Spindle lock anchor for post tensioned concrete member

Information

  • Patent Grant
  • 9896845
  • Patent Number
    9,896,845
  • Date Filed
    Tuesday, August 2, 2016
    8 years ago
  • Date Issued
    Tuesday, February 20, 2018
    6 years ago
  • Inventors
  • Examiners
    • Cajilig; Christine T
    Agents
    • Locklar; Adolph
Abstract
An anchor is disclosed. The anchor may include an anchor body, the anchor body having an internal passage, and a lock nut, the lock nut having an internal tapered surface defining a forcing cone. The lock nut may be coupled to the anchor body. The anchor may also include a spindle, the spindle positioned within the internal passage and threadedly coupled to the lock nut. The spindle may have an expansion wedge.
Description
TECHNICAL FIELD/FIELD OF THE DISCLOSURE

The present disclosure relates generally to post-tensioned, pre-stressed concrete construction. The present disclosure relates specifically to anchors for use therein.


BACKGROUND OF THE DISCLOSURE

Many structures are built using concrete, including, for instance, buildings, parking structures, apartments, condominiums, hotels, mixed-use structures, casinos, hospitals, medical buildings, government buildings, research/academic institutions, industrial buildings, malls, roads, bridges, pavement, tanks, reservoirs, silos, sports courts, and other structures.


Prestressed concrete is structural concrete in which internal stresses are introduced to reduce potential tensile stresses in the concrete resulting from applied loads; prestressing may be accomplished by post-tensioned prestressing or pre-tensioned prestressing. In post-tensioned prestressing, a tension member is tensioned after the concrete has attained a desired strength by use of a post-tensioning tendon. The post-tensioning tendon may include for example and without limitation, anchor assemblies, the tension member, and sheathes. Traditionally, a tension member is constructed of a material that can be elongated and may be a single or a multi-strand cable. Typically, the tension member may be formed from a metal or composite material, such as reinforced steel. The post-tensioning tendon conventionally includes an anchor assembly at each end. The post-tensioning tendon is fixedly coupled to a fixed anchor assembly positioned at one end of the post-tensioning tendon, the “fixed-end”, and stressed at the stressed anchor assembly positioned at the opposite end of the post-tensioning tendon, the “stressing-end” of the post-tensioning tendon.


Post-tension members are conventionally formed from a strand and a sheath. The strand is conventionally formed as a single or multi-strand metal cable. The strand is conventionally encapsulated within a polymeric sheath extruded thereabout to, for example, prevent or retard corrosion of the metal strand by protecting the metal strand from exposure to corrosive or reactive fluids. Likewise, the sheath may prevent or retard concrete from bonding to the strand and preventing or restricting movement of the sheath during post-tensioning. The sheath may be filled with grease to further limit the exposure of the metal strand and allow for increased mobility. Because the metal strand and the polymeric sheath are formed from different materials, the thermal expansion and contraction rates of the metal strand and polymeric sheath may differ. During conventional manufacturing, the sheaths are formed by hot extrusion over the metal strand. When the tension members are coiled for transport and storage, uneven thermal contraction may occur as the tendon cools. When installed as a post-tensioning tendon in a pre-stressed concrete member, cooling of the sheath may cause separation of the sheath from an anchorage, potentially exposing the metal strand to corrosive or reactive fluids.


SUMMARY

The present disclosure provides an anchor. The anchor includes an anchor body, the anchor body having an internal passage, and a lock nut, the lock nut having an internal tapered surface defining a forcing cone. The lock nut is coupled to the anchor body. The anchor also includes a spindle, the spindle positioned within the internal passage and threadedly coupled to the lock nut. The spindle has an expansion wedge.


