Spinal plate with internal screw locks

Information

  • Patent Application
  • 20060149253
  • Publication Number
    20060149253
  • Date Filed
    January 06, 2005
    19 years ago
  • Date Published
    July 06, 2006
    18 years ago
Abstract
A bone plate for stabilizing adjacent vertebrae or ends of a bone has a span for extending across the discontinuity. The span has brackets for attaching to the bone. The brackets have countersunk apertures terminating through which bone screws are placed in the bone. An eccentric cam bore is located between the countersunk apertures and, upon rotation of an eccentric cam, wedge grip shoes are slid into the countersunk apertures and frictionally engage the spherical heads of the bone screws. To prevent back-out of the bone screws, the eccentric cam is locked into the wedge grip shoes.
Description
FIELD OF THE INVENTION

This invention relates to the field of orthopedic surgery and to bone plates which are affixed to bone by screws, including spinal plates for the cervical, thoracic and lumbar regions.


BACKGROUND OF THE INVENTION

The use of bone pins and plates for reducing fractures is well known in orthopedic medicine. The pins and plates extend across discontinuities in a bone to fix the broken ends in relation to each other to reduce pain and promote rapid healing without deformity. These devices are secured to the bone by bone screws or nails driven into the bone. More recently, pins, rods, plates and cages have been used to stabilize bone and joints that have deteriorated naturally or as a result of prior trauma.


The interface between the bone screws and the bone presents problems of stability and long term usage that have been addressed in different ways. One of the major problems is usually termed as back-out. This defines the condition in which the screws attaching the plate to the bone loosen over time, either relative to the bone or the plate or both. Severe back-out results in the bone screw working itself out of the bone and/or plate resulting in instability of the bone or joint. This situation results in increasing pain and danger from the instability, as well as, the movement of the screw. There may be several reasons for the back-out but anatomical stresses from body movements contributes greatly to the problem.


Spinal bone plates are usually attached to adjacent vertebrae to reduce pain due to injury or deterioration of the intermediate disk. The plate spans the intervertebral space to stabilize the vertebrae. Pedicle screws or bone screws are inserted through apertures in the opposite ends of the plate into the respective vertebrae or on opposite sides of a break. Due to anatomical forces on the skeleton, the screws sometimes back out of the bones and plates.


Prior art devices address the problem of back-out by use of secondary locking screws that hold the bone screws in the plate. The locking device engages the head of the bone screw and is tightened to fix the screw to the plate and, thus, the bone. Such devices are not particularly suited for deployment on the anterior aspect of the spine because of the close proximity of vital soft tissue organs which dictate a smooth, low profile, contoured surface. Michelson, U.S. Pat. No. 6,454,771, discloses a bone plate for anterior cervical fixation. The plate has several holes for receiving bone screws. A locking screw mechanism is used to overlay the screw heads.


An expandable insert for placement between vertebrae is disclosed by Paes et al, U.S. Pat. No. 6,436,142. The device is in the nature of a lag screw and can expand with the insertion of an expansion screw.


U.S. Pat. No. 6,342,055 to Eisermann et al discloses a bone plate with bone screws having a snap-in retainer securing the heads to the plate.


Geisler, U.S. Pat. No. 6,231,610, discloses a bone plate with diverging bone screws and serrations on the plate to increase holding power.


U.S. Pat. No. 6,224,602 to Hayes discloses a bone plate with multiple bone screw holes which may be covered by a sliding locking plate. The bone plate has an undercut channel to hold the locking plate in contact with the screw heads. The locking plate is held to the plate by a locking screw once it is slid to the desired position.


Aust et al, U.S. Pat. No. 5,603,713, discloses an anterior lumbar plate attached by screws with various angular connections to the spine.


Published application, US 2004/0102773 A1, to Morrison et al, uses the ends of the bone plate to cover the heads of the bone screws.


U.S. Pat. No. 6,740,088 B1, to Kozak et al uses extra set screws to interfere with the heads of the bone screws.


U.S. Pat. No. 6,730,127 B2 to Michelson attaches an overlay to the plate to partially cover the heads of the screws.


What is needed in the art is a bone plate with an internal sliding screw lock that rotates to wedge the bone screws to the plate.


SUMMARY OF THE PRESENT INVENTION

Disclosed is a bone plate for stabilizing adjacent vertebrae. The plate is formed from a span of rigid material for bridging intervertebral space, the span having a bone engaging surface and a distal surface. A first bracket is located at one end of the span and a second bracket is located on the other end of the span. The first bracket includes a first bone fastener aperture and a second bone fastener aperture therethrough with a cam bore between the first bone fastener aperture and the second fastener aperture. A slot in the first bracket extends from the first bone fastener aperture to the second bone fastener aperture with an eccentric cam rotatably mounted in the cam bore, the cam includes a cam surfaces. A first wedge shoe is slidably disposed in the slot between the cam and the first bone fastener aperture for contacting the cam surface. A second wedge shoe is slidably disposed in the slot between the cam and the second bone fastener aperture for contacting the cam surfaces. A cam cover plate can be used to close the slot whereby rotating the cam slides te first and second wedge shoe partially into the first and second bone fastener aperture.


