Spine implant with a defelction rod system anchored to a bone anchor and method

Information

  • Patent Grant
  • 8048121
  • Patent Number
    8,048,121
  • Date Filed
    Friday, May 30, 2008
    16 years ago
  • Date Issued
    Tuesday, November 1, 2011
    13 years ago
Abstract
A dynamic stabilization, motion preservation spinal implant system includes a deflection rod system implant. The system is modular so that various constructs and configurations can be created and customized to a patient.
Description
BACKGROUND OF INVENTION

The most dynamic segment of orthopedic and neurosurgical medical practice over the past decade has been spinal devices designed to fuse the spine to treat a broad range of degenerative spinal disorders. Back pain is a significant clinical problem and the annual costs to treat it, both surgical and medical, is estimated to be over $2 billion. Motion preserving devices to treat back and extremity pain have, however, created a treatment alternative to or in combination with fusion for degenerative disk disease.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a posterior view of an embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 1B is a lateral view of the dynamic spine stabilization system of FIG. 1A.



FIG. 2 is a posterior view of the dynamic spine stabilization system of FIG. 1A implanted and extending between two vertebrae of a spine.



FIG. 3A is a posterior view of the dynamic spine stabilization system of FIG. 1A implanted as shown in FIG. 2 and further comprising locking screws to resist rotation of the dynamic spine stabilization system.



FIG. 3B is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.



FIG. 4 is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.



FIG. 5 is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.



FIG. 6 is a posterior view of yet another embodiment of the dynamic spine stabilization system of the invention including horizontal rods to resist rotation.



FIG. 7A is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 7B is a lateral view of the dynamic spine stabilization system of FIG. 7A.



FIG. 7C is a caudal view of the dynamic spine stabilization system of FIG. 7A.



FIG. 8 is a posterior view of the dynamic spine stabilization system of FIG. 7A implanted and extending between two vertebrae of a spine.



FIG. 9 is a posterior view of the dynamic spine stabilization system of FIG. 7A implanted in an alternative arrangement to FIG. 8 and extending between the two vertebrae.



FIG. 10 is a posterior view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention implanted and extending between two vertebrae of a spine.



FIG. 11A is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 11B is a lateral view of the dynamic spine stabilization system of FIG. 11A.



FIG. 12 is a lateral view of the dynamic spine stabilization system of FIG. 11A comprising an alternative seating arrangement for a horizontal rod.



FIG. 13 is a posterior view of the dynamic spine stabilization system of FIG. 11A implanted and extending between a vertebra of the spine and two adjacent vertebrae.



FIG. 14A is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 14B is a lateral view of the dynamic spine stabilization system of FIG. 14A.



FIG. 15 is a posterior view of the dynamic spine stabilization system of FIG. 14A implanted and extending between two vertebrae of a spine.



FIG. 16 is a posterior view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention implanted and extending between two vertebrae of a spine.



FIG. 17 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 18 is a lateral view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 19 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 20A is an exploded perspective view of yet another embodiment of a dynamic spine system in accordance with the present invention.



FIG. 20B is an perspective view the dynamic spin stabilization system of FIG. 20A with the distraction rod system and set screw seated within the anchoring device.



FIG. 21 is a posterior view of the dynamic spine stabilization system of FIG. 20A implanted and extending between a vertebra of the spine and two adjacent vertebrae.



FIG. 22 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 23 is a lateral view (in partial cross-section) of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 24A is a lateral view (in partial cross-section) of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 24B is a lateral view of the dynamic spine stabilization system of FIG. 24A.



FIG. 25 is a posterior view of the dynamic spine stabilization system of FIG. 24A implanted and extending between a vertebra of the spine and two adjacent vertebrae.



FIG. 26 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 27 is a lateral view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 28 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.



FIG. 29 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention include a system or implant and method that can dynamically stabilize the spine while providing for the preservation of spinal motion. Alternative embodiments can be used for spine fusion.


Embodiments of the invention include a construct with an anchoring system, a deflection rod system and a vertical rod system.


An advantage and aspect of some embodiments of anchoring systems in accordance with the present invention is that such embodiments include a head or saddle that allows for appropriate, efficient and convenient placement of the anchoring system relative to the spine in order to reduce the force that is placed on the anchoring system. Such embodiments have enhanced degrees of freedom which contribute to the ease of implantation of the anchor system and are designed to isolate the head from the rest of the dynamic stabilization system and the forces that the rest of the dynamic stabilization system can place on the anchor system and the anchor system/bone interface. Thus, the anchor system can provide a secure purchase in the spine.