The present disclosure also provides for a post-tensioning tendon. The post-tensioning tendon includes a tension member including a strand and a sheath where the sheath is positioned about the strand. The post-tensioning tendon also includes a first anchor coupled to a first end of the tension member and a second anchor coupled to a second end of the tension member. Each of the anchors include an anchor body, the anchor body having an internal passage, and a lock nut, the lock nut having an internal tapered surface defining a forcing cone. The lock nut is coupled to the anchor body. The anchors also include a spindle, the spindle positioned within the internal passage and threadedly coupled to the lock nut. The spindle has an expansion wedge, and the sheath is gripped between the expansion wedge and the forcing cone.


In addition, the present disclosure provides for a method of coupling a tension member to an anchor for forming a post-tensioning tendon. The method includes providing a tension member including a strand and a sheath, where the sheath is positioned about the strand. The method also includes providing an anchor. The anchor includes an anchor body, where the anchor body has an internal passage and a lock nut, the lock nut having an internal tapered surface defining a forcing cone. The lock nut is coupled to the anchor body. The anchor also includes a spindle, the spindle positioned within the internal passage and threadedly coupled to the lock nut. The spindle has an expansion wedge, and the sheath is gripped between the expansion wedge and the forcing cone. The method also includes removing a portion of a first end of the sheath from a first end of the tension member exposing a first end of the strand and inserting the first end of the tension member into the anchor. In addition, the method includes inserting the first end of the strand through the spindle and inserting the sheath between the expansion wedge and the forcing cone. The method also includes tightening the lock nut onto the spindle such that the sheath is compressed between the expansion wedge and the forcing cone and coupling the strand to the anchor.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIGS. 1A, 1B depict a partial cross section of a concrete post-tensioning tendon within a concrete form consistent with embodiments of the present disclosure.



FIG. 2 depicts a cross section view of a post-tensioning tendon within a spindle lock anchor consistent with at least one embodiment of the present disclosure.



FIG. 3 depicts an enlarged view of a portion of FIG. 2.





DETAILED DESCRIPTION

It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.


When stressing concrete member 40, anchoring systems may be provided to hold the tension member before and after stressing. In some embodiments, as depicted in FIGS. 1A, 1B, post-tensioning tendon 11 may be positioned within concrete form 21. Concrete form 21 is a form into which concrete may be poured to form concrete member 40. Post-tensioning tendon 11 may include for example and without limitation fixed end anchor 13, tension member 15, and stressing end anchor 17. As depicted in FIG. 1A, in some embodiments, fixed end anchor 13 may include fixed end anchor body 14. Fixed-end anchor body 14 may be positioned within concrete form 21 such that fixed-end anchor body 14 will be encased in concrete 23 after concrete is poured into concrete form 21. In some embodiments, fixed end cap 19 may be positioned at distal end 41 of fixed end anchor body 14. Fixed end cap 19 may, in certain embodiments, protect tension member 15 from corrosion after concrete 23 is poured by preventing or retarding corrosive or reactive fluids or concrete from contacting tension member 15.


Stressing end anchor 17 may include stressing end anchor body 18, positioned within concrete form 21 such that stressing end anchor body 18 is within concrete 23. Pocket former 25 may be positioned between the end of stressing end anchor body 18 and end wall 22 of concrete form 21. Pocket former 25 may prevent or retard concrete 23 from filling space between stressing end anchor body 18 and concrete form edge 42 of the resultant concrete member 40 formed by concrete 23 within concrete form 21. Pocket former 25 may allow access to tension member 15 from outside concrete member 40 once concrete member 40 is hardened and concrete form 21 is removed.


As used herein, stressing end anchor 17 and fixed end anchor 13 may be referred to as “first anchor” and “second anchor,” or vice versa.


