Spindle motor magnet diameter increase above head plane

Information

  • Patent Grant
  • 9007716
  • Patent Number
    9,007,716
  • Date Filed
    Thursday, July 31, 2014
    10 years ago
  • Date Issued
    Tuesday, April 14, 2015
    10 years ago
Abstract
A spindle motor for a disk drive including a hub defining a longitudinal axis having a hub flange defining a mounting surface extending substantially normal to the longitudinal axis, wherein the hub flange of the hub extends longitudinally relative to the mounting surface to define a vertical surface; and a motor base coupled to the hub proximate to the hub flange of the hub, the motor base having a central axis substantially aligned with the longitudinal axis, wherein the motor base extends longitudinally, wherein a radius of the motor base is greater than a radius of the hub flange of the hub.
Description
FIELD

The present disclosure relates generally to information storage devices and in particular to a disk drive having spindle motor having a motor base and the hub having a diameter less than the motor base.


BACKGROUND

Disk drives typically include a spindle motor for rotating one or more disks in order to read data from and write data to surfaces of the disks. The spindle motor, an example of which is shown in FIG. 1A, includes motor base 1005 made up of a stator having a plurality stator teeth 310, which are wrapped with wire to form a plurality of coils 315, and a rotor having one or more rotor magnets 320 and a rotating hub 1000 coupled to the motor base on which the disks may be mounted and clamped. Different coils 315 of the stator are alternately energized to form a changing electromagnetic field that pulls/pushes the rotor magnets, thereby rotating the hub. Rotation of the hub, in turn, results in rotation of the disks mounted thereto.


In one type of current spindle motor designs, the motor base 1005, which includes the magnet 320 and back iron 325, is vertically spaced separated from the plane that the heads operate in. A hub 1000 is provided that supports the disk with the motor base 1005 being positioned below the hub 1000. The outer diameter of the motor base 1005 is sized to have the same outer diameter as of the hub 1000 having a disk mounting surface 1030 for supporting a disk (not shown).





BRIEF DESCRIPTION OF THE DRAWINGS

A general architecture that implements the various features of the disclosure will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of the disclosure. Throughout the drawings, reference numbers are reused to indicate correspondence between referenced elements.



FIG. 1A is a section view of a related hub and motor base.



FIG. 1B is an exploded, perspective view generally illustrating a disk drive including an exemplary motor hub, according to an embodiment.



FIG. 2 is a top view illustrating a hub of FIG. 1B, according to an example embodiment.



FIG. 3 is a bottom view illustrating the motor base of FIG. 1B, according to an example embodiment.



FIG. 4 is a partial section view of the hub and motor base of FIG. 1B, according to one example embodiment.



FIG. 5 is a partial section view of the hub and motor base of FIG. 1B, according to a second example embodiment.



FIG. 6 is a partial section view of the hub and motor base of FIG. 1B, according to a third example embodiment.



FIG. 7 is a partial section view of the hub and motor base of FIG. 1B, according to a fourth example embodiment.



FIG. 8 illustrates a flowchart for a method of manufacturing a disk drive, according to one or more example embodiments.



FIG. 9 illustrates a flowchart for a second method of manufacturing a disk drive, according to one or more example embodiments.





DETAILED DESCRIPTION

Referring to FIGS. 1B and 4, a disk drive 100 is illustrated, according to one embodiment. The disk drive 100 comprises a hub 102, a disk 104 physically contacting and supported by at least one mounting surface of the hub 102, and at least one head 106 operable to write to and read from the disk 104. In one embodiment, the hub 102 defines a longitudinal axis L and comprises an upper cylindrical portion 108, and a middle cylindrical portion 110 proximate to the upper cylindrical portion 108, the middle cylindrical portion 110 defining an upper surface substantially normal to the longitudinal axis L, the upper surface extending radially beyond the upper cylindrical portion 108. The hub 102 may further comprise a hub flange 112 proximate the middle cylindrical portion 110, the hub flange 112 defining a mounting surface substantially normal to the longitudinal axis L, the mounting surface extending radially beyond the middle cylindrical portion 110.


As illustrated herein, the disk drive 100 comprises a magnetic disk drive, and the structures and methods described herein will be described in terms of such a disk drive. However, these structures and methods may also be applied to and/or implemented in other disk drives, including, e.g., optical and magneto-optical disk drives.


The disks 104 may comprise any of a variety of magnetic or optical disk media having a substantially concentric opening 114 defined there through. Of course, in other embodiments, the disk drive 100 may include more or fewer disks. For example, the disk drive 100 may include one disk or it may include two or more disks. The disks 104 each include a disk surface 116, as well as an opposing disk surface not visible in FIG. 1B. In one embodiment, the disk surfaces 116 comprise a plurality of generally concentric tracks for storing data.


As illustrated, the hub 102 may be coupled to and support the disks 104. The hub 102 is rotatably attached to a motor base 118 of the disk drive 100, and may form one component of a motor 120 (e.g., a spindle motor). The motor 120 and the hub 102 may be configured to rotate the disks 104 about the longitudinal axis L. As discussed in greater detail below, the hub 102 may comprise vertical and horizontal surfaces that form mounting surfaces or spaces between various components.


The disk drive 100 may further include a cover 122, which, together with the motor base 118, may house the disks 104 and the motor 120. The disk drive 100 may also include a head stack assembly (“HSA”) 124 rotatably attached to the motor base 118. The HSA 124 may include an actuator 126 comprising an actuator body 128 and one or more actuator arms 130 extending from the actuator body 128. The actuator body 128 may further be configured to rotate about an actuator pivot axis.


One or two head gimbal assemblies (“HGA”) 132 may be attached to a distal end of each actuator arm 130. Each HGA 132 includes a head 106 operable to write to and read from a corresponding disk 104. The HSA 124 may further include a coil 134 through which a changing electrical current is passed during operation. The coil 134 interacts with one or more magnets 136 that are attached to the motor base 118 to form a voice coil motor (“VCM”) for controllably rotating the HSA 124.


The head 106 may comprise any of a variety of heads for writing to and reading from a disk 104. In magnetic recording applications, a head 106 may include an air bearing slider and a magnetic transducer that includes a writer and a read element. The magnetic transducer's writer may be of a longitudinal or perpendicular design, and the read element of the magnetic transducer may be inductive or magnetoresistive. In optical and magneto-optical recording applications, the head may include a mirror and an objective lens for focusing laser light on to an adjacent disk surface.


The disk drive 100 may further include a printed circuit board (“PCB”) (not shown). The PCB may include, inter alia, a disk drive controller for controlling read and write operations and a servo control system for generating servo control signals to position the actuator arms 130 relative to the disks 104.



