2006 | A1 |
20060189991 | Bickley | Aug 2006 | A1 |
20060190081 | Kraus et al. | Aug 2006 | A1 |
20060195109 | McGahan et al. | Aug 2006 | A1 |
20060200137 | Soboleski et al. | Sep 2006 | A1 |
20060200138 | Michelson | Sep 2006 | A1 |
20060200139 | Michelson | Sep 2006 | A1 |
20060206118 | Kim et al. | Sep 2006 | A1 |
20060217812 | Lambrecht et al. | Sep 2006 | A1 |
20060235391 | Sutterlin, III | Oct 2006 | A1 |
20060241597 | Mitchell et al. | Oct 2006 | A1 |
20060241626 | McGahan et al. | Oct 2006 | A1 |
20060241758 | Peterman et al. | Oct 2006 | A1 |
20060247632 | Winslow et al. | Nov 2006 | A1 |
20060247633 | Winslow et al. | Nov 2006 | A1 |
20060247650 | Yerby et al. | Nov 2006 | A1 |
20060259142 | Dooris et al. | Nov 2006 | A1 |
20060271195 | Thramann | Nov 2006 | A1 |
20060276790 | Dawson et al. | Dec 2006 | A1 |
20060276801 | Yerby et al. | Dec 2006 | A1 |
20060276897 | Winslow et al. | Dec 2006 | A1 |
20060293663 | Walkenhorst et al. | Dec 2006 | A1 |
20070016195 | Winslow et al. | Jan 2007 | A1 |
20070016196 | Winslow et al. | Jan 2007 | A1 |
20070016218 | Winslow et al. | Jan 2007 | A1 |
20070032871 | Michelson | Feb 2007 | A1 |
20070043362 | Malandain et al. | Feb 2007 | A1 |
20070050031 | Khosrowshahi | Mar 2007 | A1 |
20070055245 | Sasso et al. | Mar 2007 | A1 |
20070055263 | Way et al. | Mar 2007 | A1 |
20070073402 | Vresilovic et al. | Mar 2007 | A1 |
20070083265 | Malone | Apr 2007 | A1 |
20070123863 | Winslow et al. | May 2007 | A1 |
20070123888 | Bleich et al. | May 2007 | A1 |
20070135814 | Farris | Jun 2007 | A1 |
20070135921 | Park | Jun 2007 | A1 |
20070149976 | Hale et al. | Jun 2007 | A1 |
20070149983 | Link | Jun 2007 | A1 |
20070150061 | Trieu | Jun 2007 | A1 |
20070161991 | Altarac et al. | Jul 2007 | A1 |
20070179617 | Brown et al. | Aug 2007 | A1 |
20070179619 | Grob et al. | Aug 2007 | A1 |
20070225721 | Thelen et al. | Sep 2007 | A1 |
20070225812 | Gill | Sep 2007 | A1 |
20070244483 | Winslow et al. | Oct 2007 | A9 |
20070250167 | Bray | Oct 2007 | A1 |
20070276491 | Ahrens | Nov 2007 | A1 |
20070282441 | Stream et al. | Dec 2007 | A1 |
20070288014 | Shadduck et al. | Dec 2007 | A1 |
20070299451 | Tulkis | Dec 2007 | A1 |
20080015581 | Eckman | Jan 2008 | A1 |
20080021457 | Anderson et al. | Jan 2008 | A1 |
20080021464 | Morin et al. | Jan 2008 | A1 |
20080058954 | Trieu | Mar 2008 | A1 |
20080065219 | Dye | Mar 2008 | A1 |
20080097436 | Culbert et al. | Apr 2008 | A1 |
20080108996 | Padget et al. | May 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080154377 | Voellmicke | Jun 2008 | A1 |
20080161810 | Melkent | Jul 2008 | A1 |
20080161929 | McCormack et al. | Jul 2008 | A1 |
20080167657 | Greenhaigh | Jul 2008 | A1 |
20080177311 | Winslow et al. | Jul 2008 | A1 |
20080216846 | Levin | Sep 2008 | A1 |
20080234677 | Dahners et al. | Sep 2008 | A1 |
20080234758 | Fisher et al. | Sep 2008 | A1 |