An aspect and advantage of the invention is the ability to maximize the range of motion of the spine after embodiments of the dynamic stabilization, motion preservation implant of the invention are implanted in a patient. While traditional solutions to back pain include fusion, discectomy, and artificial implants that replace spine structure, embodiments of the present invention preserve the bone and ligament structure of the spine and preserve a wide range of motion of the spine, while stabilizing spines that were heretofore unstable due to degenerative and other spinal diseases.


Still another aspect of the invention is the preservation of the natural motion of the spine and the maintenance of the quality of motion as well as the wide range of motion so that the spine motion is as close to that of the natural spine as possible. The present embodiments of the invention allow for the selection of a less stiff, yet dynamically stable implant for use in a non-fusion situation. A less stiff, yet dynamically stable implant relates directly to a positive patient outcome, including patient comfort and the quality of motion of the spine.


In another aspect of the invention, load sharing is provided by embodiments, and, in particular, the deflection rod or loading rod of the embodiments. For embodiments of this invention, the terms “deflection rod” and “loading rod” can be used interchangeably. Accordingly this aspect of the invention is directed to restoring the normal motion of the spine. The embodiment provides stiffness and support where needed to support the loads exerted on the spine during normal spine motion, which loads, the soft tissues of the spine are no longer able to accommodate since these spine tissues are either degenerated or damaged. Load sharing is enhanced by the ability to select the appropriate stiffness of the deflection rod or loading rod in order to match the load sharing characteristics desired. By selecting the appropriate stiffness of the deflection rod or loading rod to match the physiology of the patient and the loads that the patient places on the spine, a better outcome is realized for the patient. Prior to implantation of the embodiment, the stiffness of the implant of the system can be selected among a number of loading rods. In other words, the stiffness is variable depending on the deflection rod or loading rod selected. In another aspect, the load sharing is between the spine and the embodiment of the invention.


As the load is carried along the deflection rod or loading rod, the embodiments of the invention can be made smaller in order to fit in more spaces relative to the spine.


An aspect of the invention is to preserve and not restrict motion between the vertebra of the spine through the use of appropriately selected vertical rods (and optionally horizontal rods) of embodiments of the invention.


Another aspect of the invention is the ability to control stiffness for extension, flexion, lateral bending and axial rotation, and to control stiffness for each of these motions independently of the other motions.


An aspect of the invention is to use the stiffness and load bearing characteristics of super elastic materials.


Another aspect of the invention is to use super elastic materials to customize the implant to the motion preservation and the dynamic stabilization needs of a patient. An aspect of such embodiments of the invention is to provide for a force plateau where motion of the implantation system continues without placement of additional force of the bone anchor system, or, in other words, the bone/implantation system interface.


Accordingly, an aspect of the invention is to be able to selectively vary the stiffness and selectively vary the orientation and direction that the stiffness is felt by varying the structure of the implantation system of the invention.


Another aspect of some embodiments of the invention is to prevent and/or provide for any off-axis implantation by allowing the implantation system to have enhanced degrees of freedom of placement of the implant.


A further aspect of embodiments of the invention is to control stabilized motion from micro-motion to broad extension, flexion, axial rotation, and lateral bending motions of the spine.


Yet another aspect of the embodiments of the invention is to be able to revise a dynamic stabilization implant should a fusion implant be indicated. This procedure can be accomplished by, for example, the removal of the deflection rod system of the implantation system and replacement with, for example, a stiffer deflection rod system. Accordingly, an aspect of the invention is to provide for a convenient path for a revision of the original implantation system, if needed.


A further aspect of the invention, due to the ease of implanting the anchoring system, is the ability to accommodate the bone structure of the spine, even if adjacent vertebra are misaligned with respect to each other.


A further aspect of the invention is that the implant is constructed around features of the spine such as the spinous processes and, thus, such features do not need to be removed and the implant does not get in the way of the normal motion of the spine features and the spine features do not get in the way of the operation of the implant.


Another aspect of embodiments of the invention is the ability to stabilize two, three and/or more levels of the spine by the selection of appropriate embodiments and components of embodiments of the invention for implantation in a patient. Further embodiments of the invention allow for fused levels to be placed next to dynamically stabilized levels. Such embodiments of the invention enable vertebral levels adjacent to fusion levels to be shielded by providing a more anatomical change from a rigid fusion level to a dynamically stable, motion preserved, and more mobile level.


