The disclosure relates generally to orthopedic devices, and more specifically to a spinal orthosis.
A spinal orthosis or lumbar support is an orthopedic device designed for pain relief, protecting injured ligaments or muscles and post-surgical immobilization. A spinal orthosis is arranged to relieve pressure over the spinous processes while applying an even pressure to the paraspinal musculature to ensure comfortable and effective healing. Typical indications for spinal orthoses include spinal stenosis, herniated discs, post-surgical stabilization, stable and non-displaced spinal fractures, spondylolithesis, spondylolysis, and degenerative spinal pathologies.
In a known spinal orthosis in
A flexible or semi-rigid back plate 22 extends over at least part of the compression system 16, and is arranged to be adjacent the back of the user. The back plate 22 includes a posterior attachment system 24 for a rigid posterior panel 26, including a single hook and loop system connected at a single attachment point or flap 25 centered on the back plate 22. An anterior panel may be attached to the spinal orthosis at an anterior attachment system on one of the belts.
A requirement in a spinal orthosis is that they immobilize, at least in part, the torso, and stabilize the back. A factor in achieving this requirement is that the spinal orthosis is properly sized according to the anatomy of the user, and allows the user to effectively position and fasten the spinal orthosis.
It is desired to provide only a few spinal orthosis sizes. There is a need for a spinal orthosis that permits resizing of belt lengths to offer a “one-size-fits-all” spinal orthosis, including means, if necessary, to facilitate resizing of the spinal orthosis as a user undergoes size changes during rehabilitation.
According to the embodiments described herein, a spinal orthosis is arranged for creating circumferential compression for a user, particularly in the lumbar region of the spine. The spinal orthosis enables saggital and/or coronal control, while offering a superiorly comfortable spinal orthosis. Indications for the spinal orthosis may include spinal stenosis, herniated disc, and degenerative spinal pathologies. The spinal orthosis may be combined with rigid panels for post-surgical stabilization; stable, non-displaced spinal fractures; spondylolisthesis; spondylolysis; spinal stenosis; herniated disc; and degenerative spinal pathologies.
Various embodiments are arranged with significant improvement over known spinal orthoses in donning and fitting processes. The donning and fitting processes may be made without measurements, and catered to anatomy and changing anatomy of a given user. The donning and fitting is arranged so it can be done on the actual user and thereby particularly customized for optimal fit and performance. No trimming is required for donning and fitting to a user, and no complicated fasteners or buckles are required for donning and fitting to a user. The length of the belt members can be increased, such as with belt extenders, or reduced, by folding, from an initial length, and such initial length can always be preserved for further adjustment of an actual length (such as including belt extenders or being folded and attached) of the belt member in the context of wearing the belt members.
The embodiments are arranged with flexible and breathable materials having improved performance over known spinal orthosis, including ventilation features offering optimal breathability in strategic locations. The spinal orthosis is arranged to accommodate many sizes by having means for expanding belt member lengths. The embodiments possess streamlined features which reduce weight, size and bulk over known spinal orthoses.
According to an embodiment of a spinal orthosis, the spinal orthosis includes a rear panel having first and second sides, and first and second belt members securing to the rear panel. The first belt member defines a first end secured to a first side of the rear panel and a second end having a foldable portion adapted to fold over a first surface of the first belt member and secure to the first surface to reduce a length of the first belt member. The second belt member has a first end secured to a second side of the rear panel and a second end having a foldable portion adapted to fold over a first surface of the second belt member and secure to the first surface to reduce a length of the second belt member. First and second front closures are securable to the second ends of the first and second belt members, respectively, and arranged for removably securing to one another to form a continuously circumferential loop with the rear panel and the first and second belt members.
The first front closure may include a locking element defined on a first side and arranged to engage a corresponding slot defined on a first side by the second front closure for securing the first and second belt members to one another. The first front closure defines a pocket along a first side, and configured and dimensioned for inserting at least a finger thereinto for locating a second side of the first front closure relative to the second end of the second belt member. The front closures may define first and second clamping sections arranged to removably secure to opposed sides of the foldable portions of the belt members.
The second ends of the first and second belt members may each include fasteners extending from an outer side of the spinal orthosis for securing to a surface of the first and second belt members on the outer side of the spinal orthosis. For example, an entirety or substantial entirety (such as areas with the exception of the fasteners or ventilation features) of the belt members may be formed from hook receivable material. At least one surface of the belt members, such as either an outer surface or an inner surface opposite the outer surface and intended to be adjacent and face the body of the user, may define hook receivable material. The fasteners may be hook material that can engage along the length between the fasteners and the rear panel of the belt members themselves to allow for significant sizing of the belt members beyond predetermined settings of a small group of selections, as in the prior art.
The belt members are preferably of low profile in height and thickness. For example, the first and second belt members have a thickness in the range of 1 to 5 mm, and more preferably in the range of 1.5 to 2.5 mm. The belt members may be devoid of padding or spacer material, as in the prior art, and rather rely on both surfaces being formed by hook-receivable material with a substantially thin thickness, identified as being within the range noted above. The belt members may include ventilation features defined by the belt members themselves, such that the belt members are continuously constructed from the same material between the first and second ends. The ventilation features may include perforations of a defined shape and size, and may include a region thereabout having a reduced thickness from the remainder of the thickness of the belt members. The belt members may include reduced thickness regions without the perforations, to facilitate bending of the belt members and contribute to overall comfort and compliance of the belt members to the user.
The rear panel preferably includes a closure system having at least one tensioning element with a handle. The at least one tensioning element extends from the closure system and the handle is removably securable to a first surface of the first front closure. A rigid posterior plate having a connector may removably secure to an inner side of the rear panel to relieve pressure over spinous processes while applying an even pressure to paraspinal musculature to ensure comfortable and effective healing. Similarly, a rigid anterior plate may be secured to the inner side of the belt members at the anterior side of the spinal orthosis. These rigid plates may be added or removed depending on the motion restriction and compression desired during a rehabilitation period.
In an embodiment, the rear panel includes a stretchable cover extending from the first and second sides. The cover is arranged for stretching or retracting over a variable distance according to adjustment of the closure system. The first and second belt members may be formed from a substantially non-stretchable material such that pulling the second ends of the first and second belt members causes the variable distance to increase, and releasing the second ends causes the cover to retract to a predetermined distance.
The rear panel includes a closure system and a first end of an elongate tensioning element engages the closure system, and a handle secures to a second end of the tensioning element. The first belt member forms a channel including a first opening proximate the closure system and a second opening. The channel is formed between first and second surfaces of the first belt member such that the tensioning element enters the channel at the first opening and exits by the second opening such that the second end of the tensioning element extends beyond the second opening.
The spinal orthosis may be provided as a kit including a rear panel having first and second sides, a first belt member having a first end secured to a first side of the rear panel and a resizable second end, and a second belt member having a first end secured to a second side of the rear panel and a resizable second end. A sizing device has first and second positioning elements for establishing a clearance defined by a predetermined distance between the second ends of the first and second belt members. The predetermined distance allows for same front closures to be used generally regardless of the length of a user's waist, such that the front closures do not require any trimming.
In an embodiment, the first and second positioning elements are first and second rods spaced apart by a cord having a length extending the predetermined distance between the first and second rods. In another embodiment, the sizing device is a board having a main portion and the first and second positioning elements extend from the main portion. The first and second positioning elements are spaced apart by a center section with a width forming the predetermined distance. First and second grooves are formed by the board and separate the first and second positioning elements, respectively, from the center section. The kit may include first and second belt expanders arranged for securing to the second end of the first and second belt members. The first and second belt expanders have first and second ends each bearing fasteners for securing to the first and second belt members.
A method for resizing a spinal orthosis comprises the steps of using a sizing device having first and second positioning elements for establishing a predetermined distance between the second ends of the first and second belt members. The method includes extending a portion of the second end of the first belt member over the first positioning element to determine a resized length of the first belt member between the rear panel and the first positioning element. The second end of the first belt member is secured over a peripheral surface of the first belt member to retain the resized length of the first belt member and form a foldable portion of the first belt member. The sizing device is removed after the resized length is established. A first front closure is secured to the foldable portion of the first belt member. A portion of the second end of the second belt member is extended over the second positioning element to determine a resized length of the second belt member between the rear panel and the second positioning element.