In some embodiments, tension member 15 may include strand 27 and sheath 29. Strand 27 may be a single or multi-strand metal cable. Sheath 29 may be tubular or generally tubular and may be positioned about strand 27. In some embodiments, space between strand 27 and sheath 29 may be filled or partially filled with a filler such as grease. When installing tension member 15, in some embodiments, a length of sheath 29 may be removed from first end 43 of tension member 15, exposing strand 27. Strand 27 may be inserted through fixed end anchor body 14 and secured thereto, for example and without limitation, by one or more wedges. After strand 27 is secured, fixed end anchor body 14 may be installed in concrete form 21. Tension member 15 may be positioned within concrete form 21 and tension member 15 may be cut to correspond with the length of concrete form 21. In some embodiments, a length of sheath 29 may be removed from second end 44 of tension member 15, exposing strand 27. Strand 27 may be inserted through stressing end anchor body 18. After insertion of strand 27 through stressing end anchor body 18, stressing end anchor 17 may be positioned within concrete form 21 such that pocket former 25 contacts end wall 22 of concrete form 21. End wall 22 may include strand aperture 45 through which strand 27 may extend.


In some embodiments, as depicted in FIGS. 1A, 1B, and 2, when tension member 15 is inserted into stressing end anchor body 18 and fixed end anchor body 14, sheath 29 may be coupled to stressing end anchor body 18 and fixed end anchor body 14 to, for example and without limitation, prevent or restrict sheath 29 from pulling away from the respective anchors and exposing strand 27 to concrete 23.


In some embodiments, fixed end anchor 13 may include lock nut 101 and spindle 103. Likewise, stressing end anchor 17 may include lock nut 101 and spindle 105. Spindles 103, 105 may be tubular or generally tubular members having cylindrical or generally cylindrical inner surfaces 134 defining spindle inner passages 136 through which strand 27 may pass. Spindles 103, 105 may be positioned within internal passage 107 of the corresponding anchor bodies 14, 18. In some embodiments, spindles 103, 105 may include threads 109 to threadedly couple spindles 103, 105 to a respective lock nut 101.


In some embodiments, lock nuts 101 and spindles 103, 105 may grip the respective ends of sheath 29 when coupled. As best depicted in FIG. 3, spindles 103, 105 may each include an expansion wedge 111. Expansion wedge 111 may be positioned within an expansion portion 132 at an end of sheath 29 and may expand expansion portion 132 radially outward as expansion wedge 111 is inserted. Likewise, in some embodiments, lock nuts 101 may include an internal tapered surface 130 defining a forcing cone 113 corresponding to expansion wedges 111 such that, as lock nuts 101 are tightened, expansion portion 132 of sheath 29 is gripped between forcing cone 113 and expansion wedge 111. In some embodiments, one or both of expansion wedge 111 and forcing cone 113 may be smooth or may include a grip enhancing surface feature 127 such as teeth, grooves, or any other grip enhancing surface features known in the art.


In some embodiments, spindles 103, 105 may couple to fixed end anchor body 14 or stressing end anchor body 18 by tensile forces applied when lock nuts 101 are tightened thereonto. In some embodiments, spindles 103, 105 may include a retention feature. The retention feature may transfer the tensile force onto fixed end anchor body 14 or stressing end anchor body 18 and prevent or restrict spindles 103, 105 from being pulled through fixed end anchor body 14 or stressing end anchor body 18. In some embodiments, the retention feature may be an edge, detent, extension, or, as depicted in FIG. 2, conical retaining profile 115.


In some embodiments, one or more of spindles 103, 105 may couple fixed end anchor body 14 or stressing end anchor body 18 to end wall 22 of concrete form 21. As depicted in FIGS. 1A, 1B, and 2, spindle 105 includes spindle extension 106; spindle extension 106 may thread through strand aperture 45 in end wall 22 through which strand 27 extends. In some embodiments, spindle extension 106 may include external threads 117. External threads 117 may threadedly couple spindle extension 106 with spindle nut 119. Spindle nut 119 may allow stressing end anchor body 18 to be retained to end wall 22 during concrete pouring.


