The present disclosure relates generally to information storage devices and in particular to a disk drive having spindle motor having a motor base and the hub having a diameter less than the motor base.
Disk drives typically include a spindle motor for rotating one or more disks in order to read data from and write data to surfaces of the disks. The spindle motor, an example of which is shown in
In one type of current spindle motor designs, the motor base 1005, which includes the magnet 320 and back iron 325, is vertically spaced separated from the plane that the heads operate in. A hub 1000 is provided that supports the disk with the motor base 1005 being positioned below the hub 1000. The outer diameter of the motor base 1005 is sized to have the same outer diameter as of the hub 1000 having a disk mounting surface 1030 for supporting a disk (not shown).
A general architecture that implements the various features of the disclosure will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of the disclosure. Throughout the drawings, reference numbers are reused to indicate correspondence between referenced elements.
Referring to
As illustrated herein, the disk drive 100 comprises a magnetic disk drive, and the structures and methods described herein will be described in terms of such a disk drive. However, these structures and methods may also be applied to and/or implemented in other disk drives, including, e.g., optical and magneto-optical disk drives.
The disks 104 may comprise any of a variety of magnetic or optical disk media having a substantially concentric opening 114 defined there through. Of course, in other embodiments, the disk drive 100 may include more or fewer disks. For example, the disk drive 100 may include one disk or it may include two or more disks. The disks 104 each include a disk surface 116, as well as an opposing disk surface not visible in
As illustrated, the hub 102 may be coupled to and support the disks 104. The hub 102 is rotatably attached to a motor base 118 of the disk drive 100, and may form one component of a motor 120 (e.g., a spindle motor). The motor 120 and the hub 102 may be configured to rotate the disks 104 about the longitudinal axis L. As discussed in greater detail below, the hub 102 may comprise vertical and horizontal surfaces that form mounting surfaces or spaces between various components.
The disk drive 100 may further include a cover 122, which, together with the motor base 118, may house the disks 104 and the motor 120. The disk drive 100 may also include a head stack assembly (“HSA”) 124 rotatably attached to the motor base 118. The HSA 124 may include an actuator 126 comprising an actuator body 128 and one or more actuator arms 130 extending from the actuator body 128. The actuator body 128 may further be configured to rotate about an actuator pivot axis.
One or two head gimbal assemblies (“HGA”) 132 may be attached to a distal end of each actuator arm 130. Each HGA 132 includes a head 106 operable to write to and read from a corresponding disk 104. The HSA 124 may further include a coil 134 through which a changing electrical current is passed during operation. The coil 134 interacts with one or more magnets 136 that are attached to the motor base 118 to form a voice coil motor (“VCM”) for controllably rotating the HSA 124.
The head 106 may comprise any of a variety of heads for writing to and reading from a disk 104. In magnetic recording applications, a head 106 may include an air bearing slider and a magnetic transducer that includes a writer and a read element. The magnetic transducer's writer may be of a longitudinal or perpendicular design, and the read element of the magnetic transducer may be inductive or magnetoresistive. In optical and magneto-optical recording applications, the head may include a mirror and an objective lens for focusing laser light on to an adjacent disk surface.
The disk drive 100 may further include a printed circuit board (“PCB”) (not shown). The PCB may include, inter alia, a disk drive controller for controlling read and write operations and a servo control system for generating servo control signals to position the actuator arms 130 relative to the disks 104.
As illustrated, the hub 102 defines a longitudinal axis L and may comprise (1) an upper cylindrical portion 108; (2) a middle cylindrical portion 110 proximate the upper cylindrical portion 108, the middle cylindrical portion 110 defining an upper surface 200 substantially normal to the longitudinal axis L; and (3) a hub flange 112 proximate the middle cylindrical portion 110, the hub flange 112 defining a mounting surface 202 substantially normal to the longitudinal axis L, the mounting surface 202 extending radially beyond the middle cylindrical portion 110. In one embodiment, the middle cylindrical portion 110 may extend longitudinally relative to the mounting surface 202, and the upper cylindrical portion 108 may extend longitudinally relative to the upper surface 200. Though some embodiments are shown with an upper cylindrical portion 108, a middle cylindrical portion 110, and a hub flange 112, an example embodiment need not have multiple cylindrical portions.
The rotor 305 may also include a back iron 325, which guides the magnetic flux in the magnetic circuit and serves as a shield to prevent magnetic flux from the one or more annular magnets 320 or the plurality of coils 315 from escaping the rotor 305 and motor base 118 and interfering with the operation of the read/write head 106. By alternately energizing different coils 315 of the stator 300 and an alternating electromagnetic field is generated that interacts with the magnet 320 of the rotor 305 to provide a torque to the hub 102. The torque applied to the hub 102 causes the hub 102 to rotate.