Accordingly, another aspect of the embodiments of the invention is to provide a modular system that can be customized to the needs of the patient. A Deflection rod system can be selectively chosen for the particular patient as well the particular levels of the vertebrae of the spine that are treated. Further, the positioning of the embodiments of the invention can be selected to control stiffness and stability.


Another aspect of embodiments of the invention is that embodiments can be constructed to provide for higher stiffness and fusion at one level or to one portion of the spine while allowing for lower stiffness and dynamic stabilization at another adjacent level or to another portion of the spine.


Yet a further aspect of the invention is to provide for dynamic stabilization and motion preservation while preserving the bone and tissues of the spine in order to lessen trauma to the patient and to use the existing functional bone and tissue of the patient as optimally as possible in cooperation with embodiments of the invention.


Another object of the invention is to implant the embodiments of the invention in order to unload force from the spinal facets and other posterior spinal structures and also the intervertebral disc.


A further aspect of the invention is to implant the embodiment of the invention with a procedure that does not remove or alter bone or tear or sever tissue. In an aspect of the invention the muscle and other tissue can be urged out of the way during the inventive implantation procedure.


Accordingly, an aspect of the invention is to provide for a novel implantation procedure that is minimally invasive.


Dynamic Stabilization, Motion Preservation System for the Spine:


Common reference numerals are used throughout the drawings and detailed description to indicate like elements; therefore, reference numerals used in a drawing may or may not be referenced in the detailed description specific to such drawing if the associated element is described elsewhere. Further, the terms “vertical” and “horizontal” are used throughout the detailed description to describe general orientation of structures relative to the spine of a human patient that is standing.



FIG. 1A is a posterior view (in partial cross-section) and FIG. 1B is a lateral view of an embodiment of a deflection rod system implant 100 for use with dynamic stabilization, motion preservation systems (also referred to herein simply as “dynamic stabilization systems”) in accordance with the present invention. The deflection rod system implant 100 comprises a deflection rod system or deflection rod system engine 110, an anchoring device 102 and a vertical rod 120. The deflection rod system 110 includes a deflection rod guide or shield 116 and a deflection rod 111 including an inner rod 112 within an outer shell 114. The deflection rod 111 can have a varying diameter along its length. A decreasing diameter allows the deflection rods 111 to be more flexible and bendable along the length deflection rod length to more evenly distribute the load placed on the deflection rod system 100 by the spine. The outer shell 114 preferably is made of PEEK or other comparable polymer and has a diameter that continuously decreases along the length of the deflection rod 111. The inner rod 112 can be comprised of a super elastic material. Preferably, the super elastic material is comprised of Nitinol (NiTi). In addition to Nitinol or nickel-titanium (NiTi), other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However, for biocompatibility, nickel-titanium is the preferred material. The inner rod 112, like the overall deflection rod 111, can vary in diameter and shape, although in a preferred embodiment, the inner rod 112 is substantially cylindrical.


Alternatively, the diameter of the outer shell 114 can decrease in discrete steps along the length of the distraction rod 111, with the diameter of one step not being continuous with the diameter of the next adjacent step. Alternatively, for different force and load carrying criteria the diameters of the deflection rod can continuously increase in diameter or can have discreet step increases in diameter along the length of the deflection rod 111. Still further, the deflection rod 111 can have at least one step of decreasing diameter and at least one step of increasing diameter in any order along the length of the deflection rod 111, as desired for the force and load carrying characteristics of the deflection rod 111.


The deflection rod 111 is arranged within the deflection rod guide or shield 116 which covers and, in this embodiment, substantially surrounds the deflection rod 111. The deflection rod system 110 can be a preassembled unit provided to a surgeon for implantation by affixing the deflection rod system 110 to a bone (e.g., the pedicle of a vertebra) using an anchoring device 102 such as a bone screw. The deflection rod system 110 is connected with the anchoring device 102 by an arm 130, which arm 130 can be integrally formed with the deflection rod system 110, affixed to the deflection rod system 110 by one or more fasteners or fastening features (such as protruding structures that interlockingly engage each other when coupled), press fit to the deflection rod system 110, or otherwise fixedly secured to the deflection rod system 110. In the embodiment, the arm 130 includes an aperture 131 through which the anchoring device 102 is received and driven into the bone. The anchoring device 102 includes a head 104 that interferes with passage of the anchoring device 102 through the aperture 131. Threads 106 of the anchoring device 102 grip the bone to hold the arm 130 between the bone and the head 104, thereby affixing the arm 103 and by extension the deflection rod system 110 to the bone. Preferably, the anchoring device 102 is comprised of titanium; however, other biocompatible materials such as stainless steel and/or PEEK can be used. As will be appreciated upon reflecting on the different embodiments, the structures described herein can vary in size and shape based on factors such as material of construction, anatomical structure of the implantation site, implantation technique and targeted system performance (e.g., stiffness).