FIGS. 2-7 show a number of views of the exemplary hub 102 and the motor base 118, which may together form the spindle motor 120, and are shown separated from the disk drive 100. FIG. 2 shows a top view of the hub 102. FIG. 3 shows a bottom view of the motor base 118. FIGS. 4-7 show partial section views of the hub 102 and motor base 118 according to different example embodiments. Like elements labeled with similar reference numerals throughout the different embodiments of FIGS. 4-7.


As illustrated, the hub 102 defines a longitudinal axis L and may comprise (1) an upper cylindrical portion 108; (2) a middle cylindrical portion 110 proximate the upper cylindrical portion 108, the middle cylindrical portion 110 defining an upper surface 200 substantially normal to the longitudinal axis L; and (3) a hub flange 112 proximate the middle cylindrical portion 110, the hub flange 112 defining a mounting surface 202 substantially normal to the longitudinal axis L, the mounting surface 202 extending radially beyond the middle cylindrical portion 110. In one embodiment, the middle cylindrical portion 110 may extend longitudinally relative to the mounting surface 202, and the upper cylindrical portion 108 may extend longitudinally relative to the upper surface 200. Though some embodiments are shown with an upper cylindrical portion 108, a middle cylindrical portion 110, and a hub flange 112, an example embodiment need not have multiple cylindrical portions.



FIG. 3 illustrates a bottom view of an example embodiment of a motor base 118. The motor base 118 is generally cylindrical, and comprises a stator 300, which interacts with a rotor 305 comprising one or more magnets 320 and the hub 102. The stator 300 comprises a plurality of stator teeth 310, with wire wound around each stator tooth to form a plurality of wire windings or coils 315. The rotor 305 is formed from one or more magnets 320 having an annular shape. The material of the one or more magnets 320 is not particularly limited and may include a rare-earth magnet, formed of a material such as a neodymium, a ferrite magnet, or any other type of magnet as would be apparent to a person of ordinary skill in the art.


The rotor 305 may also include a back iron 325, which guides the magnetic flux in the magnetic circuit and serves as a shield to prevent magnetic flux from the one or more annular magnets 320 or the plurality of coils 315 from escaping the rotor 305 and motor base 118 and interfering with the operation of the read/write head 106. By alternately energizing different coils 315 of the stator 300 and an alternating electromagnetic field is generated that interacts with the magnet 320 of the rotor 305 to provide a torque to the hub 102. The torque applied to the hub 102 causes the hub 102 to rotate.



FIG. 4 illustrates a first example embodiment of a spindle motor comprising a hub 102 and a motor base 118. In this embodiment, the hub 102 defines a longitudinal axis L and may comprise an upper cylindrical portion 108, a middle cylindrical portion 110 proximate to the upper cylindrical portion 108 and defining an upper surface 200, and a hub flange 112 defining a mounting surface 202 substantially normal to the longitudinal axis L. Again, though this embodiment is shown with an upper cylindrical portion 108, a middle cylindrical portion 110, and a hub flange 112, an example embodiment need not have multiple cylindrical portions.


Generally, one or more disks, separated by spacers, may be mounted on the mounting surface 202 of the hub flange 112 of the hub 102. However, in FIG. 4, the one or more disks are omitted so that other components may more clearly be shown. The hub flange 112 also comprises a vertical surface 400 that extends longitudinally relative to the mounting surface 202 and substantially parallel to the longitudinal axis L. The hub flange 112 has a radius 405, which is defined as the distance between the vertical surface 400 and the longitudinal axis L.


The motor base 118 may comprise a generally cylindrical shape defining a central axis C with the back iron 325 disposed at the radially outer region of the shape of the motor base 118. The hub 102, back iron 325 and magnet 320 collectively form an example embodiment of the rotor 305 (the rotor 305 is shown in FIG. 3). Additionally, the rotor 305 may also include a shaft 430 on which the hub 102 is mounted. The shaft 430 may be a spinning shaft or a fixed, stationary shaft connected to the hub 102 by a bearing member (not shown). The motor base 118 has a radius 410, which is defined as the distance between the central axis C and the radially outer wall of the cylindrical shape of the motor base 118.


The hub 102 is coupled to the motor base 118 such that the longitudinal axis L of the hub 102 is substantially aligned with the central axis C of the motor base. Further, the radius 410 of the motor base 118 is greater than the radius 405 of the hub flange 112 by a radial difference D. By providing the motor base with a radius 410 greater than the radius 405 of the hub flange 112, improved motor efficiency may be achieved as more space may be created within the motor base for thicker wire (which may have lower resistance) or more windings may be provided on the stator or a higher torque from the magnet/stator interaction may be achieved than if the radius 410 of the motor base 118 was equal to the radius 405 of the hub flange 112.


The vertical surface 400 of the hub 102 has a height 425, which provides a vertical separation between the mounting surface 202 and the back iron 325 disposed on the motor base 118. The height 425 of the vertical surface 400 is sized to provide clearance 415 between the mounting surface 202 and the back iron 325 disposed on the motor base 118 such that a read/write head 106 can access an undersurface of the disk mounted to the mounting surface 202. In other words, the height 425 may be sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk in some embodiments. For example, the height 425 of the vertical surface may be 1 mm or more to allow a read/write head 106 to access the undersurface of the disk mounted to the mounting surface 202. Additionally, in order to prevent damage to the read/write head 106, a minimum separation distance 420 is maintained in some embodiments.



FIG. 5 illustrates a second example embodiment of a spindle motor comprising a hub 102 and a motor base 118. In this embodiment, the hub 102 defines a longitudinal axis L and may comprise an upper cylindrical portion 108, a middle cylindrical portion 110 proximate to the upper cylindrical portion 108 and defining an upper surface 200 and a hub flange 112 defining a mounting surface 202 substantially normal to the longitudinal axis L. Again, though this embodiment is shown with an upper cylindrical portion 108, and a hub flange 112, multiple cylindrical portions are not required, and an example embodiment may have only one cylindrical portion, which defines a longitudinal axis and a disk mounting surface extending substantially normal to the longitudinal axis.


Generally, one or more disks, separated by spacers, may be mounted on the mounting surface 202 of the hub flange 112 of the hub 102. However, in FIG. 5, the one or more disks are omitted so that other components may more clearly be shown. The hub flange 112 also comprises a vertical surface 400 that extends longitudinally relative to the mounting surface 202 and substantially parallel to the longitudinal axis L. The hub flange 112 has a radius 405, which is defined as the distance between the vertical surface 400 and the longitudinal axis L.