Generally, one or more disks, separated by spacers, may be mounted on the mounting surface 202 of the hub flange 112 of the hub 102. However, in
The motor base 118 may comprise a generally cylindrical shape defining a central axis C with the back iron 325 disposed at the radially outer region of the shape of the motor base 118. The hub 102, back iron 325 and magnet 320 collectively form an example embodiment of the rotor 305 (the rotor 305 is shown in
The hub 102 is coupled to the motor base 118 such that the longitudinal axis L of the hub 102 is substantially aligned with the central axis C of the motor base. Further, the radius 410 of the motor base 118 is greater than the radius 405 of the hub flange 112 by a radial difference D. By providing the motor base with a radius 410 greater than the radius 405 of the hub flange 112, improved motor efficiency may be achieved as more space may be created within the motor base for thicker wire (which may have lower resistance) or more windings may be provided on the stator or a higher torque from the magnet/stator interaction may be achieved than if the radius 410 of the motor base 118 was equal to the radius 405 of the hub flange 112.
The vertical surface 400 of the hub 102 has a height 425, which provides a vertical separation between the mounting surface 202 and the back iron 325 disposed on the motor base 118. The height 425 of the vertical surface 400 is sized to provide clearance 415 between the mounting surface 202 and the back iron 325 disposed on the motor base 118 such that a read/write head 106 can access an undersurface of the disk mounted to the mounting surface 202. In other words, the height 425 may be sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk in some embodiments. For example, the height 425 of the vertical surface may be 1 mm or more to allow a read/write head 106 to access the undersurface of the disk mounted to the mounting surface 202. Additionally, in order to prevent damage to the read/write head 106, a minimum separation distance 420 is maintained in some embodiments.
Generally, one or more disks, separated by spacers, may be mounted on the mounting surface 202 of the hub flange 112 of the hub 102. However, in
The motor base 118 may comprise a generally cylindrical shape defining a central axis C with the back iron 325 disposed at the radially outer region of the shape of the motor base 118. The hub 102, back iron 325 and magnet 320 collectively form an example embodiment of the rotor 305 (the rotor 305 is shown in
As shown in
As illustrated in
Further, the notch 500 also has a vertical height 505, which provides a vertical separation between the mounting surface 202 and the hub 102. In an embodiment where the radius 405 of the hub 102 is less than the radius 410 of the motor base 118, the vertical height 505 of the notch 500 may provide a vertical separation between the mounting surface 202 and the back iron 325 disposed on the motor base 118. The vertical height 505 of the notch 500 is sized to provide clearance such that a read/write head 106 can access an undersurface of the disk mounted to the mounting surface 202. In other words, the vertical height 505 may be sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk in some embodiments. For example, the height 505 of the notch 500 may be 1 mm or more to allow a read/write head 106 to access the undersurface of the disk mounted to the mounting surface 202.
By forming the notch 500 in the vertical surface of the hub 102, the motor base 118 may be designed with a radius 410 greater than the radius 515 of the Notch 500 formed in the hub flange 112 without adversely affecting access to the under surface of the disk mounted on the mounting surface 202. By increasing the radius 410 of the motor base 118, improved motor efficiency may be achieved as more space may be created within the motor base for thicker wire (which may have lower resistance) or more windings may be provided on the stator or a higher torque from the magnet/stator interaction may be achieved.
As would be apparent to a person of ordinary skill in the art, a horizontal separation or clearance 420 between the vertical surface 400 of the hub 102 and the read/write head 106 may be maintained during operation of the disk drive to prevent damage to the read/write head.
The hub flange 112 also comprises a vertical surface 400 that extends longitudinally relative to the horizontal surface 600 and substantially parallel to the longitudinal axis L. The hub flange 112 has a radius 405, which is defined as the distance between the vertical surface 400 and the longitudinal axis L.
The motor base 118 may comprise a generally cylindrical shape defining a central axis C with the back iron 325 disposed at the radially outer region of the shape of the motor base 118. The hub 102, back iron 325 and magnet 320 collectively form an example embodiment of the rotor 305 (the rotor 305 is shown in
In
In the example embodiment of
The annular spacer 605 also has a mounting surface 615. Generally, one or more disks, separated by spacers, may be mounted on the mounting surface 615 of the annular spacer 605. However, in
The spacer 605 also has a vertical height 610, which provides a vertical separation between the mounting surface 615 and the hub 102. In an embodiment where the radius 405 of the hub 102 is less than the radius 410 of the motor base 118, the spacer 605 may provide a vertical separation between the mounting surface 615 and the back iron 325 disposed on the motor base 118. The vertical height 610 of the spacer 605 is sized to provide clearance such that a read/write head 106 can access an undersurface of the disk mounted to the mounting surface 202. In other words, the vertical height 610 may be sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk in some embodiments. For example, the height of the spacer 605 may be 1 mm or more to allow a read/write head 106 to access the undersurface of the disk mounted to the mounting surface 605.
By coupling the spacer 605 to the hub and mounting a disk on the spacer, the motor base 118 may be designed with a radius 410 greater than the radius 620 of the spacer 605 without adversely affecting access to the under surface of the disk mounted on the mounting surface 615. By increasing the radius 410 of the motor base 118, improved motor efficiency may be achieved as more space may be created within the motor base for thicker wire (which may have lower resistance) or more windings may be provided on the stator or a higher torque from the magnet/stator interaction may be achieved.