Therefore, it is an objective of this invention to provide a bone plate with an integral internal screw lock.


It is another objective of this invention to provide a spinal plate with sliding wedge shoes.


It is yet another objective of this invention to provide a low profile bone plate with countersunk bone screw apertures therethrough having wedge shoe openings.


It is a further objective of this invention to provide a bone plate to span a plurality of discontinuaties in the bone.


Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective distal side of the assembled bone plate and screws of this invention;



FIG. 2 is a perspective of bone engaging side of the bone plate and screws of this invention;



FIG. 3 is a transverse cross section of a bone plate of this invention;


and



FIG. 4 is a perspective of another embodiment of the bone plate of this invention;



FIG. 5 is a partial perspective of the bone plate of this invention with a pin;



FIG. 6 is a partial perspective of the wedge show recess;



FIG. 7 is a perspective of a wedge show;



FIG. 8 is a perspective of the eccentric cam; and



FIG. 9 is a perspective of the cam cover plate.




DETAILED DESCRIPTION OF THE INVENTION

The bone plate 10, shown in FIGS. 1, 2, and 4, is based on an elongated span 11 having a first end and a second end with a first bracket 12 on the first end adapted to engage a first vertebrae and a second bracket 13 on the second end adapted to engage a second vertebrae. The first bracket includes a first bone screw aperture 14 and a second bone screw aperture 15 with a cam bore 16 located therebetween, each bone screw aperture being countersunk. Pedicle screws 100 are shown in place with the screw heads 101 resting the countersunk apertures. This contributes to the low profile of the implant preventing undue trauma to the tissue on the anterior aspect of the cervical spine. Pins 200, shown in FIG. 5, may be used instead of or in place of the pedicle screws or other bone fasteners. A rotating eccentric cam 17, shown in FIG. 8, is mounted in the cam bore.


The second bracket 13 has the same components as the first bracket 12. An aperture 50 is located in the span 11 to facilitate boney ingrowth to increase stability. In FIG. 4, a bone plate 10 is shown with an intermediate bracket 112 which also includes all the elements of the bracket 12. Of course, the bone plate may have a series of brackets spaced apart by multiple spans for use when several vertebrae are to be stabilized.


The bone plate has two major surfaces, a bone engaging surface 18 and a distal surface 19. The bone screw apertures and the cam bores extend through the bone plate from the bone engaging surface to the distal surface. The cam bore 16, in the distal surface 19, is circular and serves as a guide and bearing surface for the distal end of the actuator 20 of the eccentric cam 17. The actuator has a receptacle 21 for a tool (not shown) used to rotate the cam. The actuator 20 terminates on the distal surface to preserve the smooth surface.


Eccentric cam surfaces 22 and 23 are formed 180° apart on the shaft of the cam 17. In the unlocked position, the cam surfaces are aligned with the longitudinal axis of the span 11. By turning the actuator 90°, the cam surfaces 22 and 23 are aligned transverse to the axis of the span.


As shown in FIGS. 2, 3, and 6, each of the brackets have an internal slot 24 extending transversely between the countersunk apertures 14 and 15. The cam shaft penetrates the center of the slot. A wedge grip shoe 25, as shown in FIG. 7, is slidably disposed in the slot between the cam shaft and the aperture 14. Another wedge grip shoe 26 is slidably disposed in the slot between the cam shaft and aperture 15.


A cam cover plate 27, as shown in FIG. 9, closes each slot and forms the bone engaging surfaces of the brackets of the bone plate. The cam cover plate extends transversely along the brackets between the screw apertures. Each end 28 and 29 of the covers has an arcuate shape conforming to the shape of the countersunk aperture. A cam bore 30 passes through the plate and serves as a guide and bearing surface for the other end 31 of the eccentric cam 17. The cam cover plates are permanently attached to the brackets, as by laser welding or other fastening method.


One end 32 of the wedge grip shoes 25 is shaped to conform generally with the head of the screw 101 or pin 200 but including contact points 33 and 34 near the sides of the shoes to insure more than one positive pressure point about the circumference of the head. The other end 35 of the shoes is shaped with an indentation 36 to act as a lock to prevent the eccentric cam surfaces from reverse rotation.


The heads of the bone screws have a spherical shape, as do the countersunk portions of the brackets. This allows for some flexibility in placement of the plate and pedicle screws to compensate for anatomical considerations or to gain better purchase in the bone. When the bone screws or pins have been fully tightened, the eccentric cam is rotated by the actuator. The cam surfaces engage the wedge grip shoes and slide each toward the countersunk apertures. At 90° the cam surfaces are disposed in the indentations of the shoes and cannot freely return to the original position. The other ends of the shoes have moved into the countersunk portion of the apertures and engage the circumference of the spherical heads at least at two points. The surface of the countersunk bores opposite the wedge shoes serves as a reaction surface to secure the screws from backing out of the bone.