In some embodiments, after concrete 23 is poured, spindles 103, 105 may be left in fixed end anchor 13. In some embodiments, after concrete 23 is poured and set as depicted in FIG. 1B, spindle 105 may be removed from stressing end anchor body 18 by unthreading spindle 105 from lock nut 101. Although sheath 29 may no longer be retained between extended spindle 105 and lock nut 101 after concrete pouring, sheath 29 may be prevented from retracting from stressing end anchor body 18 by concrete 23. As understood in the art, concrete 23 surrounding sheath 29 may conform to surface irregularities of sheath 29 and may adhere thereto, thus preventing or restricting any contraction of sheath 29.


In some embodiments, one or more seals may be positioned to prevent or restrict concrete 23 from ingressing into tension member 15 that may prevent or retard the tensioning of strand 27. In some embodiments, as depicted in FIG. 2, gasket 121 may be positioned between lock nut 101 and stressing end anchor body 18.


Although described specifically with respect to fixed end anchor 13 and stressing end anchor 17, a spindle such as spindles 103, 105 may be utilized with either a fixed end anchor or stressing end anchor. Furthermore, a spindle such as spindles 103, 105 may be used with an intermediate anchor. An intermediate anchor, as understood in the art, may be an anchor used between adjacent concrete members which are poured and stressed sequentially utilizing the same tension member 15.


Although fixed end anchor 13 and stressing end anchor 17 are depicted as unencapsulated or bare anchors, such as those formed from ductile iron, fixed end anchor 13 and stressing end anchor 17 may be encapsulated-type anchors without deviating from the scope of this disclosure and may be formed from any material. Non-limiting examples of encapsulated anchors are disclosed in U.S. Pat. Nos. 4,896,470; 5,072,558; 5,701,707; 5,749,185; 5,755,065; 6,098,356; 6,381,912; 6,560,939; 6,761,002; 6,817,148; 6,843,031; and 8,065,845 which are incorporated herein by reference. In some embodiments, spindles 103, 105 may be formed from a nonconductive material such as a polymer. In some such embodiments, spindles 103, 105 may act to electrically insulate strand 27, fixed end anchor 13, and stressing end anchor 17. This electric insulation may prevent or retard galvanic corrosion from occurring due to contact between strand 27, fixed end anchor 13, or stressing end anchor 17 when strand 27, fixed end anchor 13, and stressing end anchor 17 are formed from different metals.


The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure. Unless explicitly stated otherwise, nothing herein is intended to be a definition of any word or term as generally used by a person of ordinary skill in the art, and nothing herein is a disavowal of any scope of any word or term as generally used by a person of ordinary skill in the art.