The motor base 118 may comprise a generally cylindrical shape defining a central axis C with the back iron 325 disposed at the radially outer region of the shape of the motor base 118. The hub 102, back iron 325 and magnet 320 collectively form an example embodiment of the rotor 305 (the rotor 305 is shown in FIG. 3). Additionally, the rotor 305 may also include a shaft 430 on which the hub 102 is mounted. The shaft 430 may be a spinning shaft or a fixed, stationary shaft connected to the hub 102 by a bearing member (not shown). The motor base 118 has a radius 410, which is defined as the distance between the central axis C and the radially outer wall of the cylindrical shape of the motor base 118.


As shown in FIG. 5, the hub 102 is coupled to the motor base 118 such that the longitudinal axis L of the hub 102 is substantially aligned with the central axis C of the motor base. Further in FIG. 5, the radius 410 of the motor base 118 is substantially equal to the radius 405 of the hub flange 112. However, in some embodiments, the radius 405 of the hub flange 112 may be less than the radius 410 of the motor base 118.


As illustrated in FIG. 5, a notch 500 is formed in the vertical surface 400 of the hub 102 formed proximate to the mounting surface 202 of the hub. The notch 500 has a width 510 such that the notch 500 has a radius 515, which is defined as the distance between the longitudinal axis L and a wall of the notch 500. Thus, as shown in FIG. 5, the radius 410 of the motor base 118 is greater than the radius 515 of the notch 500.


Further, the notch 500 also has a vertical height 505, which provides a vertical separation between the mounting surface 202 and the hub 102. In an embodiment where the radius 405 of the hub 102 is less than the radius 410 of the motor base 118, the vertical height 505 of the notch 500 may provide a vertical separation between the mounting surface 202 and the back iron 325 disposed on the motor base 118. The vertical height 505 of the notch 500 is sized to provide clearance such that a read/write head 106 can access an undersurface of the disk mounted to the mounting surface 202. In other words, the vertical height 505 may be sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk in some embodiments. For example, the height 505 of the notch 500 may be 1 mm or more to allow a read/write head 106 to access the undersurface of the disk mounted to the mounting surface 202.


By forming the notch 500 in the vertical surface of the hub 102, the motor base 118 may be designed with a radius 410 greater than the radius 515 of the Notch 500 formed in the hub flange 112 without adversely affecting access to the under surface of the disk mounted on the mounting surface 202. By increasing the radius 410 of the motor base 118, improved motor efficiency may be achieved as more space may be created within the motor base for thicker wire (which may have lower resistance) or more windings may be provided on the stator or a higher torque from the magnet/stator interaction may be achieved.


As would be apparent to a person of ordinary skill in the art, a horizontal separation or clearance 420 between the vertical surface 400 of the hub 102 and the read/write head 106 may be maintained during operation of the disk drive to prevent damage to the read/write head.



FIG. 6 illustrates a third example embodiment of a spindle motor comprising a hub 102 and a motor base 118. In this embodiment, the hub 102 defines a longitudinal axis L and may comprise an upper cylindrical portion 108, a middle cylindrical portion 110 proximate to the upper cylindrical portion 108 and defining an upper surface 200 and a hub flange 112 defining a horizontal surface 600 substantially normal to the longitudinal axis L. Again, though this embodiment is shown with an upper cylindrical portion 108, and a hub flange 112, multiple cylindrical portions are not required, and an example embodiment may have only one cylindrical portion, which defines a longitudinal axis and a horizontal surface 600 extending substantially normal to the longitudinal axis.


The hub flange 112 also comprises a vertical surface 400 that extends longitudinally relative to the horizontal surface 600 and substantially parallel to the longitudinal axis L. The hub flange 112 has a radius 405, which is defined as the distance between the vertical surface 400 and the longitudinal axis L.


The motor base 118 may comprise a generally cylindrical shape defining a central axis C with the back iron 325 disposed at the radially outer region of the shape of the motor base 118. The hub 102, back iron 325 and magnet 320 collectively form an example embodiment of the rotor 305 (the rotor 305 is shown in FIG. 3). Additionally, the rotor 305 may also include a shaft 430 on which the hub 102 is mounted. The shaft 430 may be a spinning shaft or a fixed, stationary shaft connected to the hub 102 by a bearing member (not shown). The motor base 118 has a radius 410, which is defined as the distance between the central axis C and the radially outer wall of the cylindrical shape of the motor base 118.


In FIG. 6, the hub 102 is coupled to the motor base 118 such that the longitudinal axis L of the hub 102 is substantially aligned with the central axis C of the motor base. The radius 410 of the motor base 118 is substantially equal to the radius 405 of the hub flange 112. However, in some embodiments, the radius 405 of the hub 102 may be less than the radius 410 of the motor base 118.


In the example embodiment of FIG. 6, an annular spacer 605 is coupled to the horizontal surface 600 of the hub 102. A radius 620 of the spacer 605, which is defined as the distance between the longitudinal axis L and the radially outer wall of the annular spacer 605. Thus, as shown in FIG. 6, the radius 410 of the motor base 118 is greater than the radius 620 of the annular spacer 605.


The annular spacer 605 also has a mounting surface 615. Generally, one or more disks, separated by spacers, may be mounted on the mounting surface 615 of the annular spacer 605. However, in FIG. 6, the one or more disks are omitted so that other components may more clearly be shown.


The spacer 605 also has a vertical height 610, which provides a vertical separation between the mounting surface 615 and the hub 102. In an embodiment where the radius 405 of the hub 102 is less than the radius 410 of the motor base 118, the spacer 605 may provide a vertical separation between the mounting surface 615 and the back iron 325 disposed on the motor base 118. The vertical height 610 of the spacer 605 is sized to provide clearance such that a read/write head 106 can access an undersurface of the disk mounted to the mounting surface 202. In other words, the vertical height 610 may be sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk in some embodiments. For example, the height of the spacer 605 may be 1 mm or more to allow a read/write head 106 to access the undersurface of the disk mounted to the mounting surface 605.


By coupling the spacer 605 to the hub and mounting a disk on the spacer, the motor base 118 may be designed with a radius 410 greater than the radius 620 of the spacer 605 without adversely affecting access to the under surface of the disk mounted on the mounting surface 615. By increasing the radius 410 of the motor base 118, improved motor efficiency may be achieved as more space may be created within the motor base for thicker wire (which may have lower resistance) or more windings may be provided on the stator or a higher torque from the magnet/stator interaction may be achieved.


As would be apparent to a person of ordinary skill in the art, a horizontal separation or clearance 420 between the vertical surface 400 of the hub 102 and the read/write head 106 may be maintained during operation of the disk drive to prevent damage to the read/write head.



FIG. 7 illustrates a fourth example embodiment of a spindle motor comprising a hub 102 and a motor base 118. In this embodiment, the hub 102 defines a longitudinal axis L and may comprise an upper cylindrical portion 108, a middle cylindrical portion 110 proximate to the upper cylindrical portion 108 and defining an upper surface 200 and a hub flange 112 defining a mounting surface 202 substantially normal to the longitudinal axis L. Again, though this embodiment is shown with an upper cylindrical portion 108, and a hub flange 112, multiple cylindrical portions are not required, and an example embodiment may have only one cylindrical portion, which defines a longitudinal axis and a mounting surface extending substantially normal to the longitudinal axis.