As would be apparent to a person of ordinary skill in the art, a horizontal separation or clearance 420 between the vertical surface 400 of the hub 102 and the read/write head 106 may be maintained during operation of the disk drive to prevent damage to the read/write head.
Generally, one or more disks separated by spacers may be mounted on the mounting surface 202 of the hub flange 112 of the hub 102. However, in
In this example embodiment, the hub flange 112 may also comprise a shielding portion 700 which is disposed proximate to the vertical surface 400. This shielding portion 700 is formed by a horizontal shield portion 705 and a vertical shield portion 710. Additionally, the shielding portion 700 of the hub 102 also has a radius 715, which is defined as the distance between the vertical shield portion 710 and a longitudinal axis L.
The motor base 118 may comprise a generally cylindrical shape defining a central axis C with one or more annularly shaped magnets 320 disposed at the radially outer region of the shape of the motor base 118. In this embodiment, the motor base 118 does not have a back iron 325 disposed at the radially outer region thereof. Instead, in this embodiment the shielding portion 700 of the hub 102 serves as a back iron, by guiding the magnetic flux in the magnetic circuit and serving as a shield to prevent magnetic flux from the one or more annular magnets 320 or the plurality of coils 315 from escaping the rotor 305 (The hub 102, back iron 325 and magnet 320 collectively form the rotor 305 (the rotor 305 is shown in
As shown in
As illustrated in
Similar to the first example embodiment discussed with respect to
As would be apparent to a person of ordinary skill in the art, a horizontal separation or clearance 420 between the vertical surface 400 of the hub 102 and the read/write head 106 may be maintained during operation of the disk drive to prevent damage to the read/write head.
As described herein, at least some of the acts comprising the method 800 may be orchestrated by a processor according to an automatic disk drive manufacturing algorithm, based at least in part on computer-readable instructions stored in computer-readable memory and executable by the processor. A manual implementation of one or more acts of the method 800 may also be employed, in other embodiments.
At act 810, a hub 102, a disk 116 and a motor base 118 are provided. The hub 102 may define a mounting surface 202 and a vertical surface 400. In some embodiments, a notch 500 may be formed in the vertical surface 400 of the hub 102. Additionally, in some embodiments, the hub 102 may also include a shielding portion disposed proximate to the vertical surface 400 of the hub. The shielding portion may have a radius greater than the radius 405 of the vertical surface 400.
The motor base 118 may have a radius 410 greater than the radius 405 of the hub 102. In some embodiments, however, the motor base 118 may have a radius 410 that is equal to or less than the radius 405 of the hub 102. In some embodiments the motor base 118 may have a radius 410 greater than the radius 515 of the notch 500.
The disk 116 may define an opening there through having an inner diameter. The disk 116 may be formed in a variety of ways. In one embodiment, the media of the disk 116 may be formed, and then the first disk 116 may be stamped or otherwise machined to define the first opening.
The hub 102 may also be formed in a variety of ways. In one embodiment, the hub 102 may be machined to form the mounting surface 202 and the vertical surface 400. In other embodiments, the hub 102 may be cast, molded or machined to form the mounting surface 202 and the vertical surface 400. In still other embodiments, other manufacturing techniques may be employed.
Similarly, the manufacturing method of the motor base 118 is not particularly limited and may include machining, casting, molding, or any other methods as would be apparent to a person of ordinary skill in the art.
At act 815, the motor base 118 is positioned proximate to a lower surface of the hub 102. More specifically, a longitudinal access L of the hub 102 may be aligned with a central access C of the motor base 118. In some embodiments, a machine vision system may help align the motor base 118 and the hub 102.
At act 820, the motor base 118 is coupled to the hub 102 to form the spindle motor 120. The motor base 118 may be coupled to the hub 102 in a variety of ways. For example, a clamp may be used may be used to secure the hub 1022 motor base 118. In other embodiments, other structures for coupling these components may be used.
At act 825, the disk 116 is positioned against the mounting surface 202 of the hub 102. The disk 116 may be positioned in physical contact with the mounting surface 202. In some embodiments, a machine vision system may help align the disk 116 and the mounting surface 202 of the hub 102.
When the disk 116 is being positioned against the mounting surface 202 of the hub 102, a space is provided by the vertical surface 400 of the hub 102, the height being sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk 116 in some embodiments. In some embodiments, the space is provided by the notch 500 formed in the vertical surface 400 of the hub 102. In some embodiments, the space is formed between the hub 102 and the disk 116. In some embodiments, the space is formed between the disk 116 and the motor base 118. In some embodiments, the space is formed between the disk and the shielding portion (e.g. the back iron is formed as a portion of the hub) of the hub.