20080249571 | Sasso et al. | Oct 2008 | A1 |
20080255564 | Michelson | Oct 2008 | A1 |
20080255618 | Fisher et al. | Oct 2008 | A1 |
20080255622 | Mickiewicz et al. | Oct 2008 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
20080255667 | Horton | Oct 2008 | A1 |
20080287955 | Michelson | Nov 2008 | A1 |
20080306537 | Culbert | Dec 2008 | A1 |
20080312744 | Vresilovic et al. | Dec 2008 | A1 |
20090131986 | Lee et al. | May 2009 | A1 |
20090138053 | Assell et al. | May 2009 | A1 |
20090177215 | Stack et al. | Jul 2009 | A1 |
20090177237 | Zucherman et al. | Jul 2009 | A1 |
20090234397 | Petersen | Sep 2009 | A1 |
20090248076 | Reynolds et al. | Oct 2009 | A1 |
20090263461 | McKay | Oct 2009 | A1 |
20090270929 | Suddaby et al. | Oct 2009 | A1 |
20090275994 | Phan et al. | Nov 2009 | A1 |
20100086185 | Weiss | Apr 2010 | A1 |
20100093829 | Gorman | Apr 2010 | A1 |
20100111829 | Drapeau et al. | May 2010 | A1 |
20100114318 | Gittings et al. | May 2010 | A1 |
20100145391 | Kleiner | Jun 2010 | A1 |
20100145459 | Mcdonough et al. | Jun 2010 | A1 |
20100211104 | Moumene et al. | Aug 2010 | A1 |
20110004247 | Lechmann et al. | Jan 2011 | A1 |
20110022089 | Assell et al. | Jan 2011 | A1 |
20110054613 | Hansen | Mar 2011 | A1 |
20110077686 | Mishra et al. | Mar 2011 | A1 |
20110082548 | Assell et al. | Apr 2011 | A1 |
20110144755 | Baynham et al. | Jun 2011 | A1 |
20110184470 | Gorek et al. | Jul 2011 | A1 |
20110190821 | Chin et al. | Aug 2011 | A1 |
20110245930 | Alley et al. | Oct 2011 | A1 |
20110295327 | Moskowitz et al. | Dec 2011 | A1 |
20110307061 | Assell et al. | Dec 2011 | A1 |
20120010659 | Angert et al. | Jan 2012 | A1 |
20120010662 | O'Neil et al. | Jan 2012 | A1 |
20120010669 | O'Neil et al. | Jan 2012 | A1 |
20120065613 | Pepper et al. | Mar 2012 | A1 |
20120130496 | Duffield et al. | May 2012 | A1 |
20120143334 | Boyce et al. | Jun 2012 | A1 |
20120215259 | Cannestra | Aug 2012 | A1 |
20120265250 | Ali | Oct 2012 | A1 |
20120283776 | Mishra | Nov 2012 | A1 |
20120323242 | Tsuang et al. | Dec 2012 | A1 |
20130013070 | McCormack et al. | Jan 2013 | A1 |
20130023889 | Blain | Jan 2013 | A1 |
20130110168 | McCormack et al. | May 2013 | A1 |
20130110243 | Patterson et al. | May 2013 | A1 |
20130123922 | McCormack et al. | May 2013 | A1 |
20130144389 | Bonutti | Jun 2013 | A1 |
20130226239 | Altarac et al. | Aug 2013 | A1 |
20130253649 | Davis | Sep 2013 | A1 |
20130274763 | Drapeau et al. | Oct 2013 | A1 |
20130310839 | McCormack et al. | Nov 2013 | A1 |
20130310943 | McCormack et al. | Nov 2013 | A1 |
20130317548 | Malone | Nov 2013 | A1 |
20130338720 | Kleiner | Dec 2013 | A1 |
20140012318 | Goel | Jan 2014 | A1 |
20140275801 | Menchaca et al. | Sep 2014 | A1 |
20140296916 | Mccormack et al. | Oct 2014 | A1 |
20150100129 | Waugh et al. | Apr 2015 | A1 |
20150201977 | Mccormack et al. | Jul 2015 | A1 |