The bone plate and screws may be fabricated from surgical steel, titanium, other suitable alloys, ceramics alone or as coatings, and polymers or combinations thereof with the requisite strength and nontoxicity in the body.


The bone plates and screws may be supplied in kit form with different sized screws and plates for selection due to anatomical necessities.


A number of embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiment but only by the scope of the appended claims.

Claims
  • 1. A bone plate for attachment to bone across discontinuaties comprising an elongated span having a first end and a second end, a first bracket on said first end and a second bracket on said second end, said first and said second bracket each having at least one aperture adapted to receive a bone fastener, said first bracket and said second bracket each having a slot therein, a wedge shoe slidably disposed in said slot, a rotatable cam in said slot having a cam surface contacting said wedge shoe whereby rotation of said cam slides said wedge shoe partially into said aperture.
  • 2. A bone plate of claim 1 comprising a second aperture in said first and said second bracket, said cam bore located between said one and said second apertures, said slot extending between said one and said second apertures, a second wedge shoe in said slot between said cam and said second aperture whereby rotation of said cam slides said wedge shoe and said second wedge shoe partially into said one and said second apertures, respectively.
  • 3. A bone plate of claim 1 comprising an intermediate bracket on said span between said first end and said second end, said intermediate bracket having at least one bone screw aperture, a eccentric cam adjacent said aperture, a slot in said bracket extending from said cam to said aperture, a wedge shoe slidably disposed in said slot, one end of said wedge shoe contacting said cam whereby rotation of said cam extends said wedge shoe into said aperture.
  • 4. A bone plate of claim 3 comprising a second aperture in said first and said second bracket, said cam bore located between said one and said second apertures, said slot extending between said one and said second apertures, a second wedge shoe in said slot between said cam and said second aperture whereby rotation of said cam slides said wedge shoe and said second wedge shoe partially into said one and said second apertures, respectively.
  • 5. A bone plate of claim 1 comprising a countersunk bore surrounding said bone screw aperture, said bore having a sidewall, said wedge shoe extending through said countersunk bore.
  • 6. A bone plate of claim 2 comprising a countersunk bore surrounding said one and said second aperture, said bore having a sidewall, said wedge shoe extending through said countersunk bore.
  • 7. A bone plate of claim 3 comprising a countersunk bore surrounding said aperture in said intermediate bracket, said bore having a sidewall, said wedge shoe extending through said countersunk bore.
  • 8. A bone plate for stabilizing adjacent vertebrae comprising a span for bridging intervertebral space, said span having a bone engaging surface and a distal surface, a first bracket one end of said span and a second bracket on the other end of said span, said first bracket having a first bone fastener aperture and a second bone fastener aperture therethrough, a cam bore between said first bone fastener aperture and said second fastener aperture, a slot in said first bracket extending from said first bone fastener aperture to said second bone fastener aperture, an eccentric cam rotatably mounted in said cam bore having cam surfaces, a first wedge shoe slidably disposed in said slot between said cam and said first bone fastener aperture and contacting said cam surface, a second wedge shoe slidably disposed in said slot between said cam and said second bone fastener aperture and contacting said cam surfaces, a cam cover plate closing said slot whereby rotating said cam slides said first and said second wedge shoe partially into said first and said second bone fastener aperture, respectively.
  • 9. A bone plate for stabilizing adjacent vertebrae of claim 8 comprising said second bracket having a first bone fastener aperture and a second bone fastener aperture therethrough, a cam bore between said first bone fastener aperture and said second fastener aperture, a slot in said first bracket extending from said first bone fastener aperture to said second bone fastener aperture, an eccentric cam rotatably mounted in said cam bore having cam surfaces, a first wedge shoe slidably disposed in said slot between said cam and said first bone fastener aperture and contacting said cam surface, a second wedge shoe slidably disposed in said slot between said cam and said second bone fastener aperture and contacting said cam surfaces, a cam cover plate closing said slot whereby rotating said cam slides said first and said second wedge shoe partially into said first and said second bone fastener aperture, respectively.
  • 10. A bone plate for stabilizing adjacent vertebrae of claim 8 comprising a pedicle screw in said first and said second bone fastener aperture, respectively, said pedicle screw having a spherical head.
  • 11. A bone plate for stabilizing adjacent vertebrae of claim 9 comprising a pedicle screw in said first and said second bone fastener aperture, respectively, said pedicle screw having a spherical head.
  • 12. A bone plate for stabilizing adjacent vertebrae of claim 8 comprising said first and said second wedge shoe including one end adapted to engage said bone fastener, respectively, said one end shaped to substantially conform with said bone fastener.
  • 13. A bone plate for stabilizing adjacent vertebrae of claim 8 comprising the other end of said first and said second wedge shoe shaped to lock said cam in one position.