At act 830, the disk 116 is coupled to the hub 102 to form a part of the disk drive 100. The disk 116 may be coupled to the hub 102 in a variety of ways. In one embodiment, a disk clamp may be used to secure the disk 116 against the hub 102. In other embodiments, other structures for coupling these components may be used.
In some embodiments, multiple disks may be positioned against and coupled to the hub 102 with spacers formed there between.
As described herein, at least some of the acts comprising the method 900 may be orchestrated by a processor according to an automatic disk drive manufacturing algorithm, based at least in part on computer-readable instructions stored in computer-readable memory and executable by the processor. A manual implementation of one or more acts of the method 900 may also be employed, in other embodiments.
At act 910, a hub 102, a disk 116, a motor base 118, and a spacer 605 are provided. The hub 102 may define a horizontal surface 600 and a vertical surface 400.
The motor base 118 may have a radius 410 greater than the radius 405 of the hub 102. In some embodiments, however, the motor base 118 may have a radius 410 that is equal to or less than the radius 405 of the hub 102.
The disk 116 may define an opening there through having an inner diameter. The disk 116 may be formed in a variety of ways. In one embodiment, the media of the disk 116 may be formed, and then the first disk 116 may be stamped or otherwise machined to define the first opening.
The spacer 605 may have a generally annular shape, with a hole formed in the middle. However, embodiments of the spacer 605 are not limited to this shape. The radius 620 of the spacer 605 may be less than the radius of the motor base 118.
The hub 102 may also be formed in a variety of ways. In one embodiment, the hub 102 may be machined to form the horizontal surface 600 and the vertical surface 400. In other embodiments, the hub 102 may be cast, molded or machined to form the horizontal surface 600 and the vertical surface 400. In still other embodiments, other manufacturing techniques may be employed.
Similarly, the manufacturing method of the motor base 118 and of the spacer 605 are not particularly limited and may include machining, casting, molding, or any other methods as would be apparent to a person of ordinary skill in the art.
At act 915, the motor base 118 is positioned proximate to a lower surface of the hub 102. More specifically, a longitudinal access L of the hub 102 may be aligned with a central access C of the motor base 118. In some embodiments, a machine vision system may help align the motor base 118 and the hub 102.
At act 920, the motor base 118 is coupled to the hub 102 to form the spindle motor 120. The motor base 118 may be coupled to the hub 102 in a variety of ways. For example, a clamp may be used may be used to secure the hub 102 motor base 118. In other embodiments, other structures for coupling these components may be used.
At act 925, a lower surface of the spacer 605 is positioned against the horizontal surface 600 of the hub 102. The spacer 605 may be positioned in physical contact with the horizontal surface 600 of the hub 102. In some embodiments, a machine vision system may help align the spacer 605 and the horizontal surface 600 of the hub 102.
At act 930, the spacer 605 is coupled to the hub 102. The spacer 605 may be coupled to the hub 102 the variety ways. For example, pressure fitting or a clamping structure may be used. In other embodiments, other structures for coupling these components may be used
At act 935, the disk 116 is positioned against the mounting surface 615 of the spacer 605. The disk 116 may be positioned in physical contact with the mounting surface 615. In some embodiments, a machine vision system may help align the disk 116 and the mounting surface 615 of the spacer 605.
When the disk 116 is being positioned against the mounting surface 615 of the spacer 605, a space is provided by the height 610 of the spacer 605, the height of the space being sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk 116 in some embodiments. In some embodiments, the space is formed between the hub 102 and the disk 116. In some embodiments, the space is formed between the disk 116 and the motor base 118.
At act 940, the disk 116 is coupled to the spacer 605 to form a part of the disk drive 100. The disk 116 may be coupled to the spacer 605 in a variety of ways. In one embodiment, a disk clamp may be used to secure the disk 116 against the spacer 605. In other embodiments, other structures for coupling these components may be used.
In some embodiments, multiple disks may be positioned against and coupled to the spacer with additional spacers formed there between.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more programs executed by one or more processors, as one or more programs executed by one or more controllers (e.g., microcontrollers), as firmware, or as virtually any combination thereof.
