The present invention relates to a system for stabilizing the spine, and more particularly to a spinal screw that reduces the risk of bone fracturing and reduces spinal screw insertion torque.
The human spine consists of individual vertebras that are connected to each other. Under normal circumstances, the structures that make up the spine function to protect the neural structures and to allow us to stand erect, bear axial loads, and be flexible for bending and rotation. However, disorders of the spine occur when one or more of these spine structures are abnormal. In these pathologic circumstances, surgery may be tried to restore the spine to normal, achieve stability, protect the neural structures, or to relieve the patient of discomfort. The goal of spine surgery for a multitude of spinal disorders, especially those causing compression of the neural structures, is often decompression of the neural elements and/or fusion of adjacent vertebral segments. Fusion works well because it stops pain due to movement at the facet joints or intervertebral discs, holds the spine in place after correcting deformity, and prevents instability and or deformity of the spine after surgical procedures such as discectomies, laminectomies, or corpectomies.
Several spinal fixation systems exist for stabilizing the spine so that bony fusion is achieved. The majority of these fixation systems utilize fixation elements such as rods, wires, or plates that attach to screws threaded into the vertebral bodies, facets, or the pedicles. Because the outer surface of the vertebral body is typically non-planar and the structure of the vertebras is relatively complex, it is important that the fixation elements (e.g., rods, plates, wires, staples and/or screws) are properly aligned when they are inserted into the vertebras. Improper alignment may result in improper or unstable placement of the fixation element and/or disengagement of the fixation element.
Achieving and maintaining accurate positioning and guidance of these fixation elements, however have proven to be quite difficult in practice. Such positioning difficulties are further complicated by the fact that the alignment angle for a fixation device through one vertebral body or pair of vertebral bodies will be unique to that individual due to individual differences in the spinal curvature and anatomies. Accordingly, there is a need for a spinal screw assembly that reduces insertion torque of a self-drilling screw design without compromising fixation attributes. Thus, there is a need for a self-drilling spinal screw that reduces the risk of bone fracturing during insertion, reduce the need for drilling and tapping, and reduce overall operating room time.
The disclosure meets the foregoing need and uses spinal screws to reduce insertion torque and risk of bone fractures during the placement of the spinal screws into bone.
Additional features, advantages, and embodiments of the disclosure may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the disclosure and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the disclosure as claimed.
A spinal screw for positioning within bone for use in surgical procedures, the spinal screw having a head and a shaft, the shaft having a proximal end and a distal end. A through-hole extends from the head through the shaft to the distal end of the shaft. The through-hole defines a longitudinal axis of the spinal screw and a spring is positioned within the shaft. A retractable tip element is also positioned within the through hole of the shaft and is operationally coupled to the spring.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein:
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the description herein or illustrated in the drawings. The teachings of the present disclosure may be used and practiced in other embodiments and practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the present disclosure. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the principles herein can be applied to other embodiments and applications without departing from embodiments of the present disclosure. Thus, the embodiments are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the embodiments. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of the embodiments.
Additional aspects, advantages and/or other features of example embodiments of the invention will become apparent in view of the following detailed description. It should be apparent to those skilled in the art that the described embodiments provided herein are merely exemplary and illustrative and not limiting. Numerous embodiments or modifications thereof are contemplated as falling within the scope of this disclosure and equivalents thereto.
In another embodiment, as shown in
Now, turning to
In an alternative embodiment, the multipiece retractable tip screw may utilize alternative means for extending and retracting the tip. For example, a ratchet type mechanism may be utilized to extend the tip into bone and retracted by release of the ratchet mechanism. In another embodiments, the tip may be extended various lengths depending on the need of the patient.
The spinal screw as provide in
One skilled in the art will appreciate that the embodiments discussed above are non-limiting. While devices may be described as suitable for a particular location (e.g., vertebra) or approach, one skilled in the art will appreciate that the devices, instruments, and methods described herein can be used for multiple locations and approaches. In addition to the devices, instruments, and methods described above, one skilled in the art will appreciate that these described features can be used with a number of other implants and instruments, including fixation plates, rods, fasteners, and other orthopedic devices. It will also be appreciated that one or more features of one embodiment may be partially or fully incorporated into one or more other embodiments described herein.
This application is a non-provisional application that claims priority to Provisional Application 63/007,429 filed on Apr. 9, 2020, which is incorporated in its entirety herein.
Number | Date | Country | |
---|---|---|---|
63007429 | Apr 2020 | US |