These and other features, aspects, and advantages of the present disclosure will become better understood regarding the following description, appended claims, and accompanying drawings.
The drawing figures are not drawn to scale, but instead are drawn to provide a better understanding of the components, and are not intended to be limiting in scope, but to provide exemplary illustrations.
A better understanding of different embodiments of the disclosure may be had from the following description read with the accompanying drawings in which like reference characters refer to like elements.
While the disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments are in the drawings and described below. It should be understood, however, there is no intention to limit the disclosure to the specific embodiments disclosed, but on the contrary, the disclosure covers all modifications, alternative constructions, combinations, and equivalents falling within the spirit and scope of the disclosure.
It will be understood that, unless a term is expressly defined in this disclosure to possess a described meaning, there is no intent to limit the meaning of such term, either expressly or indirectly, beyond its plain or ordinary meaning.
The spinal orthosis 50 may include a compression or closure system (not shown) proximate the posterior panel as taught in U.S. Pat. No. 8,172,779 or U.S. patent application publication 2014/0207041, published on Jul. 24, 2014 and incorporated by reference. The spinal orthosis may be provided without the posterior panel, and only a compression system at the posterior side such that the spinal orthosis forms a continuous circumference with the compression system, the first and second belt members, and the anterior panel, as generally shown in
The anterior panel 58 may be flexible, and can be either stretchable or non-stretchable. In the depicted embodiment, the anterior panel 58 is preferably non-stretchable so the first and second belt members 54, 56 may be tensioned over the first and second rings 60, 62, as they are folded over the first and second rings 60, 62 and secured to the outer surface 78 of the belt members.
As depicted in
According to the depicted embodiment, the outer surface of the belt members includes hook receivable or loop material, and the end portions of the belt members include hook material engageable with the material of the outer surface of the belt members. In this variation, the excess lengths of the belt members extending from the rings do not pile up to create pressure points along the circumference of the spinal orthosis directly adjacent the user.
The spinal orthosis is not limited to securing the end portions 68, 70 of the first and second belt members 54, 56, and may be secured along an inner surface of the belt members in a reverse manner to the aforementioned method. The inner surface of the belt members may include hook receivable material, and the end portions are rearranged accordingly with hook material. In this variation, the end portions are located on the inner side of the spinal orthosis and reduce the possibility of leaving excess length of the belt members on the exterior of the spinal orthosis.
While the surface 226 in
The first and second belt members 114, 116 may be removably secured to the rear panel 112 by first and second flaps 148, 150 extending from the first side of rear panel 112, or securable to the first and second belt members 114, 116 and the first and second sides of the rear panel 112. Alternatively, the first ends of the first and second belt members 114, 116 may be permanently secured to the first and second sides of the rear panel 112, such as by stitching or other appropriate means.
First and second patches 134, 136 may secure to the foldable portions 122, 124 of the first and second belt members 114, 116 and a surface 226 of the first and second belt members 114, 116 to maintain an adjusted length of the first and second belt members 114, 116 obtained by selectively arranging the length of the foldable portions 122, 124. Other methods and structures may be used rather than the patches, such as snaps or other locking elements selectively located along at least portions of the length of the belt members. The patches, however, omit the need for preselecting and limiting the amount of possible lengths as the length of the belt members is made substantially adjustable and is not limited to predetermined size settings.
First and second front closures 126, 128 secure over the foldable portions 122, 124 of the first and second belt members 114, 116. The first and second front closures 126, 128 are arranged to connect to the second ends 123, 125 of the corresponding belt members 114, 116. The front closures 126, 128 form a continuously circumferential loop with the rear panel 112 and the first and second belt members 114, 116 to completely encircle a user's torso and/or other proximate anatomy.
The first front closure 126 includes a locking element 142 defined on a second side and is arranged to engage a corresponding slot 144, 146 defined on a first side by the second front closure 128 for securing the first and second belt members 114, 116 to one another. The slot of the second front closure 128 defines an opening 144 and a keyhole 146 depending at a forward end of the slot proximate the first end of the second front closure 128. When the locking element 142 is inserted into the opening 144, it is directed and slips into the keyhole 146 which is sized and configured closely to the size of the locking element 142 to maintain engagement therewith. The opening 144 is sized greater than the keyhole 146, and on tensioning of the first and second belt members 114, 116 draws the locking element 142 toward the keyhole 146.
The locking element 142 and the slot enables quick and easy locking of the first and second front closures 126, 128, as well as quick and easy removal of the first and second front closures 126, 128 from one another. The locking element 142 and slot likewise require consistent donning and placement of the first and second front closures to one another, and require less strength and force for removal as compared to conventional methods such as using hook and loop systems. While the locking element and slot are preferred, they may be replaced with a hook and loop system with the first front closure including a hook section and the second front closure including a corresponding loop section for engagement with the hook section.
The first and second front closures 126, 128 define first and second pockets 138, 140 along a first side, and are configured and dimensioned for inserting at least a finger thereinto for locating a second side of the first front closure 126 relative to the second end of the second belt member 116.
As shown in
The rear panel 112 includes a compression system (not shown) and a stretchable cover 202 extending from the first and second sides. The cover 202 stretches or retracts over a variable distance D according to adjustment of the compression system. The compression system may be arranged in the same manner as discussed in connection with the spinal orthosis embodiment 50. The first and second belt members 114, 116 are formed from a substantially non-stretchable material such that pulling the second ends of the first and second belt members 114, 116 causes the variable distance D to increase, and releasing the second ends 123, 125 causes the cover 202 to retract to a predetermined distance D.
First ends of elongate first and second tensioning elements 118, 120 engage the compression system, and first and second handles 130, 132 secure to second ends of the tensioning elements 118, 120. As shown in
As shown in
The first and second belt arms 115, 117 preferably have a first contour 266 tapering from first ends 241, 244 from the rear panel 113 and becoming linear in a second contour 267 toward the second ends 242, 245. The first contour 266 enables greater coverage over the posterior body part (i.e., back) of the user which undergoes compression by the spinal orthosis. As discussed in connection with
Referring to
The rear panel 113 variably extends the distance between the compression system covers 232, 234, as noted above in connection with the embodiment of
The belt members and the compression system covers are preferably constructed from a sheet or laminated sheets of loop material. Unlike in many prior art spinal orthoses, the belt members of the spinal orthosis in
Referring to
Each of the sets of perforations may define a plurality of perforations 250 preferably formed through the thickness of the belt members, and are distinguishable from porosity, weave, and structure of the belt members in that the perforations have a predetermined shape. The belt members may be embossed or have a reduced thickness area 252 about the sets of perforations. The reduced thickness area 252 is preferably oriented parallel to a height of the belt members, and may extend from one side or both sides relative to the thickness of the belt members. The reduced thickness area 252 is not limited to being arranged parallel to the height, but may be arranged in other desirable directions inclusive of being parallel to the length of the belt members. As depicted, the reduced thickness areas 252 preferably have a length shorter than the respective height of the belt members whereat the reduced thickness areas are located in order to maintain structural integrity of the belt members, although the reduced thickness areas may extend the entirety of the height of the belt members.
The sets of perforations 250 and the reduced thickness areas 252, either alone or in combination, may facilitate bending of the belt members and offer areas of enhanced breathability without substantially hindering the structural integrity of the belt members. As the belt members are substantially thin, they may have a thickness of 1 to 5 mm, and more preferably a thickness of 1.5 to 3.0 mm. The thickness at the reduced thickness areas may have a thickness of 0.5 to 1.5 mm.
The first and second panels 259, 261 are considered “single” in that they include pulleys 263 for both the first and second tensioning members 118, 120, whereby some pulleys are individually dedicated for the first and second tensioning members. For example, the first tensioning member 118 is anchored to anchor 267 on the first panel 259, and extends through a first pulley on the second panel, is routed to a first pulley on the first panel, and back to a second pulley on the second panel, and finally then routed to the guide 267 on the first panel before extends from the exit hole 246 defined by the rear panel 113. The second tensioning member 120 is similarly routed between the first and second pulley sets as the first tensioning member 118, but is arranged about different pulleys located below the entirety of the pulleys about which the first tensioning member extends.