This application is a divisional application Ser. No. 13/625,692, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5031061 | Hatch | Jul 1991 | A |
5235482 | Schmitz | Aug 1993 | A |
5592349 | Morehouse et al. | Jan 1997 | A |
5982581 | Kazmierczak et al. | Nov 1999 | A |
6046889 | Berding et al. | Apr 2000 | A |
6052890 | Malagrino, Jr. et al. | Apr 2000 | A |
6061206 | Foisy et al. | May 2000 | A |
6101876 | Brooks et al. | Aug 2000 | A |
6147831 | Kennedy et al. | Nov 2000 | A |
6151189 | Brooks | Nov 2000 | A |
6151197 | Larson et al. | Nov 2000 | A |
6185067 | Chamberlain | Feb 2001 | B1 |
6185074 | Wang et al. | Feb 2001 | B1 |
6208486 | Gustafson et al. | Mar 2001 | B1 |
6215616 | Phan et al. | Apr 2001 | B1 |
6272694 | Knoth et al. | Aug 2001 | B1 |
6288866 | Butler et al. | Sep 2001 | B1 |
6292333 | Blumentritt et al. | Sep 2001 | B1 |
6344950 | Watson et al. | Feb 2002 | B1 |
6349464 | Codilian et al. | Feb 2002 | B1 |
6388873 | Brooks et al. | May 2002 | B1 |
6417979 | Patton, III et al. | Jul 2002 | B1 |
6417991 | Onda | Jul 2002 | B1 |
6421208 | Oveyssi | Jul 2002 | B1 |
6441998 | Abrahamson | Aug 2002 | B1 |
6462914 | Oveyssi et al. | Oct 2002 | B1 |
6466398 | Butler et al. | Oct 2002 | B1 |
6469871 | Wang | Oct 2002 | B1 |
6502300 | Casey et al. | Jan 2003 | B1 |
6519116 | Lin et al. | Feb 2003 | B1 |
6529345 | Butler et al. | Mar 2003 | B1 |
6529351 | Oveyssi et al. | Mar 2003 | B1 |
6535358 | Hauert et al. | Mar 2003 | B1 |
6545382 | Bennett | Apr 2003 | B1 |
6549381 | Watson | Apr 2003 | B1 |
6560065 | Yang et al. | May 2003 | B1 |
6563668 | Suwito | May 2003 | B1 |
6571460 | Casey et al. | Jun 2003 | B1 |
6574073 | Hauert et al. | Jun 2003 | B1 |
6580574 | Codilian | Jun 2003 | B1 |
6594111 | Oveyssi et al. | Jul 2003 | B1 |
6603620 | Berding | Aug 2003 | B1 |
6618222 | Watkins et al. | Sep 2003 | B1 |
6624966 | Ou-Yang et al. | Sep 2003 | B1 |
6624980 | Watson et al. | Sep 2003 | B1 |
6624983 | Berding | Sep 2003 | B1 |
6628473 | Codilian et al. | Sep 2003 | B1 |
6636380 | Goeke et al. | Oct 2003 | B2 |
6654200 | Alexander et al. | Nov 2003 | B1 |
6657811 | Codilian | Dec 2003 | B1 |
6661597 | Codilian et al. | Dec 2003 | B1 |
6661603 | Watkins et al. | Dec 2003 | B1 |
6674600 | Codilian et al. | Jan 2004 | B1 |
6690637 | Codilian | Feb 2004 | B1 |
6693767 | Butler | Feb 2004 | B1 |
6693773 | Sassine | Feb 2004 | B1 |
6697217 | Codilian | Feb 2004 | B1 |
6698286 | Little et al. | Mar 2004 | B1 |
6700736 | Wu et al. | Mar 2004 | B1 |
6704167 | Scura et al. | Mar 2004 | B1 |
6707637 | Codilian et al. | Mar 2004 | B1 |
6707641 | Oveyssi et al. | Mar 2004 | B1 |
6710980 | Hauert et al. | Mar 2004 | B1 |
6710981 | Oveyssi et al. | Mar 2004 | B1 |
6728062 | Ou-Yang et al. | Apr 2004 | B1 |
6728063 | Gustafson et al. | Apr 2004 | B1 |
6731470 | Oveyssi | May 2004 | B1 |
6735033 | Codilian et al. | May 2004 | B1 |
6741428 | Oveyssi | May 2004 | B1 |
6751051 | Garbarino | Jun 2004 | B1 |
6754042 | Chiou et al. | Jun 2004 | B1 |
6757132 | Watson et al. | Jun 2004 | B1 |
6759784 | Gustafson et al. | Jul 2004 | B1 |
6781780 | Codilian | Aug 2004 | B1 |
6781787 | Codilian et al. | Aug 2004 | B1 |
6781791 | Griffin et al. | Aug 2004 | B1 |
6790066 | Klein | Sep 2004 | B1 |
6791791 | Alfred et al. | Sep 2004 | B1 |
6791801 | Oveyssi | Sep 2004 | B1 |
6795262 | Codilian et al. | Sep 2004 | B1 |
6798603 | Singh et al. | Sep 2004 | B1 |
