This application claims the benefit of priority under 35 U.S.C. §119 of German Patent Application DE 20 2009 006 792.0 filed May 12, 2009, the entire contents of which are incorporated herein by reference.
The present invention pertains to a cutter for spine surgery, especially for use in the area of the cervical spine, with a cylindrical cutter shank and cutter teeth formed at the distal end thereof, as well as with a cutter set comprising the aforementioned cutters.
A cutter of this type is known from DE 20 2005 016 763 U1 and describes a facet joint cutter, which is used to cut out vertebral components in the area of the spine. This cutter has a cylindrical shank and sawtooth-like teeth formed at its front-side, distal end. The teeth point forward from the distal end, and said teeth are slightly expanded outwardly. The teeth are directed parallel to the axis, and grooves, which likewise extend parallel to the axis and extend radially from the internal diameter of the cutter wall up to the external diameter, are located between them.
It was found that the bone material cannot be cut out sufficiently gently, especially from the delicate cervical vertebrae, with the prior-art cutters.
The basic object of the present invention is therefore to create improved cutters for endoscopic spine surgery while avoiding the aforementioned drawbacks.
This object is accomplished with a cutter of the type mentioned in the introduction by the teeth of the cutter at the distal end of the cutter shank being formed by grooves in the wall of the cutter shank, which deepen and expand from the outer radius of the cutter shank towards the distal end such that teeth narrowing towards the distal end with increasing height are formed between them.
Due to the teeth modified compared to the state of the art, which are formed in a star-shaped pattern on the distal front side of the cutter shank such that the front side of the teeth point from the inner wall side of the shank radially outwardly, and especially with a flat front-side closure, wherein the cutting edges are formed at the edge of the front side, more gentle cutting is achieved along with uniform precision and cutting action. The base of the grooves between the teeth, the groove base, is closed; consequently, no slots extending completely radially through the shank wall are formed between the teeth. The tooth flanks extending in the wall of the cylindrical shank are directed outwardly in a star-shaped pattern on the front side. Great sharpness of the teeth of the individual cutters is nevertheless guaranteed.
The teeth are separated by grooves, the grooves cut expand parabolically in the axial direction towards a distal end facing the vertebra to be cut and the teeth have a transition edge corresponding to the shape of the groove between the groove and the tooth wall. The groove bases have an angle of at least 13° to 15° in relation to a longitudinal axis of the cutter. Furthermore, the present invention makes provisions for the teeth defined by tooth walls becoming pointed parallel to the axis and/or for the edges of the tooth walls becoming pointed towards the distal end parallel to the axis, and provisions may also be made for the tooth walls becoming pointed towards the distal end beginning from half of their groove length. Outer edges of the tooth walls are extremely preferably located on an external diameter of the cutter shank, and the cutting edges may also be formed on the front side. This makes possible an especially gentle cutting without surrounding delicate tissue being jeopardized. Such a cutter can be used as a cervical spine cutter especially for the cervical spine. Preferred variants of such a cutter make provisions for outer edges of the teeth to be located on an external diameter of the cutter shank and/or for edges of the tooth walls to become pointed towards the distal end parallel to the axis.
In another preferred embodiment the teeth have bent outer tooth walls, and the tooth walls extend parallel to the axis over up to half the length of the grooves and at an angle of at least 30° in relation to the longitudinal axis of the cutter towards the distal end. Provisions may be made here for the teeth having sharp cutting edges at the obliquely extending transition edges. Thus, sharp cutting edges of the teeth are formed in all embodiments of the cutter at the front-side end or in the obliquely extending area only.
In a preferred embodiment, the shank has at least one or more colored ceramic rings towards a proximal end for better distinction of cutters of different sizes, the heat-resistant ceramic rings being more durable and resistant than colored rings made of plastic.
An annular recess, with which the cutter can be clamped in a corresponding handling or rotating device, is formed on the shank of the cutter according to the present invention, and at least two rectangular slots are formed at a proximal end in another embodiment, and a torque can be transmitted to the cutter due to positive-locking connection with the handling or rotating device.
The cutter preferably has 4 to 8 teeth at an internal diameter of less than 2 mm of its wall, 5 to 10 teeth at an internal diameter of 2 mm to 2.5 mm, 10 to 16 teeth at an internal diameter of 3 mm to 4 mm and 12 to 24 teeth at an internal diameter greater than 5 mm.