From the foregoing, it follows that adjustment of either of the first and second tensioning members 118, 120 will adjust the first and second panels 259, 261 to some degree since all of the pulleys are carried by the first and second panels. The length of the rear panel 113 and therefore the distance between the first and second panels 259, 261 will adjust according adjustment of at least one of the first and second tensioning members 118, 120.
The pulley panels 259, 261 are respectively secured to the first ends 241, 244 of the first and second belt members 115, 117 at an edge reinforcement or interface 256, along with ends of the rear panel 113 and the compression system covers 232, 234, which serve in part to reinforce the substantially thin and elastic material of the rear panel 113. The edge interface 256 may comprise stitching of the aforementioned components together as a unitary interface, or some components may be laminated or welded together or with others stitched to one another.
Referring to
Both first and second sides 281, 283 of the front closure 280 define pockets 290 delimited by a pocket periphery 292. The first side 281 includes a fastener 294, preferably in the form of hook material but may include other know types of fasteners. The second side 283 likewise includes a fastener, preferably in the form of hook material formed by the surface of the front closure 280. The fastener 294 may engage the surface of the second side 283 or the material surface of the belt members.
The second end 242 of the belt member 115 folds over itself at a selected length at a crease 297 with a first belt member segment 115a extending between the rear panel (not shown) to the crease 297 and a second belt member segment 115b extending from the crease 297 to the second end 242. The fastener 243 at the second end 242 secures to the belt member segment 115a. The flaps 296a, 296b secure to the belt member 115 at and over the crease 297 by engaging hook surface of the first belt member 115.
The supplementary panel 164 preferably includes a plate 166 that may be apertured and is arranged to generally conform in geometry to a lower back or lumbar region for a user. The plate 164 preferably defines the at least one slot 170. The plate 166 may be substantially rigid or semi-rigid, or alternatively flexible but upon compression against a body part of a user rendered rigid.
The supplementary panel 164 includes a cover 168 which substantially or fully encases the plate 166. In the embodiment of
The panels may be used as needed to achieve correct fit and positioning. The rigid posterior panel should be centered on the spine with the bottom of the posterior panel at approximately the sacroiliac joint. The rigid lateral panels should be placed on landing zones on the belt arms, which may be formed by the embossed or reduced thickness regions. The anterior panel should be centered on the abdomen with the bottom edge just above the symphysis pubis while still allowing the patient to sit comfortably.
The panels can be modified as necessary to optimize patient fit and comfort by removing them from their respective sleeves and adjust the panels with a heat gun and/or a trimming device. The spinal orthosis is a modular system and can be customized to the needs of the user. The panels can be added or removed depending on motion restriction and compression desired throughout a rehabilitation period. Any of the panels described herein may include any of the features of the plates or panels described in U.S. patent application publication 2014/0081189.
As shown, the second ends of the first and second belt members 114, 116 are inserted and pulled over the first and second positioning elements 176, 178 to determine a resized length of the first and second belt members 114, 116 between the rear panel 112 and the first and second positioning elements 176, 178. The patches are used to secure the first and second foldable portions 184, 186, and pulled and tensioned about the first and second positioning elements 176, 178. The first and second belt members 114, 116 are resized to have a new length between the rear panel and an end of the foldable portions 185, 187.
Of note, the first and second foldable portions 184, 186 bear fastener material, as in the fasteners 243, 247 in the embodiment of
The first and second front closures are secured on the resized first and second belt members, and the distance needed to accommodate the first and second front closures is assured by the length of the cords. An advantage to this kit and method is that the first and second belt members are sized without a need for trimming. The belt members can be resized according to different needs of a user, and any changes to the belt members can be redone, reversed and resized without the use of complicated buckles or fasteners.
Turning to
In the method shown in
Referring to
Referring to
The core 218, 220, and the first, second and third layers 204, 224, 226 are laminated to one another with exception of the third layer 226 to the core 218, 220 to permit opening of the channel 206. The first layer 204 is laminated to the core 218, 220 outside third layer 226. Adhesive layers 222 may be used to secure the various layers to one another through lamination.
The channel is advantageous in that it serves as a retainer of the cable, and reduces the amount of cable exposed to be tangled or snagged on external elements. The channel moves the exit point of the cable forward on the belt members which makes it easier for the user to find and see the cable. Various channels may be provided along the length of the belt members or a single, long channel may be formed.
The solution provided above eliminates a need for stitching, and instead relies on lamination of the layers. The channel is not limited to the solution provided above, and may indeed include channels formed by stitching of the layers of the belt members.
The closure 400 includes on an outer surface O a fastener tab 402 separated from a central portion 406 by a central folding portion 410. The outside surface also includes upper and lower portions 418, 422 spaced apart by the central portion 406 and folding portion 412 located between the upper and lower portions 418, 422 and the central portion 406. The upper and lower portions 418, 422, and the central portion 406 may be formed from a fabric, such as a brushed loop material.
The inside surface I has upper and lower fastener portions 420, 424, a central fastener portion 408, and a fastener tab 404, which are likewise spaced apart by the folding portion 412 and the central folding portion 410. The upper and lower fastener portions 420, 424 and the central fastener portion 408 correspond to the upper and lower portions 418, 422 and the central portion 406 of the outside surface O. The upper and lower fastener portions 420, 424 are adapted to wrap over an edge of the belt member by the folding portion 412 apart from the central portion 408 which secures to an opposite side of the belt member from the upper and lower fastener portions 420, 424. The fastener tab 404 is arranged to secure to a securing portion of one of the closures and corresponding on an opposed side to the fastener tab 402 on an opposite belt member or over the surface of the belt member.
While the foregoing embodiments have been described and shown, alternatives and modifications of these embodiments, such as those suggested by others may be made to fall within the scope of the disclosure. While the spinal orthosis has been described in combination with a spinal orthosis, it will be understood that the principles described may be extended to other types of orthopedic and prosthetic devices.