Referring to FIG. 2, the vertical rod 120 is connected to the deflection rod 111 and can urge the deflection rod 111 in response to relative movement of two vertebrae between which the vertical rod 120 extends. In the embodiment shown, a distal end of the deflection rod 111 can be fixedly mated with a spherical (or semi-spherical) ball or joint 118 that can pivot within a cradle at a proximal end of the vertical rod 120. The vertical rod 120 can pivot in a posterior-to-anterior or anterior-to-posterior direction about the joint 118, and optionally can pivot slightly in a lateral direction. The pivoting motion can allow adjustment of the vertical rod 120 relative to the deflection rod system 110 to ease manipulation of the dynamic stabilization system during implantation and optionally to reduce torque forces applied to the deflection rod 111. A distal end of the vertical rod 120 can be fixedly connected with an upper (or lower) vertebra of the two vertebrae by an additional anchoring device 152, such as a bone screw. The anchoring device 152 can include an arm 170 extending a clamp 162 that receives and secures the vertical rod 120. The arm 170 extends laterally from the anchoring device 152 so that the anchoring device 152 can be positioned and secured to the upper pedicle 8 (a good source of bone for anchoring) while the clamp 162 can be aligned with the vertical rod 120 to receive the vertical rod 120, which extends generally (though not necessarily) parallel to the spine. The dynamic stabilization system 100 comprises two substantially similar, mirrored structures connected at opposite pedicles 8,10 of the vertebrae 2,4. However, in alternative embodiments, the dynamic stabilization system can comprise dissimilar structures, for example to accommodate anatomical asymmetry. FIG. 3A illustrates an alternative embodiment wherein one or both of the deflection rod system arms 330 and clamp arm 370 can include a secondary aperture for receiving a locking screw 334,364 that can resist rotation of the corresponding arm. FIG. 3B illustrates an alternative embodiment wherein the deflection rod system arm 330 includes a secondary aperture for receiving the locking screw 334, and wherein the clamp and clamp arm are supplanted by an anchoring device 352 that receives the vertical rod 120 over a bone screw thread. The anchoring device 352 can resemble the anchoring device 752 shown in FIGS. 7A, 7B, and described below in the description of FIGS. 7A, 7B. Such anchoring devices can resemble anchoring devices described in U.S. Provisional Application 61/031,598, entitled “A DEFLECTION ROD SYSTEM FOR A DYNAMIC STABILIZATION AND MOTION PRESERVATION SPINAL IMPLANTATION SYSTEM AND METHOD” (SPART-01037US0), incorporated herein by reference. The alternative embodiment may reduce torque applied to the anchoring device 352 and simplify the anchoring device 352 to ease implantation of the anchoring device 352.


More lateral placement of the vertical rods provides for more stiffness in lateral bending and an easier implant approach by, for example, a Wiltse approach as described in “The Paraspinal Sacraspinalis-Splitting Approach to the Lumber Spine,” by Leon L. Wiltse et al., The Journal of Bone & Joint Surgery, Vol. 50-A, No. 5, July 1968, which is incorporated herein by reference.


The stiffness of the deflection rod system 100 can preferably be adjusted by the selection of the materials and placement and diameters of the deflection rod system as well as the horizontal and vertical rods. Larger diameter rods would increase the resistance of the deflection rod system 100 to flexion, extension rotation, and bending of the spine, while smaller diameter rods would decrease the resistance of the deflection rod system 100 to flexion, extension, rotation and bending of the spine. Further, continually or discretely changing the diameter of the deflection rods 111 along the length of the deflection rods 111 changes the stiffness characteristics. Thus, with the deflection rods 111 tapered toward the vertical rod 120, the deflection rod system 100 can have more flexibility in flexion and extension of the spine. Further, using a super elastic material for the vertical rod 120 in addition to the deflection rod 111 adds to the flexibility of the deflection rod system 100. Further, the vertical rods 120, in addition to the deflection rods 111, can be made of titanium or stainless steel or PEEK should a stiffer deflection rod system 100 be required. Thus, it can be appreciated that the deflection rod system 100 can selectively accommodate the desired stiffness for the patient depending on the materials uses, and the diameter of the materials, and the placement of the elements of the deflection rod system 100.