6801389 | Berding et al. | Oct 2004 | B1 |
6801404 | Oveyssi | Oct 2004 | B1 |
6816342 | Oveyssi | Nov 2004 | B1 |
6816343 | Oveyssi | Nov 2004 | B1 |
6825622 | Ryan et al. | Nov 2004 | B1 |
6826009 | Scura et al. | Nov 2004 | B1 |
6831810 | Butler et al. | Dec 2004 | B1 |
6839199 | Alexander, Jr. et al. | Jan 2005 | B1 |
6844996 | Berding et al. | Jan 2005 | B1 |
6847504 | Bennett et al. | Jan 2005 | B1 |
6847506 | Lin et al. | Jan 2005 | B1 |
6856491 | Oveyssi | Feb 2005 | B1 |
6856492 | Oveyssi | Feb 2005 | B2 |
6862154 | Subrahmanyam et al. | Mar 2005 | B1 |
6862156 | Lin et al. | Mar 2005 | B1 |
6862176 | Codilian et al. | Mar 2005 | B1 |
6865049 | Codilian et al. | Mar 2005 | B1 |
6865055 | Ou-Yang et al. | Mar 2005 | B1 |
6867946 | Berding et al. | Mar 2005 | B1 |
6867950 | Lin | Mar 2005 | B1 |
6876514 | Little | Apr 2005 | B1 |
6879466 | Oveyssi et al. | Apr 2005 | B1 |
6888697 | Oveyssi | May 2005 | B1 |
6888698 | Berding et al. | May 2005 | B1 |
6891696 | Ou-Yang et al. | May 2005 | B1 |
6898052 | Oveyssi | May 2005 | B1 |
6900961 | Butler | May 2005 | B1 |
6906880 | Codilian | Jun 2005 | B1 |
6906897 | Oveyssi | Jun 2005 | B1 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6922308 | Butler | Jul 2005 | B1 |
6930848 | Codilian et al. | Aug 2005 | B1 |
6930857 | Lin et al. | Aug 2005 | B1 |
6934126 | Berding et al. | Aug 2005 | B1 |
6937444 | Oveyssi | Aug 2005 | B1 |
6940698 | Lin et al. | Sep 2005 | B2 |
6941642 | Subrahmanyam et al. | Sep 2005 | B1 |
6947251 | Oveyssi et al. | Sep 2005 | B1 |
6950275 | Ali et al. | Sep 2005 | B1 |
6950284 | Lin | Sep 2005 | B1 |
6952318 | Ngo | Oct 2005 | B1 |
6954329 | Ojeda et al. | Oct 2005 | B1 |
6958884 | Ojeda et al. | Oct 2005 | B1 |
6958890 | Lin et al. | Oct 2005 | B1 |
6961212 | Gustafson et al. | Nov 2005 | B1 |
6961218 | Lin et al. | Nov 2005 | B1 |
6963469 | Gustafson et al. | Nov 2005 | B1 |
6965500 | Hanna et al. | Nov 2005 | B1 |
6967800 | Chen et al. | Nov 2005 | B1 |
6967804 | Codilian | Nov 2005 | B1 |
6970329 | Oveyssi et al. | Nov 2005 | B1 |
6972924 | Chen et al. | Dec 2005 | B1 |
6972926 | Codilian | Dec 2005 | B1 |
6975476 | Berding | Dec 2005 | B1 |
6979931 | Gustafson et al. | Dec 2005 | B1 |
6980391 | Haro | Dec 2005 | B1 |
6980401 | Narayanan et al. | Dec 2005 | B1 |
6982853 | Oveyssi et al. | Jan 2006 | B1 |
6989953 | Codilian | Jan 2006 | B1 |
6990727 | Butler et al. | Jan 2006 | B1 |
6996893 | Ostrander et al. | Feb 2006 | B1 |
7000309 | Klassen et al. | Feb 2006 | B1 |
7006324 | Oveyssi et al. | Feb 2006 | B1 |
7013731 | Szeremeta et al. | Mar 2006 | B1 |
7031104 | Butt et al. | Apr 2006 | B1 |
7035053 | Oveyssi et al. | Apr 2006 | B1 |
7050270 | Oveyssi et al. | May 2006 | B1 |
7057852 | Butler et al. | Jun 2006 | B1 |
7062837 | Butler | Jun 2006 | B1 |
7064921 | Yang et al. | Jun 2006 | B1 |
7064922 | Alfred et al. | Jun 2006 | B1 |
7064932 | Lin et al. | Jun 2006 | B1 |
7085098 | Yang et al. | Aug 2006 | B1 |
7085108 | Oveyssi et al. | Aug 2006 | B1 |
7092216 | Chang et al. | Aug 2006 | B1 |
7092251 | Henry | Aug 2006 | B1 |
7099099 | Codilian et al. | Aug 2006 | B1 |
7113371 | Hanna et al. | Sep 2006 | B1 |
7142397 | Venk | Nov 2006 | B1 |
7145753 | Chang et al. | Dec 2006 | B1 |
RE39478 | Hatch et al. | Jan 2007 | E |
7161768 | Oveyssi | Jan 2007 | B1 |
7161769 | Chang et al. | Jan 2007 | B1 |
7180711 | Chang et al. | Feb 2007 | B1 |
7193819 | Chen et al. | Mar 2007 | B1 |