Number | Name | Date | Kind |
---|---|---|---|
7916 | Knapp | Jan 1851 | A |
61487 | Vollschwitz | Jan 1867 | A |
181948 | Kleinschuster | Sep 1876 | A |
232420 | Smith | Sep 1880 | A |
321145 | Spencer | Jun 1885 | A |
321146 | Spencer | Jun 1885 | A |
328638 | Battershall | Oct 1885 | A |
368699 | Zervas | Aug 1887 | A |
386642 | Mann | Jul 1888 | A |
507172 | Shelden | Oct 1893 | A |
571749 | Colton | Nov 1896 | A |
596849 | Combier | Jan 1898 | A |
601446 | Mestler | Mar 1898 | A |
616196 | Medbury | Dec 1898 | A |
629900 | Fosburgh | Aug 1899 | A |
639072 | Lyons | Dec 1899 | A |
664250 | Fitzpatrick | Dec 1900 | A |
709055 | Sheldon | Sep 1902 | A |
714124 | Adams | Nov 1902 | A |
746563 | Mcmahon | Dec 1903 | A |
772926 | Colton | Oct 1904 | A |
787894 | Colton | Apr 1905 | A |
888490 | Haas | May 1908 | A |
894066 | Scapra | Jul 1908 | A |
980457 | Toles | Jan 1911 | A |
1124596 | Dalpe | Jan 1915 | A |
1316915 | Meyer et al. | Sep 1919 | A |
1393188 | Whiteman | Oct 1921 | A |
1463579 | Funck | Jul 1923 | A |
1469661 | Migita | Oct 1923 | A |
1481903 | Hart | Jan 1924 | A |
1530713 | Clark | Mar 1925 | A |
1558661 | Yeganian | Oct 1925 | A |
1755641 | Foulke | Apr 1930 | A |
1948785 | Dondelinger | Feb 1934 | A |
1981157 | Walter | Nov 1934 | A |
2036484 | Le May | Apr 1936 | A |
2100964 | Kendrick | Nov 1937 | A |
2117309 | Fritsch | May 1938 | A |
2219475 | Flaherty | Oct 1940 | A |
2409381 | Pease, Jr. | Oct 1946 | A |
2543370 | Kludt et al. | Feb 1951 | A |
2554337 | Lampert | May 1951 | A |
2630801 | Mest et al. | Mar 1953 | A |
2696011 | Galdik | Dec 1954 | A |
2749550 | Pease | Jun 1956 | A |
2775767 | Gould | Jan 1957 | A |
2793368 | Nouel | May 1957 | A |
2808050 | Ward | Oct 1957 | A |
2815021 | Freeman | Dec 1957 | A |
2828737 | Hale | Apr 1958 | A |
2904040 | Hale | Sep 1959 | A |
2906260 | Myers | Sep 1959 | A |
2906261 | Craig | Sep 1959 | A |
2915067 | Bracht | Dec 1959 | A |
3095875 | Davidson et al. | Jul 1963 | A |
3096760 | Nelkin | Jul 1963 | A |
3128514 | Parker et al. | Apr 1964 | A |
3274996 | Jewett | Sep 1966 | A |
3282264 | Connelly | Nov 1966 | A |
3351053 | Stuttle | Nov 1967 | A |
3371351 | Allain | Mar 1968 | A |
3434469 | Swift | Mar 1969 | A |
3480012 | Smithers et al. | Nov 1969 | A |
3509875 | Richter | May 1970 | A |
3548817 | Mittasch | Dec 1970 | A |
3563431 | Pletz | Feb 1971 | A |
3570480 | Stubbs | Mar 1971 | A |
3578773 | Schultz | May 1971 | A |
3600717 | Mckeehan | Aug 1971 | A |
3601819 | Herrmann | Aug 1971 | A |
3603316 | Lehman | Sep 1971 | A |
3762421 | Sax, Sr. | Oct 1973 | A |
3771513 | Velazquez | Nov 1973 | A |
3793749 | Gertsch et al. | Feb 1974 | A |
3808644 | Schoch | May 1974 | A |
3812850 | Reiman | May 1974 | A |
3816211 | Haigh | Jun 1974 | A |
3834048 | Maurer | Sep 1974 | A |
3889664 | Heuser et al. | Jun 1975 | A |
3902503 | Gaylord, Jr. | Sep 1975 | A |
3920008 | Lehman | Nov 1975 | A |
3926182 | Stabholz | Dec 1975 | A |
3927665 | Wax | Dec 1975 | A |
3945376 | Kuehnegger | Mar 1976 | A |
4042433 | Hardy et al. | Aug 1977 | A |
4055168 | Miller et al. | Oct 1977 | A |
4071387 | Schlaepfer | Jan 1978 | A |
4099524 | Cueman et al. | Jul 1978 | A |
4114788 | Zufich | Sep 1978 | A |
4173973 | Hendricks | Nov 1979 | A |
4175553 | Rosenberg | Nov 1979 | A |
4230101 | Gold | Oct 1980 | A |
4261081 | Lott | Apr 1981 | A |
4285336 | Oebser et al. | Aug 1981 | A |
4322092 | Feucht et al. | Mar 1982 | A |
4383523 | Schurman | May 1983 | A |
4392489 | Wagner, Sr. | Jul 1983 | A |
4433456 | Baggio | Feb 1984 | A |
RE31564 | Hendricks | Apr 1984 | E |
4475543 | Brooks et al. | Oct 1984 | A |
4494536 | Latenser | Jan 1985 | A |
4502471 | Owens | Mar 1985 | A |
4508110 | Modglin | Apr 1985 | A |
4531515 | Rolfes | Jul 1985 | A |
4555830 | Petrini et al. | Dec 1985 | A |
4559933 | Batard et al. | Dec 1985 | A |
4569336 | Wheeler | Feb 1986 | A |
4574500 | Aldinio et al. | Mar 1986 | A |
4574789 | Forster | Mar 1986 | A |
4574790 | Wellershaus | Mar 1986 | A |
4596569 | Campbell | Jun 1986 | A |
4608971 | Borschneck | Sep 1986 | A |
4616524 | Bidoia | Oct 1986 | A |
4619657 | Keates et al. | Oct 1986 | A |
4628913 | Lerman | Dec 1986 | A |
4631839 | Bonetti et al. | Dec 1986 | A |
4631840 | Gamm | Dec 1986 | A |
4635626 | Lerman | Jan 1987 | A |
4640269 | Goins | Feb 1987 | A |
4648390 | Friddle | Mar 1987 | A |
4649574 | Michels | Mar 1987 | A |
4654985 | Chalmers | Apr 1987 | A |
4655201 | Pirmantgen | Apr 1987 | A |
4658807 | Swain | Apr 1987 | A |
4660302 | Arieh et al. | Apr 1987 | A |
4677699 | Barabe | Jul 1987 | A |
4677969 | Calabrese | Jul 1987 | A |
4680878 | Pozzobon et al. | Jul 1987 | A |
4691696 | Farfan De Los Godos | Sep 1987 | A |
4696291 | Tyo | Sep 1987 | A |
4697583 | Mason et al. | Oct 1987 | A |
4697592 | Maddux et al. | Oct 1987 | A |
4719670 | Kurt | Jan 1988 | A |
4719709 | Vaccari | Jan 1988 | A |
4761834 | Kolb | Aug 1988 | A |
4796610 | Cromartie | Jan 1989 | A |
4799297 | Baggio et al. | Jan 1989 | A |
4802291 | Sartor | Feb 1989 | A |
4805605 | Glassman | Feb 1989 | A |
4807605 | Mattingly | Feb 1989 | A |
4811503 | Iwama | Mar 1989 | A |
4843688 | Ikeda | Jul 1989 | A |
4862878 | Davison et al. | Sep 1989 | A |
4870761 | Tracy | Oct 1989 | A |
4905678 | Cumins et al. | Mar 1990 | A |
4923474 | Klasson et al. | May 1990 | A |
4937952 | Olivieri | Jul 1990 | A |
4961544 | Bidoia | Oct 1990 | A |
4963208 | Muncy et al. | Oct 1990 | A |
4976257 | Akin et al. | Dec 1990 | A |
5027482 | Torppey | Jul 1991 | A |
5072725 | Miller | Dec 1991 | A |
5074288 | Miller | Dec 1991 | A |
5092321 | Spademan | Mar 1992 | A |
5098770 | Paire | Mar 1992 | A |
5105828 | Grant | Apr 1992 | A |
5111807 | Spahn et al. | May 1992 | A |
5117567 | Berger | Jun 1992 | A |
5120288 | Sinaki | Jun 1992 | A |
5121741 | Bremer et al. | Jun 1992 | A |
5127897 | Roller | Jul 1992 | A |