Generally, one or more disks separated by spacers may be mounted on the mounting surface 202 of the hub flange 112 of the hub 102. However, in FIG. 7, the one or more disks are omitted so that other components may more clearly be shown. The hub flange 112 also comprises a vertical surface 400 that extends longitudinally relative to the mounting surface 202 and substantially parallel to the longitudinal axis L. The hub flange 112 has a radius 405, which is defined as the distance between the vertical surface 400 and the longitudinal axis L.


In this example embodiment, the hub flange 112 may also comprise a shielding portion 700 which is disposed proximate to the vertical surface 400. This shielding portion 700 is formed by a horizontal shield portion 705 and a vertical shield portion 710. Additionally, the shielding portion 700 of the hub 102 also has a radius 715, which is defined as the distance between the vertical shield portion 710 and a longitudinal axis L.


The motor base 118 may comprise a generally cylindrical shape defining a central axis C with one or more annularly shaped magnets 320 disposed at the radially outer region of the shape of the motor base 118. In this embodiment, the motor base 118 does not have a back iron 325 disposed at the radially outer region thereof. Instead, in this embodiment the shielding portion 700 of the hub 102 serves as a back iron, by guiding the magnetic flux in the magnetic circuit and serving as a shield to prevent magnetic flux from the one or more annular magnets 320 or the plurality of coils 315 from escaping the rotor 305 (The hub 102, back iron 325 and magnet 320 collectively form the rotor 305 (the rotor 305 is shown in FIG. 3)) and motor base 118. The motor base 118 has a radius 410, which is defined as the distance between the central axis C and the radially outer wall of the cylindrical shape of the motor base 118.


As shown in FIG. 7, the hub 102 is coupled to the motor base 118 such that the longitudinal axis L of the hub 102 is substantially aligned with the central axis C of the motor base. Further in FIG. 7, the radius 410 of the motor base 118 is substantially equal to the radius 405 of the hub flange 112. However, in some embodiments, the radius 405 of the hub 102 may be less than the radius 410 of the motor base 118.


As illustrated in FIG. 7, a shielding portion 700 extends from the vertical surface 400 of the hub flange 112 formed proximate to the mounting surface 202 of the hub. The horizontal shield portion 705 of the shielding portion 700 has a width 720 such that the shielding portion 700 of the hub 102 has a radius 715, which is defined as the distance between the vertical shield portion 710 and a longitudinal axis L. Thus, as shown in FIG. 7, the radius 715 of the shielding portion 700 is greater than the radius 405 of the hub flange 112.


Similar to the first example embodiment discussed with respect to FIG. 4 above, the vertical surface 400 of the hub 102 has a height 425, which provides a vertical separation between the mounting surface 202 and the horizontal shield portion 705 of the shielding portion 700. The height 425 of the vertical surface 400 is sized to provide clearance 415 between the mounting surface 202 and the shielding portion 700 such that a read/write head 106 can access an undersurface of the disk mounted to the mounting surface 202. In other words, the height 425 may be sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk in some embodiments. For example, the height 425 of the vertical surface may be 1 mm or more to allow a read/write head 106 to access the undersurface of the disk mounted to the mounting surface 202.


As would be apparent to a person of ordinary skill in the art, a horizontal separation or clearance 420 between the vertical surface 400 of the hub 102 and the read/write head 106 may be maintained during operation of the disk drive to prevent damage to the read/write head.



FIG. 8 illustrates a flow chart for a method 800 of manufacturing a disk drive, according to one illustrated embodiment. This method 800 will be discussed in the context of the hub 102 and motor base 118 of FIGS. 1-5 and 7, and particularly in terms of the hub onto and motor base 118 illustrated in FIGS. 4, 5, and 7. However, the acts disclosed herein may be executed using a variety of different disk drive hubs, in accordance with the described method.


As described herein, at least some of the acts comprising the method 800 may be orchestrated by a processor according to an automatic disk drive manufacturing algorithm, based at least in part on computer-readable instructions stored in computer-readable memory and executable by the processor. A manual implementation of one or more acts of the method 800 may also be employed, in other embodiments.


At act 810, a hub 102, a disk 116 and a motor base 118 are provided. The hub 102 may define a mounting surface 202 and a vertical surface 400. In some embodiments, a notch 500 may be formed in the vertical surface 400 of the hub 102. Additionally, in some embodiments, the hub 102 may also include a shielding portion disposed proximate to the vertical surface 400 of the hub. The shielding portion may have a radius greater than the radius 405 of the vertical surface 400.


The motor base 118 may have a radius 410 greater than the radius 405 of the hub 102. In some embodiments, however, the motor base 118 may have a radius 410 that is equal to or less than the radius 405 of the hub 102. In some embodiments the motor base 118 may have a radius 410 greater than the radius 515 of the notch 500.


The disk 116 may define an opening there through having an inner diameter. The disk 116 may be formed in a variety of ways. In one embodiment, the media of the disk 116 may be formed, and then the first disk 116 may be stamped or otherwise machined to define the first opening.


The hub 102 may also be formed in a variety of ways. In one embodiment, the hub 102 may be machined to form the mounting surface 202 and the vertical surface 400. In other embodiments, the hub 102 may be cast, molded or machined to form the mounting surface 202 and the vertical surface 400. In still other embodiments, other manufacturing techniques may be employed.


Similarly, the manufacturing method of the motor base 118 is not particularly limited and may include machining, casting, molding, or any other methods as would be apparent to a person of ordinary skill in the art.


At act 815, the motor base 118 is positioned proximate to a lower surface of the hub 102. More specifically, a longitudinal access L of the hub 102 may be aligned with a central access C of the motor base 118. In some embodiments, a machine vision system may help align the motor base 118 and the hub 102.


At act 820, the motor base 118 is coupled to the hub 102 to form the spindle motor 120. The motor base 118 may be coupled to the hub 102 in a variety of ways. For example, a clamp may be used may be used to secure the hub 1022 motor base 118. In other embodiments, other structures for coupling these components may be used.


At act 825, the disk 116 is positioned against the mounting surface 202 of the hub 102. The disk 116 may be positioned in physical contact with the mounting surface 202. In some embodiments, a machine vision system may help align the disk 116 and the mounting surface 202 of the hub 102.