7209317 | Berding et al. | Apr 2007 | B1 |
7209319 | Watkins et al. | Apr 2007 | B1 |
D542289 | Diebel | May 2007 | S |
7212377 | Ou-Yang et al. | May 2007 | B1 |
7215513 | Chang et al. | May 2007 | B1 |
7215514 | Yang et al. | May 2007 | B1 |
7224551 | Ou-Yang et al. | May 2007 | B1 |
D543981 | Diebel | Jun 2007 | S |
7227725 | Chang et al. | Jun 2007 | B1 |
7239475 | Lin et al. | Jul 2007 | B1 |
7271978 | Santini et al. | Sep 2007 | B1 |
7274534 | Choy et al. | Sep 2007 | B1 |
7280311 | Ou-Yang et al. | Oct 2007 | B1 |
7280317 | Little et al. | Oct 2007 | B1 |
7280319 | McNab | Oct 2007 | B1 |
7292406 | Huang | Nov 2007 | B1 |
7298584 | Yamada et al. | Nov 2007 | B1 |
7327531 | Elsing | Feb 2008 | B2 |
7327537 | Oveyssi | Feb 2008 | B1 |
7339268 | Ho et al. | Mar 2008 | B1 |
7342746 | Lin | Mar 2008 | B1 |
RE40203 | Hatch et al. | Apr 2008 | E |
7353524 | Lin et al. | Apr 2008 | B1 |
7369368 | Mohajerani | May 2008 | B1 |
7371041 | Pfeiffer et al. | May 2008 | B2 |
7372670 | Oveyssi | May 2008 | B1 |
7375929 | Chang et al. | May 2008 | B1 |
7379266 | Ou-Yang et al. | May 2008 | B1 |
7381904 | Codilian | Jun 2008 | B1 |
7385784 | Berding et al. | Jun 2008 | B1 |
7388731 | Little et al. | Jun 2008 | B1 |
7420771 | Hanke et al. | Sep 2008 | B1 |
7434987 | Gustafson et al. | Oct 2008 | B1 |
7436625 | Chiou et al. | Oct 2008 | B1 |
7440234 | Cheng et al. | Oct 2008 | B1 |
7477488 | Zhang et al. | Jan 2009 | B1 |
7477489 | Chen et al. | Jan 2009 | B1 |
7484291 | Ostrander et al. | Feb 2009 | B1 |
7505231 | Golgolab et al. | Mar 2009 | B1 |
7529064 | Huang et al. | May 2009 | B1 |
7538981 | Pan | May 2009 | B1 |
7561374 | Codilian et al. | Jul 2009 | B1 |
7567410 | Zhang et al. | Jul 2009 | B1 |
7576955 | Yang et al. | Aug 2009 | B1 |
7593181 | Tsay et al. | Sep 2009 | B1 |
7605999 | Kung et al. | Oct 2009 | B1 |
7609486 | Little | Oct 2009 | B1 |
7610672 | Liebman | Nov 2009 | B1 |
7633721 | Little et al. | Dec 2009 | B1 |
7633722 | Larson et al. | Dec 2009 | B1 |
7656609 | Berding et al. | Feb 2010 | B1 |
7660075 | Lin et al. | Feb 2010 | B1 |
7672083 | Yu et al. | Mar 2010 | B1 |
7684155 | Huang et al. | Mar 2010 | B1 |
7686555 | Larson et al. | Mar 2010 | B1 |
7709078 | Sevier et al. | May 2010 | B1 |
7715149 | Liebman et al. | May 2010 | B1 |
7729091 | Huang et al. | Jun 2010 | B1 |
7751145 | Lin et al. | Jul 2010 | B1 |
7826173 | Lee | Nov 2010 | B2 |
7826177 | Zhang et al. | Nov 2010 | B1 |
7852601 | Little | Dec 2010 | B1 |
7864488 | Pan | Jan 2011 | B1 |
7898770 | Zhang et al. | Mar 2011 | B1 |
7903369 | Codilian et al. | Mar 2011 | B1 |
7907369 | Pan | Mar 2011 | B1 |
7911742 | Chang et al. | Mar 2011 | B1 |
7926167 | Liebman et al. | Apr 2011 | B1 |
7957095 | Tsay et al. | Jun 2011 | B1 |
7957102 | Watson et al. | Jun 2011 | B1 |
7961436 | Huang et al. | Jun 2011 | B1 |
8004782 | Nojaba et al. | Aug 2011 | B1 |
8009384 | Little | Aug 2011 | B1 |
8018687 | Little et al. | Sep 2011 | B1 |
8031431 | Berding et al. | Oct 2011 | B1 |
8064168 | Zhang et al. | Nov 2011 | B1 |
8064170 | Pan | Nov 2011 | B1 |
8068314 | Pan et al. | Nov 2011 | B1 |
8077432 | Hanlon et al. | Dec 2011 | B2 |
8081401 | Huang et al. | Dec 2011 | B1 |
8100017 | Blick et al. | Jan 2012 | B1 |
8116038 | Zhang et al. | Feb 2012 | B1 |
8125740 | Yang et al. | Feb 2012 | B1 |
8142671 | Pan | Mar 2012 | B1 |
8156633 | Foisy | Apr 2012 | B1 |
8159785 | Lee et al. | Apr 2012 | B1 |