5135470 | Reeves | Aug 1992 | A |
5135471 | Houswerth | Aug 1992 | A |
5154690 | Shiono | Oct 1992 | A |
5157813 | Carroll | Oct 1992 | A |
5170505 | Rohrer | Dec 1992 | A |
5171296 | Herman | Dec 1992 | A |
5176131 | Votel et al. | Jan 1993 | A |
5177882 | Berger | Jan 1993 | A |
5181331 | Berger | Jan 1993 | A |
5183036 | Spademan | Feb 1993 | A |
D334063 | Dewall | Mar 1993 | S |
5199940 | Morris et al. | Apr 1993 | A |
5201074 | Dicker | Apr 1993 | A |
5203765 | Friddle, Jr. | Apr 1993 | A |
5215518 | Rosen | Jun 1993 | A |
5226874 | Heinz et al. | Jul 1993 | A |
5230698 | Garth | Jul 1993 | A |
5259831 | Lebron | Nov 1993 | A |
5259833 | Barnett | Nov 1993 | A |
5295947 | Muncy | Mar 1994 | A |
5307521 | Davis | May 1994 | A |
5313952 | Hoch | May 1994 | A |
5318575 | Chesterfield et al. | Jun 1994 | A |
5327662 | Hallenbeck | Jul 1994 | A |
5334135 | Grim et al. | Aug 1994 | A |
5342289 | Munny | Aug 1994 | A |
5346461 | Heinz et al. | Sep 1994 | A |
5363863 | Lelli et al. | Nov 1994 | A |
5365947 | Bonutti | Nov 1994 | A |
5368552 | Williamson et al. | Nov 1994 | A |
5376129 | Faulkner et al. | Dec 1994 | A |
5383893 | Daneshvar | Jan 1995 | A |
5387245 | Fay et al. | Feb 1995 | A |
5399151 | Smith | Mar 1995 | A |
5421809 | Rise | Jun 1995 | A |
5423852 | Daneshvar | Jun 1995 | A |
5429587 | Gates | Jul 1995 | A |
5433648 | Frydman | Jul 1995 | A |
5433697 | Cox | Jul 1995 | A |
5435015 | Ellis-Brewer | Jul 1995 | A |
5437614 | Grim | Aug 1995 | A |
5437617 | Heinz et al. | Aug 1995 | A |
5437619 | Malewicz et al. | Aug 1995 | A |
5449338 | Trudell | Sep 1995 | A |
5450858 | Zablotsky et al. | Sep 1995 | A |
5466214 | Calderon-Garciduenas | Nov 1995 | A |
5484395 | Deroche | Jan 1996 | A |
5499965 | Sanchez | Mar 1996 | A |
5500959 | Yewer, Jr. | Mar 1996 | A |
5502902 | Sussmann | Apr 1996 | A |
5503314 | Fiscus | Apr 1996 | A |
5503620 | Danzger | Apr 1996 | A |
5507681 | Smith et al. | Apr 1996 | A |
5507834 | Laghi | Apr 1996 | A |
5520619 | Martin | May 1996 | A |
5522792 | Bassett et al. | Jun 1996 | A |
5531669 | Varnau | Jul 1996 | A |
5536246 | Saunders | Jul 1996 | A |
5539020 | Bracken et al. | Jul 1996 | A |
5548843 | Chase et al. | Aug 1996 | A |
5551950 | Oppen | Sep 1996 | A |
5558628 | Bzoch | Sep 1996 | A |
5569171 | Muncy | Oct 1996 | A |
5571355 | Kornylo | Nov 1996 | A |
5599287 | Beczak, Sr. et al. | Feb 1997 | A |
5599288 | Shirley et al. | Feb 1997 | A |
5603122 | Kania | Feb 1997 | A |
5620412 | Modglin | Apr 1997 | A |
5622529 | Calabrese | Apr 1997 | A |
5632724 | Lerman et al. | May 1997 | A |
5634891 | Beczak, Sr. et al. | Jun 1997 | A |
5638588 | Jungkind | Jun 1997 | A |
5669116 | Jungkind | Sep 1997 | A |
5674187 | Zepf | Oct 1997 | A |
5681270 | Klearman et al. | Oct 1997 | A |
5685830 | Bonutti | Nov 1997 | A |
5685831 | Floyd | Nov 1997 | A |
5688137 | Bustance | Nov 1997 | A |
5690260 | Aikins et al. | Nov 1997 | A |
5690609 | Heinze, III | Nov 1997 | A |
5695452 | Grim et al. | Dec 1997 | A |
5704904 | Dunfee | Jan 1998 | A |
5704937 | Martin | Jan 1998 | A |
5708977 | Morkunas | Jan 1998 | A |
5718670 | Bremer | Feb 1998 | A |
5722940 | Gaylord, Jr. et al. | Mar 1998 | A |
5724993 | Dunfee | Mar 1998 | A |
5725139 | Smith | Mar 1998 | A |
5728054 | Martin | Mar 1998 | A |
5728168 | Laghi et al. | Mar 1998 | A |
5732483 | Cagliari | Mar 1998 | A |
5737854 | Sussmann | Apr 1998 | A |
5746218 | Edge | May 1998 | A |
5752640 | Prouix | May 1998 | A |
5778565 | Holt et al. | Jul 1998 | A |
5782782 | Miller | Jul 1998 | A |
5795316 | Gaylord | Aug 1998 | A |
RE35940 | Heinz et al. | Oct 1998 | E |
5816251 | Glisan | Oct 1998 | A |
5819378 | Doyle | Oct 1998 | A |
5823981 | Grim et al. | Oct 1998 | A |
5826766 | Aftanas | Oct 1998 | A |
5827211 | Sellinger | Oct 1998 | A |
5830167 | Jung | Nov 1998 | A |
5836493 | Grunsted et al. | Nov 1998 | A |
5840050 | Lerman | Nov 1998 | A |
5840051 | Towsley | Nov 1998 | A |
5848979 | Bonutti et al. | Dec 1998 | A |
5853378 | Modglin | Dec 1998 | A |
5853379 | Ostojic | Dec 1998 | A |
5857988 | Shirley | Jan 1999 | A |
5868292 | Stephens et al. | Feb 1999 | A |
5890640 | Thompson | Apr 1999 | A |
5891061 | Kaiser | Apr 1999 | A |
5911697 | Biedermann et al. | Jun 1999 | A |
5916070 | Donohue | Jun 1999 | A |
5938629 | Bloedau | Aug 1999 | A |
5950628 | Dunfee | Sep 1999 | A |
5954250 | Hall et al. | Sep 1999 | A |
5954253 | Swetish | Sep 1999 | A |
5967998 | Modglin | Oct 1999 | A |
5993403 | Martin | Nov 1999 | A |
6010472 | Schiller | Jan 2000 | A |
6027466 | Diefenbacher et al. | Feb 2000 | A |
6029273 | McCrane | Feb 2000 | A |
6036664 | Martin, Sr. et al. | Mar 2000 | A |
6039707 | Crawford et al. | Mar 2000 | A |
6063047 | Minne | May 2000 | A |
6066108 | Lundberg | May 2000 | A |
6070776 | Furnary et al. | Jun 2000 | A |
6090057 | Collins et al. | Jul 2000 | A |
6099490 | Turtzo | Aug 2000 | A |
6110138 | Shirley | Aug 2000 | A |
6117096 | Hassard | Sep 2000 | A |
RE36905 | Noble et al. | Oct 2000 | E |
6125792 | Gee | Oct 2000 | A |
6129638 | Davis | Oct 2000 | A |
6129691 | Ruppert | Oct 2000 | A |
6156001 | Frangi et al. | Dec 2000 | A |
6159248 | Gramnas | Dec 2000 | A |
6182288 | Kibbee | Feb 2001 | B1 |
6190343 | Heinz et al. | Feb 2001 | B1 |
D438624 | Reina | Mar 2001 | S |
6206932 | Johnson | Mar 2001 | B1 |
6213968 | Heinz et al. | Apr 2001 | B1 |
6227937 | Principe | May 2001 | B1 |
6245033 | Martin | Jun 2001 | B1 |
6254561 | Borden | Jul 2001 | B1 |
6256798 | Egolf et al. | Jul 2001 | B1 |
6267390 | Maravetz et al. | Jul 2001 | B1 |
6282729 | Oikawa et al. | Sep 2001 | B1 |
6289558 | Hammerslag | Sep 2001 | B1 |
6315746 | Garth et al. | Nov 2001 | B1 |
6322529 | Chung | Nov 2001 | B1 |
6325023 | Elnatan | Dec 2001 | B1 |
6338723 | Carpenter et al. | Jan 2002 | B1 |
6375632 | Albrecht et al. | Apr 2002 | B1 |
6401786 | Tedeschi et al. | Jun 2002 | B1 |