When the disk 116 is being positioned against the mounting surface 202 of the hub 102, a space is provided by the vertical surface 400 of the hub 102, the height being sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk 116 in some embodiments. In some embodiments, the space is provided by the notch 500 formed in the vertical surface 400 of the hub 102. In some embodiments, the space is formed between the hub 102 and the disk 116. In some embodiments, the space is formed between the disk 116 and the motor base 118. In some embodiments, the space is formed between the disk and the shielding portion (e.g. the back iron is formed as a portion of the hub) of the hub.


At act 830, the disk 116 is coupled to the hub 102 to form a part of the disk drive 100. The disk 116 may be coupled to the hub 102 in a variety of ways. In one embodiment, a disk clamp may be used to secure the disk 116 against the hub 102. In other embodiments, other structures for coupling these components may be used.


In some embodiments, multiple disks may be positioned against and coupled to the hub 102 with spacers formed there between.



FIG. 9 illustrates a flow chart for a method 900 of manufacturing a disk drive, according to another illustrated embodiment. This method 900 will be discussed in the context of the hub 102 and motor base 118 of FIGS. 1-3 and 6, and particularly in terms of the hub onto and motor base 118 illustrated in FIG. 6. However, the acts disclosed herein may be executed using a variety of different disk drive hubs, in accordance with the described method.


As described herein, at least some of the acts comprising the method 900 may be orchestrated by a processor according to an automatic disk drive manufacturing algorithm, based at least in part on computer-readable instructions stored in computer-readable memory and executable by the processor. A manual implementation of one or more acts of the method 900 may also be employed, in other embodiments.


At act 910, a hub 102, a disk 116, a motor base 118, and a spacer 605 are provided. The hub 102 may define a horizontal surface 600 and a vertical surface 400.


The motor base 118 may have a radius 410 greater than the radius 405 of the hub 102. In some embodiments, however, the motor base 118 may have a radius 410 that is equal to or less than the radius 405 of the hub 102.


The disk 116 may define an opening there through having an inner diameter. The disk 116 may be formed in a variety of ways. In one embodiment, the media of the disk 116 may be formed, and then the first disk 116 may be stamped or otherwise machined to define the first opening.


The spacer 605 may have a generally annular shape, with a hole formed in the middle. However, embodiments of the spacer 605 are not limited to this shape. The radius 620 of the spacer 605 may be less than the radius of the motor base 118.


The hub 102 may also be formed in a variety of ways. In one embodiment, the hub 102 may be machined to form the horizontal surface 600 and the vertical surface 400. In other embodiments, the hub 102 may be cast, molded or machined to form the horizontal surface 600 and the vertical surface 400. In still other embodiments, other manufacturing techniques may be employed.


Similarly, the manufacturing method of the motor base 118 and of the spacer 605 are not particularly limited and may include machining, casting, molding, or any other methods as would be apparent to a person of ordinary skill in the art.


At act 915, the motor base 118 is positioned proximate to a lower surface of the hub 102. More specifically, a longitudinal access L of the hub 102 may be aligned with a central access C of the motor base 118. In some embodiments, a machine vision system may help align the motor base 118 and the hub 102.


At act 920, the motor base 118 is coupled to the hub 102 to form the spindle motor 120. The motor base 118 may be coupled to the hub 102 in a variety of ways. For example, a clamp may be used may be used to secure the hub 102 motor base 118. In other embodiments, other structures for coupling these components may be used.


At act 925, a lower surface of the spacer 605 is positioned against the horizontal surface 600 of the hub 102. The spacer 605 may be positioned in physical contact with the horizontal surface 600 of the hub 102. In some embodiments, a machine vision system may help align the spacer 605 and the horizontal surface 600 of the hub 102.


At act 930, the spacer 605 is coupled to the hub 102. The spacer 605 may be coupled to the hub 102 the variety ways. For example, pressure fitting or a clamping structure may be used. In other embodiments, other structures for coupling these components may be used


At act 935, the disk 116 is positioned against the mounting surface 615 of the spacer 605. The disk 116 may be positioned in physical contact with the mounting surface 615. In some embodiments, a machine vision system may help align the disk 116 and the mounting surface 615 of the spacer 605.


When the disk 116 is being positioned against the mounting surface 615 of the spacer 605, a space is provided by the height 610 of the spacer 605, the height of the space being sufficient to provide clearance or allow access by a read/write head 106 to an undersurface of the disk 116 in some embodiments. In some embodiments, the space is formed between the hub 102 and the disk 116. In some embodiments, the space is formed between the disk 116 and the motor base 118.


At act 940, the disk 116 is coupled to the spacer 605 to form a part of the disk drive 100. The disk 116 may be coupled to the spacer 605 in a variety of ways. In one embodiment, a disk clamp may be used to secure the disk 116 against the spacer 605. In other embodiments, other structures for coupling these components may be used.


In some embodiments, multiple disks may be positioned against and coupled to the spacer with additional spacers formed there between.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more programs executed by one or more processors, as one or more programs executed by one or more controllers (e.g., microcontrollers), as firmware, or as virtually any combination thereof.