Claims
  • 1. An anchor for a post-tensioning tendon comprising a strand encased in a sheath, the anchor comprising: an anchor body, the anchor body having an internal passage therethrough;a lock nut, the lock nut having an internal tapered surface defining a forcing cone; anda spindle, the spindle positioned within the internal passage and threadedly coupled to the lock nut, the spindle having an expansion wedge corresponding to the forcing cone;wherein the expansion wedge and the forcing cone cooperate to grip the sheath therebetween.
  • 2. The anchor of claim 1, wherein the spindle further comprises a spindle extension, the spindle extension, the spindle extension having an external thread, the external thread threadedly coupling the spindle extension with a spindle nut.
  • 3. The anchor of claim 1 further comprising a gasket positioned between the lock nut and the anchor body.
  • 4. The anchor of claim 1, wherein the spindle further comprises a retention feature, the retention feature being an edge, detent, extension, or retaining profile.
  • 5. The anchor of claim 1, wherein the anchor is a fixed end anchor, a stressing end anchor, or an intermediate anchor.
  • 6. The anchor of claim 1, wherein at least one of the expansion wedge or the forcing cone has a grip enhancing surface feature, wherein the grip enhancing surface feature includes teeth or grooves.
  • 7. The anchor of claim 1, wherein the spindle is formed from a non-conductive material.
  • 8. A post-tensioning tendon comprising: a tension member comprising a strand and a sheath, the sheath positioned about the strand;a first anchor coupled to a first end of the tension member, and a second anchor coupled to a second end of the tension member, each anchor including:an anchor body, the anchor body having an internal passage;a lock nut, the lock nut having an internal tapered surface defining a forcing cone, the lock nut coupled to the anchor body; anda spindle, the spindle positioned within the internal passage and threadedly coupled to the lock nut, the spindle having an expansion wedge, the sheath gripped between the expansion wedge and the forcing cone.
  • 9. The post-tensioning tendon of claim 8, wherein the spindle of at least one of the first or second anchor further comprises a spindle extension, the spindle extension having an external thread, the spindle extension threadedly coupled with a spindle nut by the external thread, the spindle extension threaded through a strand aperture in an end wall of a concrete form, the anchor body coupled to the end wall by the spindle nut.
  • 10. The post-tensioning tendon of claim 9 further comprising a pocket former, the pocket former positioned between the anchor body of the first or second anchor and the end wall.
  • 11. The post-tensioning tendon of claim 8, further comprising a gasket positioned between the lock nut and the anchor body of at least one of the first or second anchor.
  • 12. The post-tensioning tendon of claim 8 further comprising a fixed end cap, the fixed end cap positioned at the distal end of either the first or second anchor.
  • 13. The post-tensioning tendon of claim 8, wherein at least one of the expansion wedge or the forcing cone of at least one of the first or second anchor has a grip enhancing surface feature, wherein the surface feature includes teeth or grooves.
  • 14. The post-tensioning tendon of claim 8, wherein the spindle and the anchor body are formed from different materials.
  • 15. A method of coupling a tension member to an anchor for forming a post-tensioning tendon comprising: providing a tension member comprising a strand and a sheath, the sheath being positioned about the strand;providing an anchor, the anchor including:an anchor body, the anchor body having an internal passage;a lock nut, the lock nut having an internal tapered surface defining a forcing cone, the lock nut coupled to the anchor body; anda spindle, the spindle positioned within the internal passage and threadedly coupled to the lock nut, the spindle having an expansion wedge, the sheath gripped between the expansion wedge and the forcing cone;removing a portion of a first end of the sheath from a first end of the tension member exposing a first end of the strand;inserting the first end of the tension member into the anchor;inserting the first end of the strand through the spindle;inserting the sheath between the expansion wedge and the forcing cone;tightening the lock nut onto the spindle such that the sheath is compressed between the expansion wedge and the forcing cone; andcoupling the strand to the anchor.
  • 16. The method of claim 15, wherein the spindle further comprises a spindle extension, the spindle extension threaded through a strand aperture in an end wall of a concrete form, the anchor body coupled to the end wall by the spindle nut, and wherein the method further comprises the operations of: positioning the spindle extension through the end wall;threading the spindle nut onto the spindle extension such that the anchor body is coupled to the end wall.
  • 17. The method of claim 16 further comprising: filling the concrete element with concrete;setting the concrete;disengaging the spindle from the lock nut; andremoving the spindle from the anchor body.
  • 18. The method of claim 15 further comprising electrically insulating the strand and the anchor using the spindles.
  • 19. The method of claim 15 further comprising positioning seals between the lock nut and the anchor.
  • 20. The method of claim 15 further comprising preventing the spindle from being pulled through the anchor body using a retention feature.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a nonprovisional application that claims priority from U.S. provisional application No. 62/200,918, filed Aug. 4, 2015, which is hereby incorporated by reference in its entirety.