6413232 | Townsend et al. | Jul 2002 | B1 |
6416074 | Maravetz et al. | Jul 2002 | B1 |
6419652 | Slautterback | Jul 2002 | B1 |
6425876 | Frangi et al. | Jul 2002 | B1 |
6428493 | Pior et al. | Aug 2002 | B1 |
6432073 | Pior et al. | Aug 2002 | B2 |
6471665 | Milbourn et al. | Oct 2002 | B1 |
6478759 | Modglin et al. | Nov 2002 | B1 |
6494853 | Rossi et al. | Dec 2002 | B1 |
6502577 | Bonutti | Jan 2003 | B1 |
6503213 | Bonutti | Jan 2003 | B2 |
6517502 | Heyman et al. | Feb 2003 | B2 |
6540703 | Lerman | Apr 2003 | B1 |
6589195 | Schwenn et al. | Jul 2003 | B1 |
6602214 | Heinz et al. | Aug 2003 | B2 |
6605052 | Cool et al. | Aug 2003 | B1 |
6609642 | Heinz et al. | Aug 2003 | B2 |
6623419 | Smith et al. | Sep 2003 | B1 |
6652596 | Smith et al. | Nov 2003 | B2 |
6656144 | Coligado | Dec 2003 | B1 |
6676617 | Miller | Jan 2004 | B1 |
6676620 | Schwenn et al. | Jan 2004 | B2 |
6688943 | Nagaoka | Feb 2004 | B2 |
6689080 | Castillo | Feb 2004 | B2 |
6702770 | Bremer et al. | Mar 2004 | B2 |
6711787 | Jungkind et al. | Mar 2004 | B2 |
6726643 | Martin | Apr 2004 | B1 |
6769155 | Hess et al. | Aug 2004 | B2 |
6770047 | Bonutti | Aug 2004 | B2 |
6790191 | Hendricks | Sep 2004 | B1 |
6802442 | Thompson | Oct 2004 | B1 |
D499806 | Machin et al. | Dec 2004 | S |
6827653 | Be | Dec 2004 | B2 |
D501078 | Cabana | Jan 2005 | S |
6893098 | Kohani | May 2005 | B2 |
6893411 | Modglin | May 2005 | B1 |
6913585 | Salmon et al. | Jul 2005 | B2 |
6921375 | Kihara | Jul 2005 | B2 |
6921377 | Bonutti | Jul 2005 | B2 |
6923780 | Price et al. | Aug 2005 | B2 |
6926685 | Modglin | Aug 2005 | B1 |
6936021 | Smith | Aug 2005 | B1 |
6942630 | Behan | Sep 2005 | B2 |
6951547 | Park et al. | Oct 2005 | B1 |
6962572 | Zahiri | Nov 2005 | B1 |
6964644 | Garth | Nov 2005 | B1 |
6991611 | Rhee | Jan 2006 | B2 |
7001348 | Garth et al. | Feb 2006 | B2 |
7001350 | Grosso | Feb 2006 | B2 |
7025737 | Modglin | Apr 2006 | B2 |
7028873 | Collier et al. | Apr 2006 | B1 |
7034251 | Child et al. | Apr 2006 | B1 |
7048707 | Schwenn et al. | May 2006 | B2 |
7074204 | Fujii et al. | Jul 2006 | B2 |
7083584 | Coligado | Aug 2006 | B2 |
7083585 | Latham | Aug 2006 | B2 |
7087032 | Ikeda | Aug 2006 | B1 |
7101348 | Garth et al. | Sep 2006 | B2 |
7118543 | Telles et al. | Oct 2006 | B2 |
7128724 | Marsh | Oct 2006 | B2 |
7134224 | Elkington et al. | Nov 2006 | B2 |
7137973 | Plauche et al. | Nov 2006 | B2 |
7140691 | Kohani | Nov 2006 | B2 |
7166083 | Bledsoe | Jan 2007 | B2 |
7186229 | Schwenn et al. | Mar 2007 | B2 |
7198610 | Ingimundarson et al. | Apr 2007 | B2 |
7201727 | Schwenn et al. | Apr 2007 | B2 |
7235059 | Mason et al. | Jun 2007 | B2 |
7281341 | Reagan et al. | Oct 2007 | B2 |
7306571 | Schwenn et al. | Dec 2007 | B2 |
7306573 | Bonutti | Dec 2007 | B2 |
7309304 | Stewart et al. | Dec 2007 | B2 |
7316660 | Modglin | Jan 2008 | B1 |
7320670 | Modglin | Jan 2008 | B1 |
7322950 | Modglin | Jan 2008 | B2 |
7329231 | Frank | Feb 2008 | B2 |
7331126 | Johnson | Feb 2008 | B2 |
7351368 | Abrams | Apr 2008 | B2 |
7402147 | Allen | Jul 2008 | B1 |
7404804 | Bonutti | Jul 2008 | B2 |
7416565 | Al-Turaikl | Aug 2008 | B1 |
7438698 | Daiju | Oct 2008 | B2 |
7473235 | Schwenn et al. | Jan 2009 | B2 |
7476185 | Drennan | Jan 2009 | B2 |
7513018 | Koenig et al. | Apr 2009 | B2 |
7549970 | Tweardy | Jun 2009 | B2 |
7578798 | Rhee | Aug 2009 | B2 |
7591050 | Hammerslag | Sep 2009 | B2 |
7597671 | Baumgartner et al. | Oct 2009 | B2 |
7597672 | Kruijsen et al. | Oct 2009 | B2 |
7600660 | Kasper et al. | Oct 2009 | B2 |
7615021 | Nordt, III et al. | Nov 2009 | B2 |
7618386 | Nordt, III et al. | Nov 2009 | B2 |
7618389 | Nordt, III et al. | Nov 2009 | B2 |
7654972 | Alleyne | Feb 2010 | B2 |
7662121 | Zours | Feb 2010 | B2 |
7670306 | Nordt, III et al. | Mar 2010 | B2 |
7682219 | Falla | Mar 2010 | B2 |
7699797 | Nordt, III et al. | Apr 2010 | B2 |
7704219 | Nordt, III et al. | Apr 2010 | B2 |
7727048 | Gransberry | Jun 2010 | B2 |
7727172 | Wang | Jun 2010 | B2 |
7727174 | Chang et al. | Jun 2010 | B2 |
7775999 | Brown | Aug 2010 | B2 |
7806842 | Stevenson et al. | Oct 2010 | B2 |
7815585 | Vollbrecht | Oct 2010 | B2 |
7819831 | Dellanno | Oct 2010 | B2 |
7833182 | Hughes | Nov 2010 | B2 |
7842000 | Lai et al. | Nov 2010 | B2 |
7857776 | Frisbie | Dec 2010 | B2 |
7862529 | Brown | Jan 2011 | B2 |
7862621 | Kloos et al. | Jan 2011 | B2 |
7871388 | Brown | Jan 2011 | B2 |
7878998 | Nordt, III et al. | Feb 2011 | B2 |
7887500 | Nordt, III et al. | Feb 2011 | B2 |
7914473 | Josey | Mar 2011 | B2 |
D636494 | Garth et al. | Apr 2011 | S |
7922680 | Nordt, III et al. | Apr 2011 | B2 |
7950112 | Hammerslag et al. | May 2011 | B2 |
7954204 | Hammerslag et al. | Jun 2011 | B2 |
7959591 | Powers et al. | Jun 2011 | B2 |
7993296 | Nordt, III et al. | Aug 2011 | B2 |
8002724 | Hu et al. | Aug 2011 | B2 |
8006877 | Lowry et al. | Aug 2011 | B2 |
8038635 | Dellanno | Oct 2011 | B2 |
8038637 | Bonutti | Oct 2011 | B2 |
8047893 | Fenske | Nov 2011 | B2 |
8048014 | Brown | Nov 2011 | B2 |
8066161 | Green et al. | Nov 2011 | B2 |
8066654 | Sandifer et al. | Nov 2011 | B2 |
8091182 | Hammerslag et al. | Jan 2012 | B2 |
8142377 | Garth et al. | Mar 2012 | B2 |
8162194 | Gleason | Apr 2012 | B2 |
8162864 | Kruijsen et al. | Apr 2012 | B2 |
8172779 | Ingimundarson et al. | May 2012 | B2 |
8214926 | Brown | Jul 2012 | B2 |
8216167 | Garth et al. | Jul 2012 | B2 |
8303528 | Ingimundarson et al. | Nov 2012 | B2 |
8308669 | Nace | Nov 2012 | B2 |
8308670 | Sandifer et al. | Nov 2012 | B2 |
8308869 | Gardner et al. | Nov 2012 | B2 |
8372023 | Garth et al. | Feb 2013 | B2 |
8381314 | Takamoto et al. | Feb 2013 | B2 |
8549671 | Sackett | Oct 2013 | B2 |
8556840 | Burke et al. | Oct 2013 | B2 |
8597222 | Lucero et al. | Dec 2013 | B2 |
8657769 | Ingimundarson et al. | Feb 2014 | B2 |
8728019 | Kruijsen et al. | May 2014 | B2 |
8795215 | Rossi | Aug 2014 | B2 |