Claims
  • 1. A spindle motor for a disk drive comprising: a hub defining a longitudinal axis, said hub comprising: a hub flange defining a mounting surface extending substantially normal to the longitudinal axis,wherein the hub flange of the hub extends longitudinally relative to the mounting surface to define a vertical surface; anda motor base rotor coupled to the hub proximate to the hub flange of the hub, the motor base rotor having a central axis substantially aligned with the longitudinal axis,wherein the motor base rotor extends longitudinally, andwherein a radius of the motor base rotor is greater than a radius of the hub flange of the hub.
  • 2. The spindle motor according to claim 1, wherein the vertical surface of the hub flange of the hub has a longitudinal height equal to or greater than 1 mm.
  • 3. The spindle motor according to claim 1, wherein the vertical surface of the hub flange of the hub has a longitudinal height sufficient to provide clearance or to allow access by a head to an undersurface of a disk mounted on the mounting surface.
  • 4. The spindle motor according to claim 1, wherein the motor base rotor further comprises: a magnet disposed proximate to and radially inward of a radial wall of the motor base rotor; anda metallic shield forms the radial wall to substantially prevent magnet flux from the magnet from being transmitted out of the motor base rotor; andwherein the spindle motor further comprises a stator comprising at least one winding of wire disposed proximate to and radially inward of the motor base rotor.
  • 5. A disk drive including the spindle motor according to claim 1, the disk drive further including: a disk supported by the mounting surface of the hub flange of the hub; anda head operable to write to and read from the disk,wherein the vertical surface of the hub flange of the hub has a longitudinal height greater than a longitudinal height of the head to provide clearance between the disk and the motor base rotor or to allow the head to access an undersurface surface of the disk.
  • 6. A spindle motor for a disk drive comprising: a hub defining a longitudinal axis, said hub comprising: a hub flange defining and a mounting surface extending substantially normal to the longitudinal axis,wherein the hub flange of the hub extends longitudinally relative to the mounting surface to define a vertical surface; anda motor base rotor coupled to the hub proximate to the hub flange of the hub, the motor base rotor having a central axis substantially aligned with the longitudinal axis,wherein the motor base rotor extends longitudinally,wherein a notch having a radius less than the radius of the motor base rotor is formed in the vertical surface of the hub flange of the hub, and extends proximate and relative to the mounting surface of the hub flange of the hub.
  • 7. The spindle motor according to claim 6, wherein the notch has a longitudinal height equal to or greater than 1 mm.
  • 8. The spindle motor according to claim 6, wherein the notch has a longitudinal height sufficient to provide clearance or to allow access by a head to an undersurface of a disk mounted on the mounting surface.
  • 9. The spindle motor according to claim 6, wherein the motor base rotor further comprises: a magnet disposed proximate to and radially inward of a radial wall of the motor base rotor; anda metallic shield forms the radial wall to substantially prevent magnet flux from the magnet from being transmitted out of the motor base rotor; andwherein the spindle motor further comprises a stator comprising at least one winding of wire disposed proximate to and radially inward of the motor base rotor.
  • 10. A disk drive including the spindle motor according to claim 6, the disk drive further including: a disk supported by the mounting surface of the hub flange of the hub; anda head operable to write to and read from the disk,wherein the notch has a longitudinal height greater than a longitudinal height of the head to provide clearance between the disk and the motor base rotor or to allow the head to access an undersurface of the disk.
  • 11. A spindle motor for a disk drive comprising: a hub defining a longitudinal axis, said hub comprising: a hub flange defining a horizontal surface extending substantially normal to the longitudinal axis,wherein the hub flange of the hub extends longitudinally relative to the horizontal surface;a motor base rotor coupled to the hub proximate to the hub flange of the hub, the motor base rotor having a central axis substantially aligned with the longitudinal axis,wherein the motor base rotor extends longitudinally,wherein a spacer is supported by the horizontal surface of the hub flange of the hub, the spacer having a central axis substantially aligned with the longitudinal axis of the hub, and the spacer defining a mounting surface extending substantially normal to the longitudinal axis of the hub, andwherein a radius formed at the spacer is less than the radius of the motor base rotor.
  • 12. The spindle motor according to claim 11, wherein the spacer has a longitudinal height equal to or greater than 1 mm.
  • 13. The spindle motor according to claim 11, wherein the spacer has a longitudinal height sufficient to provide clearance or to allow access by a head to an undersurface of disk mounted on the mounting surface.
  • 14. The spindle motor according to claim 11, wherein the motor base rotor further comprises: a magnet disposed proximate to and radially inward of a radial wall of the motor base rotor; anda metallic shield forms the radial wall to substantially prevent magnet flux from the magnet from being transmitted out of the motor base rotor; andwherein the spindle motor further comprises a stator comprising at least one winding of wire disposed proximate to and radially inward of the motor base rotor.
  • 15. A disk drive including the spindle motor according to claim 11, the disk drive further including: a disk supported by the mounting surface of the spacer; anda head operable to write to and read from the disk,wherein the spacer has a longitudinal height greater than a longitudinal height of the head to provide clearance between the disk and the motor base rotor or to allow the head to access a under surface of the disk.
CROSS REFERENCE TO RELATED APPLICATION(S)

This application is a divisional application Ser. No. 13/625,692, which is hereby incorporated by reference.