US Referenced Citations (82)
Number Name Date Kind
2355403 Tripp Aug 1944 A
3049368 Gerhart Aug 1962 A
3137971 Rhodes Jun 1964 A
3501183 Stratienko Mar 1970 A
3559270 Beghi Feb 1971 A
3685934 Huber et al. Aug 1972 A
3698749 Yonkers Oct 1972 A
3766609 Brandestini et al. Oct 1973 A
3956797 Brandestini et al. May 1976 A
4160615 Baldwin Jul 1979 A
4363462 Wlodkowski Dec 1982 A
4623277 Wayne Nov 1986 A
4896470 Sorkin Jan 1990 A
5072558 Sorkin et al. Dec 1991 A
5271199 Northern Dec 1993 A
5701707 Sorkin Dec 1997 A
5749185 Sorkin May 1998 A
5755065 Sorkin May 1998 A
5788398 Sorkin Aug 1998 A
5897102 Sorkin Apr 1999 A
6023894 Sorkin Feb 2000 A
6027278 Sorkin Feb 2000 A
6098356 Sorkin Aug 2000 A
6381912 Sorkin May 2002 B1
6393781 Sorkin May 2002 B1
6560939 Sorkin May 2003 B2
6588193 Hayes Jul 2003 B2
6631596 Sorkin Oct 2003 B1
6761002 Sorkin Jul 2004 B1
6817148 Sorkin Nov 2004 B1
6843031 Sorkin Jan 2005 B1
6883280 Hayes Apr 2005 B2
7174685 Hayes Feb 2007 B2
7216842 Watson May 2007 B2
7275347 Hayes Oct 2007 B2
7360342 Hayes et al. Apr 2008 B2
7424792 Sorkin Sep 2008 B1
7618217 Henderson Nov 2009 B2
7621103 Sorkin Nov 2009 B1
7676997 Sorkin Mar 2010 B1
7726082 Hayes et al. Jun 2010 B2
7762029 Hayes et al. Jul 2010 B2
7765752 Hayes et al. Aug 2010 B2
7793473 Sorkin Sep 2010 B2
7823345 Sorkin Nov 2010 B1
7841061 Sorkin Nov 2010 B1
7841140 Sorkin Nov 2010 B1
7856774 Sorkin Dec 2010 B1
7866009 Sorkin Jan 2011 B1
D635278 Stanford Mar 2011 S
7950196 Sorkin May 2011 B1
7950197 Sorkin May 2011 B1
7963078 Sorkin Jun 2011 B1
8015774 Sorkin Sep 2011 B1
8051615 Mathews et al. Nov 2011 B2
8065845 Sorkin Nov 2011 B1
8069624 Sorkin Dec 2011 B1
8087204 Sorkin Jan 2012 B1
8104246 Nieto et al. Jan 2012 B2
8146306 Hayes et al. Apr 2012 B2
8251344 Sorkin Aug 2012 B1
8276334 Mathews et al. Oct 2012 B2
8286309 Landry Oct 2012 B2
8756885 Mathews et al. Jun 2014 B1
8904721 Pantelides et al. Dec 2014 B2
8925279 Pantelides et al. Jan 2015 B2
8931152 Parente et al. Jan 2015 B2
9096986 Henderson Aug 2015 B2
9097014 Sorkin Aug 2015 B1
9163405 Mathews et al. Oct 2015 B2
9303406 Sorkin Apr 2016 B2
9317191 Stanford Apr 2016 B2
9399869 Sorkin Jul 2016 B2
20020007604 Wallstein Jan 2002 A1
20060179742 Mathews et al. Aug 2006 A1
20060201083 Hayes et al. Sep 2006 A1
20080083130 Parkes et al. Apr 2008 A1
20120011788 Nieto et al. Jan 2012 A1
20150300021 Hayes Oct 2015 A1
20150330078 Sorkin Nov 2015 A1
20150345142 Mathews et al. Dec 2015 A1
20160208490 Wilson Jul 2016 A1
Foreign Referenced Citations (3)
Number Date Country
2363007 Mar 2004 GB
2007070917 Mar 2007 JP
101174206 01 Aug 2012 KR
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion issued in international patent application No. PCT/US2016/045085, dated Oct. 7, 2016 (11 pages).
Related Publications (1)
Number Date Country
20170037622 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
62200918 Aug 2015 US