8893312 | Takamoto et al. | Nov 2014 | B2 |
8956315 | Garth et al. | Feb 2015 | B2 |
9125446 | Wegener | Sep 2015 | B2 |
9370440 | Ingimundarsson et al. | Jun 2016 | B2 |
9468554 | Petursson et al. | Oct 2016 | B2 |
9554935 | Ingimundarsson et al. | Jan 2017 | B2 |
9572705 | Ingimundarson et al. | Feb 2017 | B2 |
9744385 | Henry et al. | Aug 2017 | B2 |
9795500 | Ingimundarson et al. | Oct 2017 | B2 |
20010020144 | Heinz et al. | Sep 2001 | A1 |
20010031936 | Pior et al. | Oct 2001 | A1 |
20020032397 | Coligado | Mar 2002 | A1 |
20020068890 | Schwenn et al. | Jun 2002 | A1 |
20020148461 | Heinz et al. | Oct 2002 | A1 |
20020158097 | Beale | Oct 2002 | A1 |
20030000986 | Smith | Jan 2003 | A1 |
20030028952 | Fujii et al. | Feb 2003 | A1 |
20030125650 | Grosso | Jul 2003 | A1 |
20030125705 | Ruman et al. | Jul 2003 | A1 |
20030139698 | Hyson | Jul 2003 | A1 |
20030220594 | Halvorson et al. | Nov 2003 | A1 |
20030229301 | Coligado | Dec 2003 | A1 |
20040024340 | Schwenn et al. | Feb 2004 | A1 |
20040050391 | Kiwala et al. | Mar 2004 | A1 |
20040082895 | Price et al. | Apr 2004 | A1 |
20040097857 | Reinecke et al. | May 2004 | A1 |
20040108350 | Warren | Jun 2004 | A1 |
20040116260 | Drennan | Jun 2004 | A1 |
20040132380 | Kihara | Jul 2004 | A1 |
20040133138 | Modglin | Jul 2004 | A1 |
20040143204 | Salmon et al. | Jul 2004 | A1 |
20040147861 | Kozersky | Jul 2004 | A1 |
20050054960 | Telles et al. | Mar 2005 | A1 |
20050059917 | Garth et al. | Mar 2005 | A1 |
20050067816 | Buckman | Mar 2005 | A1 |
20050081339 | Sakabayashi | Apr 2005 | A1 |
20050131323 | Bledsoe | Jun 2005 | A1 |
20050137508 | Miller | Jun 2005 | A1 |
20050154337 | Meyer | Jul 2005 | A1 |
20050160627 | Dalgaard et al. | Jul 2005 | A1 |
20050165338 | Iglesias et al. | Jul 2005 | A1 |
20050228325 | Zours et al. | Oct 2005 | A1 |
20050240134 | Brown | Oct 2005 | A1 |
20050251074 | Latham | Nov 2005 | A1 |
20050267390 | Garth et al. | Dec 2005 | A1 |
20050273025 | Houser | Dec 2005 | A1 |
20060011690 | Bareno | Jan 2006 | A1 |
20060052733 | Schwenn et al. | Mar 2006 | A1 |
20060064048 | Stano | Mar 2006 | A1 |
20060074365 | Brown | Apr 2006 | A1 |
20060079821 | Rauch | Apr 2006 | A1 |
20060129077 | Parizot | Jun 2006 | A1 |
20060135900 | Ingimundarson et al. | Jun 2006 | A1 |
20060135901 | Ingimundarson et al. | Jun 2006 | A1 |
20060135903 | Ingimundarson et al. | Jun 2006 | A1 |
20060155229 | Ceriani et al. | Jul 2006 | A1 |
20060156517 | Hammerslag et al. | Jul 2006 | A1 |
20060206992 | Godshaw et al. | Sep 2006 | A1 |
20060254598 | Saul | Nov 2006 | A1 |
20060260620 | Kazerooni et al. | Nov 2006 | A1 |
20070152007 | Kauss et al. | Jul 2007 | A1 |
20070167895 | Gramza et al. | Jul 2007 | A1 |
20070179417 | Schwenn et al. | Aug 2007 | A1 |
20070185425 | Einarsson et al. | Aug 2007 | A1 |
20080045873 | Zours | Feb 2008 | A1 |
20080091132 | Bonutti | Apr 2008 | A1 |
20080195010 | Lai et al. | Aug 2008 | A1 |
20080208090 | Vollbrecht et al. | Aug 2008 | A1 |
20080208091 | Vollbrecht et al. | Aug 2008 | A1 |
20080249448 | Stevenson et al. | Oct 2008 | A1 |
20080262401 | Wagner et al. | Oct 2008 | A1 |
20080302839 | Murdoch et al. | Dec 2008 | A1 |
20080319362 | Joseph | Dec 2008 | A1 |
20090025115 | Duffy et al. | Jan 2009 | A1 |
20090030353 | Bonutti et al. | Jan 2009 | A1 |
20090030359 | Wikenheiser et al. | Jan 2009 | A1 |
20090062704 | Brown et al. | Mar 2009 | A1 |
20090082707 | Rumsey | Mar 2009 | A1 |
20090100649 | Bar et al. | Apr 2009 | A1 |
20090124948 | Ingimundarson et al. | May 2009 | A1 |
20090127308 | Mori et al. | May 2009 | A1 |
20090182253 | Grim et al. | Jul 2009 | A1 |
20090192425 | Garth | Jul 2009 | A1 |
20090198166 | Shlomovitz | Aug 2009 | A1 |
20090275871 | Liu | Nov 2009 | A1 |
20090287128 | Ingimundarson et al. | Nov 2009 | A1 |
20100010568 | Brown | Jan 2010 | A1 |
20100037369 | Reichert | Feb 2010 | A1 |
20100139057 | Soderberg et al. | Jun 2010 | A1 |
20100168630 | Cropper | Jul 2010 | A1 |
20100204630 | Sandifer et al. | Aug 2010 | A1 |
20100205713 | Takamoto et al. | Aug 2010 | A1 |
20100217167 | Ingimundarson et al. | Aug 2010 | A1 |
20100228170 | Imai | Sep 2010 | A1 |
20100256717 | Brown | Oct 2010 | A1 |
20100268139 | Garth | Oct 2010 | A1 |
20100268141 | Bannister | Oct 2010 | A1 |
20100274364 | Pacanowsky et al. | Oct 2010 | A1 |
20100292622 | Weissleder et al. | Nov 2010 | A1 |
20100299959 | Hammerslag et al. | Dec 2010 | A1 |
20100318010 | Sandifer | Dec 2010 | A1 |
20110000005 | Brown | Jan 2011 | A1 |
20110009793 | Lucero et al. | Jan 2011 | A1 |
20110046528 | Stevenson et al. | Feb 2011 | A1 |
20110082402 | Oddou et al. | Apr 2011 | A1 |
20110098618 | Fleming | Apr 2011 | A1 |
20110099843 | Jung | May 2011 | A1 |
20110105971 | Ingimundarson et al. | May 2011 | A1 |
20110137221 | Brown | Jun 2011 | A1 |
20110144551 | Johnson | Jun 2011 | A1 |
20110152737 | Burke et al. | Jun 2011 | A1 |
20110178448 | Einarsson | Jul 2011 | A1 |
20110184326 | Ingimundarson et al. | Jul 2011 | A1 |
20110266384 | Goodman et al. | Nov 2011 | A1 |
20120010547 | Hinds | Jan 2012 | A1 |
20120022420 | Sandifer et al. | Jan 2012 | A1 |
20120029404 | Weaver, II et al. | Feb 2012 | A1 |
20120197167 | Kruijsen et al. | Aug 2012 | A1 |
20120204381 | Ingimundarson et al. | Aug 2012 | A1 |
20120220910 | Gaylord et al. | Aug 2012 | A1 |
20120232450 | Garth et al. | Sep 2012 | A1 |
20120245502 | Garth et al. | Sep 2012 | A1 |
20120323154 | Ingimundarson et al. | Dec 2012 | A1 |
20130006158 | Ingimundarson et al. | Jan 2013 | A1 |
20130007946 | Brown | Jan 2013 | A1 |
20130012853 | Brown | Jan 2013 | A1 |
20130158457 | Garth et al. | Jun 2013 | A1 |
20130174326 | Takamoto et al. | Jul 2013 | A1 |
20130184628 | Ingimundarson et al. | Jul 2013 | A1 |
20130190670 | Von Zieglauer | Jul 2013 | A1 |
20130211302 | Brown | Aug 2013 | A1 |
20130237891 | Fryman | Sep 2013 | A1 |