US Referenced Citations (329)
Number Name Date Kind
5031061 Hatch Jul 1991 A
5235482 Schmitz Aug 1993 A
5592349 Morehouse et al. Jan 1997 A
5982581 Kazmierczak et al. Nov 1999 A
6046889 Berding et al. Apr 2000 A
6052890 Malagrino, Jr. et al. Apr 2000 A
6061206 Foisy et al. May 2000 A
6101876 Brooks et al. Aug 2000 A
6147831 Kennedy et al. Nov 2000 A
6151189 Brooks Nov 2000 A
6151197 Larson et al. Nov 2000 A
6185067 Chamberlain Feb 2001 B1
6185074 Wang et al. Feb 2001 B1
6208486 Gustafson et al. Mar 2001 B1
6215616 Phan et al. Apr 2001 B1
6272694 Knoth et al. Aug 2001 B1
6288866 Butler et al. Sep 2001 B1
6292333 Blumentritt et al. Sep 2001 B1
6344950 Watson et al. Feb 2002 B1
6349464 Codilian et al. Feb 2002 B1
6388873 Brooks et al. May 2002 B1
6417979 Patton, III et al. Jul 2002 B1
6417991 Onda Jul 2002 B1
6421208 Oveyssi Jul 2002 B1
6441998 Abrahamson Aug 2002 B1
6462914 Oveyssi et al. Oct 2002 B1
6466398 Butler et al. Oct 2002 B1
6469871 Wang Oct 2002 B1
6502300 Casey et al. Jan 2003 B1
6519116 Lin et al. Feb 2003 B1
6529345 Butler et al. Mar 2003 B1
6529351 Oveyssi et al. Mar 2003 B1
6535358 Hauert et al. Mar 2003 B1
6545382 Bennett Apr 2003 B1
6549381 Watson Apr 2003 B1
6560065 Yang et al. May 2003 B1
6563668 Suwito May 2003 B1
6571460 Casey et al. Jun 2003 B1
6574073 Hauert et al. Jun 2003 B1
6580574 Codilian Jun 2003 B1
6594111 Oveyssi et al. Jul 2003 B1
6603620 Berding Aug 2003 B1
6618222 Watkins et al. Sep 2003 B1
6624966 Ou-Yang et al. Sep 2003 B1
6624980 Watson et al. Sep 2003 B1
6624983 Berding Sep 2003 B1
6628473 Codilian et al. Sep 2003 B1
6636380 Goeke et al. Oct 2003 B2
6654200 Alexander et al. Nov 2003 B1
6657811 Codilian Dec 2003 B1
6661597 Codilian et al. Dec 2003 B1
6661603 Watkins et al. Dec 2003 B1
6674600 Codilian et al. Jan 2004 B1
6690637 Codilian Feb 2004 B1
6693767 Butler Feb 2004 B1
6693773 Sassine Feb 2004 B1
6697217 Codilian Feb 2004 B1
6698286 Little et al. Mar 2004 B1
6700736 Wu et al. Mar 2004 B1
6704167 Scura et al. Mar 2004 B1
6707637 Codilian et al. Mar 2004 B1
6707641 Oveyssi et al. Mar 2004 B1
6710980 Hauert et al. Mar 2004 B1
6710981 Oveyssi et al. Mar 2004 B1
6728062 Ou-Yang et al. Apr 2004 B1
6728063 Gustafson et al. Apr 2004 B1
6731470 Oveyssi May 2004 B1
6735033 Codilian et al. May 2004 B1
6741428 Oveyssi May 2004 B1
6751051 Garbarino Jun 2004 B1
6754042 Chiou et al. Jun 2004 B1
6757132 Watson et al. Jun 2004 B1
6759784 Gustafson et al. Jul 2004 B1
6781780 Codilian Aug 2004 B1
6781787 Codilian et al. Aug 2004 B1
6781791 Griffin et al. Aug 2004 B1
6790066 Klein Sep 2004 B1
6791791 Alfred et al. Sep 2004 B1
6791801 Oveyssi Sep 2004 B1
6795262 Codilian et al. Sep 2004 B1
6798603 Singh et al. Sep 2004 B1
6801389 Berding et al. Oct 2004 B1
6801404 Oveyssi Oct 2004 B1
6816342 Oveyssi Nov 2004 B1
6816343 Oveyssi Nov 2004 B1
6825622 Ryan et al. Nov 2004 B1
6826009 Scura et al. Nov 2004 B1
6831810 Butler et al. Dec 2004 B1
6839199 Alexander, Jr. et al. Jan 2005 B1
6844996 Berding et al. Jan 2005 B1
6847504 Bennett et al. Jan 2005 B1
6847506 Lin et al. Jan 2005 B1
6856491 Oveyssi Feb 2005 B1
6856492 Oveyssi Feb 2005 B2
6862154 Subrahmanyam et al. Mar 2005 B1
6862156 Lin et al. Mar 2005 B1
6862176 Codilian et al. Mar 2005 B1
6865049 Codilian et al. Mar 2005 B1
6865055 Ou-Yang et al. Mar 2005 B1
6867946 Berding et al. Mar 2005 B1
6867950 Lin Mar 2005 B1
6876514 Little Apr 2005 B1
6879466 Oveyssi et al. Apr 2005 B1
6888697 Oveyssi May 2005 B1
6888698 Berding et al. May 2005 B1
6891696 Ou-Yang et al. May 2005 B1
6898052 Oveyssi May 2005 B1
6900961 Butler May 2005 B1
6906880 Codilian Jun 2005 B1
6906897 Oveyssi Jun 2005 B1
6908330 Garrett et al. Jun 2005 B2
6922308 Butler Jul 2005 B1
6930848 Codilian et al. Aug 2005 B1
6930857 Lin et al. Aug 2005 B1
6934126 Berding et al. Aug 2005 B1
6937444 Oveyssi Aug 2005 B1
6940698 Lin et al. Sep 2005 B2
6941642 Subrahmanyam et al. Sep 2005 B1
6947251 Oveyssi et al. Sep 2005 B1
6950275 Ali et al. Sep 2005 B1
6950284 Lin Sep 2005 B1
6952318 Ngo Oct 2005 B1
6954329 Ojeda et al. Oct 2005 B1
6958884 Ojeda et al. Oct 2005 B1
6958890 Lin et al. Oct 2005 B1
6961212 Gustafson et al. Nov 2005 B1
6961218 Lin et al. Nov 2005 B1
6963469 Gustafson et al. Nov 2005 B1
6965500 Hanna et al. Nov 2005 B1
6967800 Chen et al. Nov 2005 B1
6967804 Codilian Nov 2005 B1
6970329 Oveyssi et al. Nov 2005 B1
6972924 Chen et al. Dec 2005 B1
6972926 Codilian Dec 2005 B1
6975476 Berding Dec 2005 B1
6979931 Gustafson et al. Dec 2005 B1
6980391 Haro Dec 2005 B1
6980401 Narayanan et al. Dec 2005 B1
6982853 Oveyssi et al. Jan 2006 B1
6989953 Codilian Jan 2006 B1
6990727 Butler et al. Jan 2006 B1
6996893 Ostrander et al. Feb 2006 B1
7000309 Klassen et al. Feb 2006 B1
7006324 Oveyssi et al. Feb 2006 B1
7013731 Szeremeta et al. Mar 2006 B1
7031104 Butt et al. Apr 2006 B1
7035053 Oveyssi et al. Apr 2006 B1
7050270 Oveyssi et al. May 2006 B1
7057852 Butler et al. Jun 2006 B1
7062837 Butler Jun 2006 B1
7064921 Yang et al. Jun 2006 B1
7064922 Alfred et al. Jun 2006 B1
7064932 Lin et al. Jun 2006 B1
7085098 Yang et al. Aug 2006 B1
7085108 Oveyssi et al. Aug 2006 B1
7092216 Chang et al. Aug 2006 B1
7092251 Henry Aug 2006 B1
7099099 Codilian et al. Aug 2006 B1
7113371 Hanna et al. Sep 2006 B1
7142397 Venk Nov 2006 B1
7145753 Chang et al. Dec 2006 B1
RE39478 Hatch et al. Jan 2007 E
7161768 Oveyssi Jan 2007 B1
7161769 Chang et al. Jan 2007 B1
7180711 Chang et al. Feb 2007 B1
7193819 Chen et al. Mar 2007 B1
7209317 Berding et al. Apr 2007 B1