20150342648 | Mccormack et al. | Dec 2015 | A1 |
20150342649 | Mccormack et al. | Dec 2015 | A1 |
20160008040 | Mccormack et al. | Jan 2016 | A1 |
20160242754 | Mccormack et al. | Aug 2016 | A1 |
20160250035 | De Villiers et al. | Sep 2016 | A1 |
20170027713 | Kleiner | Feb 2017 | A1 |
20170189199 | Maier et al. | Jul 2017 | A1 |
20170348027 | Mccormack et al. | Dec 2017 | A1 |
20170354444 | Mccormack et al. | Dec 2017 | A1 |
20180161077 | Mccormack et al. | Jun 2018 | A1 |
20180303631 | Phan et al. | Oct 2018 | A1 |
20190209151 | Mccormack et al. | Jul 2019 | A1 |
20190209227 | Tanaka et al. | Jul 2019 | A1 |
20190239932 | Mccormack et al. | Aug 2019 | A1 |
20190240041 | Mccormack et al. | Aug 2019 | A1 |
20190247099 | McCormack et al. | Aug 2019 | A1 |
20190247614 | Hart et al. | Aug 2019 | A1 |
20190307571 | Mccormack | Oct 2019 | A1 |
20190307572 | Mccormack et al. | Oct 2019 | A1 |
20190350626 | Mccormack et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
G9304368.6 | May 2003 | DE |
2272436 | Jan 2011 | EP |
2722980 | Feb 1996 | FR |
9829026 | Jul 1998 | WO |
9949818 | Oct 1999 | WO |
0035388 | Jun 2000 | WO |
0053126 | Sep 2000 | WO |
0101895 | Jan 2001 | WO |
0234120 | May 2002 | WO |
2002038062 | May 2002 | WO |
02076335 | Oct 2002 | WO |
02076335 | Oct 2002 | WO |
2006058221 | Jun 2006 | WO |
2006130791 | Dec 2006 | WO |
2007120903 | Oct 2007 | WO |
2008083349 | Jul 2008 | WO |
2008127978 | Oct 2008 | WO |
2008153732 | Dec 2008 | WO |
2009089367 | Jul 2009 | WO |
2009148619 | Dec 2009 | WO |
2010030994 | Mar 2010 | WO |
2010074714 | Jul 2010 | WO |
2010107692 | Sep 2010 | WO |
2011050140 | Apr 2011 | WO |
2013043584 | Mar 2013 | WO |
2014188280 | Nov 2014 | WO |
2016049784 | Apr 2016 | WO |
Entry |
---|
US 7,063,700 B2, 06/2006, Michelson (withdrawn) |
Atul Goel, Facetal distraction as treatment for single- and multilevel cervical spondylotic radiculopathy and myelopathy: a preliminary report, J Neurosurg Spine, Jun. 2011, pp. 689-696. |
Press Release, Interventional Spine, Inc., Interventional Spine, Inc. Introduces the PERPOS Fusion Facet Prep Kit, Oct. 14, 2008, 1 Page. |
Press Release, minSURG Corp., Orthopedic Development Corporation's TruFUSE Procedure Tops 1,750 Patients in First Year, Sep. 24, 2007, 1 Page. |
Extended European Search Report dated Jun. 26, 2019 in connection with European Patent Application No. 16856210.6, 9 pages. |
Press Release, Interventional Spine, Inc., FDA Grants Conditional Approval to Interventional Spine's PercuDyn System IDE Application, Jul. 1, 2008, 1 Page. |
Stein, et al., “Percutaneous Facet Joint Fusion: Preliminary Experience,” Journal of Vascular and Interventional Radiology, Jan.-Feb. 1993, pp. 69-74, vol. 4, No. 1. |
Number | Date | Country | |
---|---|---|---|
20180303631 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62351795 | Jun 2016 | US | |
62240754 | Oct 2015 | US |