20130281901 | Ochoa | Oct 2013 | A1 |
20130298914 | Shibaya et al. | Nov 2013 | A1 |
20140081189 | Ingimundarson et al. | Mar 2014 | A1 |
20140116452 | Ingimundarson et al. | May 2014 | A1 |
20140207040 | Ingimundarson et al. | Jun 2014 | A1 |
20140200121 | Von Hoffmann et al. | Jul 2014 | A1 |
20140207041 | Ingimundarson et al. | Jul 2014 | A1 |
20140336020 | Von Hoffmann et al. | Nov 2014 | A1 |
20160228279 | Modglin et al. | Aug 2016 | A1 |
20160250061 | Ingimundarson et al. | Sep 2016 | A1 |
20190070033 | Heronen et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
20 1027 10 20 | Feb 2012 | AU |
20 1027 10 20 | Feb 2012 | AU |
20 1028 68 51 | Mar 2012 | AU |
20 1028 68 51 | May 2012 | AU |
2 112 789 | Aug 1994 | CA |
2 114 387 | Aug 1994 | CA |
2 767 353 | Jan 2011 | CA |
2 772 296 | Mar 2011 | CA |
577 282 | Jul 1976 | CH |
612 076 | Jan 1977 | CH |
624 001 | Dec 1977 | CH |
1311648 | Sep 2001 | CN |
1383799 | Dec 2002 | CN |
1461190 | Dec 2003 | CN |
101219079 | Jul 2008 | CN |
201101603 | Aug 2008 | CN |
101444443 | Jun 2009 | CN |
101820783 | Sep 2010 | CN |
102470040 | May 2012 | CN |
1 197 192 | Jul 1965 | DE |
88 04 683 | Jun 1988 | DE |
38 22 113 | Jan 1990 | DE |
9417221 | Jan 1995 | DE |
93 15 776 | Feb 1995 | DE |
295 03 552 | Apr 1995 | DE |
199 45 045 | Mar 2001 | DE |
202 04 747 | Jul 2002 | DE |
103 29 454 | Jan 2005 | DE |
20 2004 015 328 | Feb 2005 | DE |
20 2005 007 124 | Jun 2005 | DE |
102005017587 | Apr 2006 | DE |
20 2009 004 817 | Sep 2010 | DE |
202009004817 | Sep 2010 | DE |
0 393 380 | Sep 1992 | EP |
0 589 233 | Mar 1994 | EP |
0 614 624 | Sep 1994 | EP |
0 614 625 | Sep 1994 | EP |
0 657 149 | Jun 1995 | EP |
0 589 232 | Nov 1995 | EP |
0 693 260 | Sep 1998 | EP |
0 651 954 | Feb 1999 | EP |
1016351 | Jul 2000 | EP |
1 159 940 | Dec 2001 | EP |
1 236 412 | Sep 2002 | EP |
1 342 423 | Sep 2003 | EP |
1 588 678 | Oct 2005 | EP |
1 743 608 | Jan 2007 | EP |
1 985 264 | Oct 2008 | EP |
2 200 545 | Jun 2010 | EP |
2 451 412 | May 2012 | EP |
2 473 072 | Jul 2012 | EP |
1 104 562 | Nov 1955 | FR |
2 757 073 | Jun 1998 | FR |
2 952 807 | May 2011 | FR |
826 041 | Dec 1959 | GB |
909 970 | Nov 1962 | GB |
2 133 289 | Jul 1984 | GB |
H07-246212 | Sep 1995 | JP |
3031760 | Dec 1996 | JP |
H09-273582 | Oct 1997 | JP |
H10-237708 | Sep 1998 | JP |
2000-290331 | Oct 2000 | JP |
2001-204851 | Jul 2001 | JP |
3091470 | Jan 2003 | JP |
2003-175063 | Jun 2003 | JP |
2004-016732 | Jan 2004 | JP |
2004-041666 | Feb 2004 | JP |
2004-209050 | Jul 2004 | JP |
2007-291536 | Nov 2007 | JP |
3142546 | Jun 2008 | JP |
2008178618 | Aug 2008 | JP |
2009-082697 | Apr 2009 | JP |
2012-011550 | Jan 2012 | JP |
2013-503268 | Jan 2013 | JP |
2013-536010 | Sep 2013 | JP |
9401496 | Jan 1994 | WO |
9503720 | Feb 1995 | WO |
9703581 | Feb 1997 | WO |
0053045 | Sep 2000 | WO |
2004110197 | Dec 2004 | WO |
2005086752 | Apr 2005 | WO |
2005086752 | Sep 2005 | WO |
2006121413 | Nov 2006 | WO |
2007003148 | Jan 2007 | WO |
2009017499 | Feb 2009 | WO |
2009017949 | Feb 2009 | WO |
2009052031 | Apr 2009 | WO |
2009068503 | Jun 2009 | WO |
2010141958 | Dec 2010 | WO |
2011005430 | Jan 2011 | WO |
2011025675 | Mar 2011 | WO |
2011066323 | Jun 2011 | WO |
2012029917 | Mar 2012 | WO |
2013016670 | Jan 2013 | WO |
2013016670 | Jan 2013 | WO |
2016138215 | Sep 2016 | WO |
Entry |
---|
Chinese Office Action from Chinese Application No. 201480017756.5, dated Jul. 29, 2016. |
International Search Report from PCT Application No. PCT/US2016/043505, dated Oct. 13, 2016. |
International Search Report from PCT Application No. PCT/US2018/049969, dated Nov. 16, 2018. |
Pamphlet—“Bledsoe Phillippon K.A.F. Positioning Kit, Application Instructions (CP020205 Rev B 04/07), New Hip Arthroscopy Padding and Positioning Kit”, Council Directive 93/42/EEC of Jun. 14, 1993 concerning Medical Devices, 2 pages. |
Mehlman, Charles T. et al., “Hyphenated History: Knight-Taylor Spinal Orthosis”; American Journal of Orthopedics; Jun. 2000; pp. 479-483, vol. 29, Issue 6. |
Pamphlet—“Bledsoe Phillippon K.A.F. Positioning Kit”, Bledsoe Brace Systems, Medical Technology Inc., http://bledsoebrace.com/products/kaf.asp [retrieved from the internet May 10, 2012. |
Posture Control Brace. Soft Form, Orthopaedic by Design, FLA Orthopedics, Inc., 1 page; 2004. http://www.flaorthopedics.com. |
Michael Pfiefer, MD et al., “Effects of a New Spinal Orthosis on Posture, Trunk Strength, and Quality of Life in Women with Postmenopausal Osteoporosis—a Randomized Trial”, American Journal of Physical Medicine & Rehabilitation, vol. 83, No. 3, Mar. 2004, USA, pp. 177-186. |
Scoliosis Specialists About the SpineCor Brace; 2006-2012; http://www.scoliosisspecialists.com/aboutspinecorbrace.html. Retrieved from Internet on Aug. 1, 2013. |
Hsu et al., “Principles and Components of Spinal Orthoses”, AAOS Atlas of Orthoses and Assistive Devices, 4th Ed., Chapter 7, 2008, pp. 89-111. |
Spinomed Brochure—Spinal Orthosis for Vertebral Extension in Osteoporosis; Stellar Orthotics and Prosthetics Group, 2 pages, retrieved from Internet Sep. 23, 2013. http://www.stellaroandp.com/spotlight.html. |
Sato, Ena et al., “Effect of the WISH-type hip brace on functional mobility in patients with osteoarthritis of the hip: evaluation using the timed UP & GO Test”, Prosthetics and Orthotics International 2012 36:25 originally published online Nov. 17, 2011, http://poi.sagepub.com/content/36/125 [retrieved from internet on Jan. 22, 2014]. |
Silosheath Brochure, Soft Socket Gel Liner, 4 pages, 1994. |
Number | Date | Country | |
---|---|---|---|
20200146867 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62260165 | Nov 2015 | US | |
62126111 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15270155 | Sep 2016 | US |
Child | 16739585 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15053247 | Feb 2016 | US |
Child | 15270155 | US |