7209319 Watkins et al. Apr 2007 B1
D542289 Diebel May 2007 S
7212377 Ou-Yang et al. May 2007 B1
7215513 Chang et al. May 2007 B1
7215514 Yang et al. May 2007 B1
7224551 Ou-Yang et al. May 2007 B1
D543981 Diebel Jun 2007 S
7227725 Chang et al. Jun 2007 B1
7239475 Lin et al. Jul 2007 B1
7271978 Santini et al. Sep 2007 B1
7274534 Choy et al. Sep 2007 B1
7280311 Ou-Yang et al. Oct 2007 B1
7280317 Little et al. Oct 2007 B1
7280319 McNab Oct 2007 B1
7292406 Huang Nov 2007 B1
7298584 Yamada et al. Nov 2007 B1
7327531 Elsing Feb 2008 B2
7327537 Oveyssi Feb 2008 B1
7339268 Ho et al. Mar 2008 B1
7342746 Lin Mar 2008 B1
RE40203 Hatch et al. Apr 2008 E
7353524 Lin et al. Apr 2008 B1
7369368 Mohajerani May 2008 B1
7371041 Pfeiffer et al. May 2008 B2
7372670 Oveyssi May 2008 B1
7375929 Chang et al. May 2008 B1
7379266 Ou-Yang et al. May 2008 B1
7381904 Codilian Jun 2008 B1
7385784 Berding et al. Jun 2008 B1
7388731 Little et al. Jun 2008 B1
7420771 Hanke et al. Sep 2008 B1
7434987 Gustafson et al. Oct 2008 B1
7436625 Chiou et al. Oct 2008 B1
7440234 Cheng et al. Oct 2008 B1
7477488 Zhang et al. Jan 2009 B1
7477489 Chen et al. Jan 2009 B1
7484291 Ostrander et al. Feb 2009 B1
7505231 Golgolab et al. Mar 2009 B1
7529064 Huang et al. May 2009 B1
7538981 Pan May 2009 B1
7561374 Codilian et al. Jul 2009 B1
7567410 Zhang et al. Jul 2009 B1
7576955 Yang et al. Aug 2009 B1
7593181 Tsay et al. Sep 2009 B1
7605999 Kung et al. Oct 2009 B1
7609486 Little Oct 2009 B1
7610672 Liebman Nov 2009 B1
7633721 Little et al. Dec 2009 B1
7633722 Larson et al. Dec 2009 B1
7656609 Berding et al. Feb 2010 B1
7660075 Lin et al. Feb 2010 B1
7672083 Yu et al. Mar 2010 B1
7684155 Huang et al. Mar 2010 B1
7686555 Larson et al. Mar 2010 B1
7709078 Sevier et al. May 2010 B1
7715149 Liebman et al. May 2010 B1
7729091 Huang et al. Jun 2010 B1
7751145 Lin et al. Jul 2010 B1
7826173 Lee Nov 2010 B2
7826177 Zhang et al. Nov 2010 B1
7852601 Little Dec 2010 B1
7864488 Pan Jan 2011 B1
7898770 Zhang et al. Mar 2011 B1
7903369 Codilian et al. Mar 2011 B1
7907369 Pan Mar 2011 B1
7911742 Chang et al. Mar 2011 B1
7926167 Liebman et al. Apr 2011 B1
7957095 Tsay et al. Jun 2011 B1
7957102 Watson et al. Jun 2011 B1
7961436 Huang et al. Jun 2011 B1
8004782 Nojaba et al. Aug 2011 B1
8009384 Little Aug 2011 B1
8018687 Little et al. Sep 2011 B1
8031431 Berding et al. Oct 2011 B1
8064168 Zhang et al. Nov 2011 B1
8064170 Pan Nov 2011 B1
8068314 Pan et al. Nov 2011 B1
8077432 Hanlon et al. Dec 2011 B2
8081401 Huang et al. Dec 2011 B1
8100017 Blick et al. Jan 2012 B1
8116038 Zhang et al. Feb 2012 B1
8125740 Yang et al. Feb 2012 B1
8142671 Pan Mar 2012 B1
8156633 Foisy Apr 2012 B1
8159785 Lee et al. Apr 2012 B1
8189298 Lee et al. May 2012 B1
8194348 Jacoby et al. Jun 2012 B2
8194354 Zhang et al. Jun 2012 B1
8194355 Pan et al. Jun 2012 B1
8203806 Larson et al. Jun 2012 B2
8223453 Norton et al. Jul 2012 B1
8228631 Tsay et al. Jul 2012 B1
8233239 Teo et al. Jul 2012 B1
8248733 Radavicius et al. Aug 2012 B1
8259417 Ho et al. Sep 2012 B1
8274760 Zhang et al. Sep 2012 B1
8276256 Zhang et al. Oct 2012 B1
8279560 Pan Oct 2012 B1
8284514 Garbarino Oct 2012 B1
8289646 Heo et al. Oct 2012 B1
8300352 Larson et al. Oct 2012 B1
8305708 Tacklind Nov 2012 B2
8320086 Moradnouri et al. Nov 2012 B1
8322021 Berding et al. Dec 2012 B1
8345387 Nguyen Jan 2013 B1
8363351 Little Jan 2013 B1
8369044 Howie et al. Feb 2013 B2
8411389 Tian et al. Apr 2013 B1
8416522 Schott et al. Apr 2013 B1
8416534 Heo et al. Apr 2013 B1
8422171 Guerini Apr 2013 B1
8422175 Oveyssi Apr 2013 B1
8432641 Nguyen Apr 2013 B1
8437101 German et al. May 2013 B1
8438721 Sill May 2013 B1
8446688 Quines et al. May 2013 B1
8451559 Berding et al. May 2013 B1
8467153 Pan et al. Jun 2013 B1
8472131 Ou-Yang et al. Jun 2013 B1
8477460 Liebman Jul 2013 B1
8488270 Brause et al. Jul 2013 B2
8488280 Myers et al. Jul 2013 B1
8499652 Tran et al. Aug 2013 B1
8514514 Berding et al. Aug 2013 B1
8530032 Sevier et al. Sep 2013 B1
8542465 Liu et al. Sep 2013 B2
8547664 Foisy et al. Oct 2013 B1
8553356 Heo et al. Oct 2013 B1
8553366 Hanke Oct 2013 B1
8553367 Foisy et al. Oct 2013 B1
8616900 Lion Dec 2013 B1
8665555 Young et al. Mar 2014 B1
8667667 Nguyen et al. Mar 2014 B1
8693139 Tian et al. Apr 2014 B2
8693140 Weiher et al. Apr 2014 B1
8699179 Golgolab et al. Apr 2014 B1
8702998 Guerini Apr 2014 B1
8705201 Casey et al. Apr 2014 B2
8705209 Seymour et al. Apr 2014 B2
8717706 German et al. May 2014 B1
8743509 Heo et al. Jun 2014 B1
8755148 Howie et al. Jun 2014 B1
8756776 Chen et al. Jun 2014 B1
8760800 Brown et al. Jun 2014 B1
8760814 Pan et al. Jun 2014 B1
8760816 Myers et al. Jun 2014 B1
8773812 Gustafson et al. Jul 2014 B1
8780491 Perlas et al. Jul 2014 B1
8780504 Teo et al. Jul 2014 B1
8792205 Boye-Doe et al. Jul 2014 B1
8797677 Heo et al. Aug 2014 B2
8797689 Pan et al. Aug 2014 B1
8824095 Dougherty Sep 2014 B1
8824098 Huang et al. Sep 2014 B1
20050185329 Miyajima et al. Aug 2005 A1
20050185330 Lee et al. Aug 2005 A1
20090196540 Maruyama et al. Aug 2009 A1
20110212281 Jacoby et al. Sep 2011 A1
20130038964 Garbarino et al. Feb 2013 A1
20130091698 Banshak, Jr. et al. Apr 2013 A1
20130155546 Heo et al. Jun 2013 A1
20130290988 Watson et al. Oct 2013 A1
Non-Patent Literature Citations (2)
Entry
Notice of Allowance dated Apr. 25, 2014 from U.S. Appl. No. 13/625,692, 7 pages.
Office Action dated Jan. 29, 2014 from U.S. Appl. No. 13/625,692, 7 pages.
Divisions (1)
Number Date Country
Parent 13625692 Sep 2012 US
Child 14448689 US