A set of cutters, comprising at least three cutters, is preferably provided, wherein a first cutter has an external diameter that corresponds, possibly taking tolerances into account, at most to an internal diameter of a next larger cutter. The external and internal diameters of the cutters are thus very preferably coordinated such that the cutters can be pushed one into the other. At least one cutter of a set of cutters has an external diameter greater than 5 mm.
Other advantages and features appear from the claims and from the following description, in which an exemplary embodiment of the present invention is specifically explained with reference to the drawings. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
a is a schematic view of the front side of the cutter according to the present invention from
a is a schematic view of the front side of the cutter according to the present invention from
a is a schematic view of the front side of the cutter according to the present invention from
a is a schematic sectional view of a cutter according to the present invention in sectional view C-C from
Referring to the drawings in particular,
A cutter 1, as it is shown in the exemplary embodiment according to
Furthermore, shank 2 of cutter 1 has a recessed colored ceramic ring 8 with a width of about 2 mm. The cutters 1 in
The set of cutter teeth 3 are shown, furthermore, in a schematic front view in
Furthermore, at least two opposite rectangular slots 10, by means of which a torque can be transmitted to the cutter 1 by positive-locking connection with a corresponding handling or rotating device, are formed at the proximal end b of shank 2.
a show an alternative embodiment of the teeth of cutter 1 according to the present invention with a bent closure at the distal end a. The teeth are again formed by grooves 5 cut parabolically in the wall of cutter 1 in the axial direction, wherein the tooth walls 4a formed hereby are at first parallel to the axis towards the distal end a. Beginning from half the length of the grooves 5, the tooth walls 4a are bent radially inwardly. The groove bases 5a are made pointed towards the distal end a, and the tooth walls 4a have a nearly constant width. Due to the flat front-side closure, a sharp cutting edge is obtained directly on the front side. An additional cutting edge may be formed in the obliquely extending area of the tooth walls 4a.
a shows for this a longitudinal section according to section C-C, with shortening of the drawing for the sake of greater clarity, through the cutter 1 in
In this exemplary embodiment the cutters 1 according to
The cutters 1 from
Due to the diameters coordinated with one another, in which the external diameter 7 of a thin cutter 1 fits the internal diameter 6 of the next thicker cutter 1 with a tolerance of 0.1 mm, the cutters 1 as a set of cutters can be optimally pushed one into the other, so that they can be placed for this one over another and/or split up for hollowing out in a vertebra. They can be distinguished in their different sizes not only by the different external diameters 7, but also by the different number of colored ceramic rings 8 consisting of heat-resistant ceramic. Common to all is the annular recess 9 and the rectangular slot 10 at the proximal end b of shank 2, which make it possible to firmly clamp the cutters 1 in a corresponding handling or rotating device and to transmit a torque due to positive-locking connection with the handling or rotating device, as a result of which precise operation is made possible in endoscopic spine surgery.
While specific embodiments of the invention have been described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
20 2009 006 792 U | May 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
749624 | McCullough | Jan 1904 | A |
3609056 | Hougen | Sep 1971 | A |
4452554 | Hougen | Jun 1984 | A |
4559936 | Hill | Dec 1985 | A |
5190548 | Davis | Mar 1993 | A |
5312408 | Brown | May 1994 | A |
5505732 | Michelson | Apr 1996 | A |
5785522 | Bergstrom et al. | Jul 1998 | A |
5899908 | Kuslich et al. | May 1999 | A |
6200322 | Branch et al. | Mar 2001 | B1 |
6306142 | Johanson et al. | Oct 2001 | B1 |
6322564 | Surma | Nov 2001 | B1 |
6332886 | Green et al. | Dec 2001 | B1 |
6663637 | Dixon et al. | Dec 2003 | B2 |
6676711 | Omi | Jan 2004 | B2 |
6692501 | Michelson | Feb 2004 | B2 |
6942669 | Kurc | Sep 2005 | B2 |
20030170591 | Kurer | Sep 2003 | A1 |
20090112261 | Barry | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
G94 20 565.5 | Feb 1995 | DE |
29616633 | Nov 1996 | DE |
69217689 | Jul 1997 | DE |
202005016763 | Nov 2006 | DE |
2 164 277 | Mar 1986 | GB |
WO 9324061 | Dec 1993 | WO |
Number | Date | Country | |
---|---|---|---|
20100292700 A1 | Nov 2010 | US |