8189298 | Lee et al. | May 2012 | B1 |
8194348 | Jacoby et al. | Jun 2012 | B2 |
8194354 | Zhang et al. | Jun 2012 | B1 |
8194355 | Pan et al. | Jun 2012 | B1 |
8203806 | Larson et al. | Jun 2012 | B2 |
8223453 | Norton et al. | Jul 2012 | B1 |
8228631 | Tsay et al. | Jul 2012 | B1 |
8233239 | Teo et al. | Jul 2012 | B1 |
8248733 | Radavicius et al. | Aug 2012 | B1 |
8259417 | Ho et al. | Sep 2012 | B1 |
8274760 | Zhang et al. | Sep 2012 | B1 |
8276256 | Zhang et al. | Oct 2012 | B1 |
8279560 | Pan | Oct 2012 | B1 |
8284514 | Garbarino | Oct 2012 | B1 |
8289646 | Heo et al. | Oct 2012 | B1 |
8300352 | Larson et al. | Oct 2012 | B1 |
8305708 | Tacklind | Nov 2012 | B2 |
8320086 | Moradnouri et al. | Nov 2012 | B1 |
8322021 | Berding et al. | Dec 2012 | B1 |
8345387 | Nguyen | Jan 2013 | B1 |
8363351 | Little | Jan 2013 | B1 |
8369044 | Howie et al. | Feb 2013 | B2 |
8411389 | Tian et al. | Apr 2013 | B1 |
8416522 | Schott et al. | Apr 2013 | B1 |
8416534 | Heo et al. | Apr 2013 | B1 |
8422171 | Guerini | Apr 2013 | B1 |
8422175 | Oveyssi | Apr 2013 | B1 |
8432641 | Nguyen | Apr 2013 | B1 |
8437101 | German et al. | May 2013 | B1 |
8438721 | Sill | May 2013 | B1 |
8446688 | Quines et al. | May 2013 | B1 |
8451559 | Berding et al. | May 2013 | B1 |
8467153 | Pan et al. | Jun 2013 | B1 |
8472131 | Ou-Yang et al. | Jun 2013 | B1 |
8477460 | Liebman | Jul 2013 | B1 |
8488270 | Brause et al. | Jul 2013 | B2 |
8488280 | Myers et al. | Jul 2013 | B1 |
8499652 | Tran et al. | Aug 2013 | B1 |
8514514 | Berding et al. | Aug 2013 | B1 |
8530032 | Sevier et al. | Sep 2013 | B1 |
8542465 | Liu et al. | Sep 2013 | B2 |
8547664 | Foisy et al. | Oct 2013 | B1 |
8553356 | Heo et al. | Oct 2013 | B1 |
8553366 | Hanke | Oct 2013 | B1 |
8553367 | Foisy et al. | Oct 2013 | B1 |
8616900 | Lion | Dec 2013 | B1 |
8665555 | Young et al. | Mar 2014 | B1 |
8667667 | Nguyen et al. | Mar 2014 | B1 |
8693139 | Tian et al. | Apr 2014 | B2 |
8693140 | Weiher et al. | Apr 2014 | B1 |
8699179 | Golgolab et al. | Apr 2014 | B1 |
8702998 | Guerini | Apr 2014 | B1 |
8705201 | Casey et al. | Apr 2014 | B2 |
8705209 | Seymour et al. | Apr 2014 | B2 |
8717706 | German et al. | May 2014 | B1 |
8743509 | Heo et al. | Jun 2014 | B1 |
8755148 | Howie et al. | Jun 2014 | B1 |
8756776 | Chen et al. | Jun 2014 | B1 |
8760800 | Brown et al. | Jun 2014 | B1 |
8760814 | Pan et al. | Jun 2014 | B1 |
8760816 | Myers et al. | Jun 2014 | B1 |
8773812 | Gustafson et al. | Jul 2014 | B1 |
8780491 | Perlas et al. | Jul 2014 | B1 |
8780504 | Teo et al. | Jul 2014 | B1 |
8792205 | Boye-Doe et al. | Jul 2014 | B1 |
8797677 | Heo et al. | Aug 2014 | B2 |
8797689 | Pan et al. | Aug 2014 | B1 |
8824095 | Dougherty | Sep 2014 | B1 |
8824098 | Huang et al. | Sep 2014 | B1 |
20050185329 | Miyajima et al. | Aug 2005 | A1 |
20050185330 | Lee et al. | Aug 2005 | A1 |
20090196540 | Maruyama et al. | Aug 2009 | A1 |
20110212281 | Jacoby et al. | Sep 2011 | A1 |
20130038964 | Garbarino et al. | Feb 2013 | A1 |
20130091698 | Banshak, Jr. et al. | Apr 2013 | A1 |
20130155546 | Heo et al. | Jun 2013 | A1 |
20130290988 | Watson et al. | Oct 2013 | A1 |
Entry |
---|
Notice of Allowance dated Apr. 25, 2014 from U.S. Appl. No. 13/625,692, 7 pages. |
Office Action dated Jan. 29, 2014 from U.S. Appl. No. 13/625,692, 7 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 13625692 | Sep 2012 | US |
Child | 14448689 | US |