Should an implanted deflection rod system 100 need to be revised, that can be accomplished by removing and replacing the vertical rod 120 and/or deflection rod system 110 to obtain the desired stiffness. By way of example only, should a stiffer revised deflection rod system 100 be desired, more akin to a fusion, or, in fact, a fusion, then the deflection rod system 110 having the deflection rods 111 can be removed and replaced by a deflection rod system 110 having the deflection rods 111 made of titanium, or stainless steel, or non-super elastic rods to increase the stiffness of the system. This can be accomplished in some embodiments described herein by leaving the anchoring device 102 in place and removing the existing deflection rod systems 110 and replacing the deflection rod systems with deflection rod systems having stiffer distraction rods 111 and outer shells and associated vertical rods 120.


In alternative embodiments of methods of stabilizing vertebral motion segments in accordance with the present invention, the dynamic stabilization system 100 can be implanted in an arrangement vertically flipped from the arrangement of FIG. 2. As shown in FIG. 4, the deflection rod system 110 is fixedly connected with the upper vertebra by the anchoring system 102. The vertical rod 120 is connected to the deflection rod 111 and extends caudally to the lower vertebra. The vertical rod 102 urges the deflection rod 111 in response to relative movement of the two vertebrae between which the vertical rod 120 extends. As with the previously described arrangement and as shown in FIG. 5, one or both of the deflection rod system arms 330 and clamp arms 370 can include a secondary aperture for receiving a locking screw 334, 364 that can resist rotation of the corresponding arm. Referring to FIG. 6, in still further embodiments, one or both of the deflection rod system arms 630 and clamp arms 670 can be adapted to connect with horizontal rods 680, 682 that extend between pedicles 8,10 of a vertebra. The anchoring devices 602, 652 can include a U-shaped channel for receiving the horizontal rod 680, 682, the horizontal rod being held in the channel by a locking set screw 644, 654. The horizontal rods 680, 682 are positioned between adjacent spinous processes 2, 4 associated with the vertebrae and can pierce or displace the interspinal ligament without severing or removing tissue. The horizontal rods 680, 682 can resist rotation and can be used in place of locking screws. In a preferred embodiment, the horizontal rod 680,682 can be comprised of titanium, stainless steel or PEEK or another biocompatible material, and the first and second deflection rods or loading rods can be comprised of a super elastic material. Preferably, the super elastic material is comprised of Nitinol (NiTi). In addition to Nitinol or nickel-titanium (NiTi), other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However, for biocompatibility, the nickel-titanium is the preferred material.



FIGS. 7A-9 illustrate a still further embodiment of a deflection rod system 700 in accordance with the present invention comprising an deflection rod system 710 connectable with an anchoring device 702 after the anchoring device 702 is secured to a pedicle. Such embodiments can reduce visual obstruction of the pedicle during seating of the anchoring device 702 by reducing the size of the structure seated. An anchoring block 732 receives the anchoring device 702 through an aperture 731 and is secured to the pedicle as threads 106 of the anchoring device 702 grip the bone and the head 704 is seated within the anchoring block 732. The anchoring block 732 includes an internal screw thread 734 through at least a portion of the anchoring block 732 for receiving a screw 742 to secure an deflection rod system arm 730 of the deflection rod system 710. As in previous embodiments, the deflection rod system 710 comprises a deflection rod shield or guide 716 and a deflection rod 711 including an inner rod (not visible) within an outer shell 714. As shown, the deflection rod system 710 is connected with an arm 730 having a curved base that meets a curved surface of the anchoring block 732 (FIG. 7C). The arm 730 can pivot slightly relative to the anchoring device 702, allowing the surgeon to adjust an angle of protrusion of the deflection rod system 710 relative to the spine. The arm 730 is fastened to the anchoring block 732 by the screw 742 which is connected through a spacer 744 having a surface in sliding contact with a curved surface of the arm 730 to distribute force generally evenly along the arm 730 when arranged at a desired orientation. In this arrangement, preferably, the joint 718 is adjacent with and located over the anchor 702 in order to minimize or eliminate the transfer of torque forces from the rod 720 to the anchor 702. Other complementary mating surfaces may be used to obtain the desired relative motion.


A vertical rod 720 is connected to the deflection rod 711 and can urge the deflection rod 711 in response to relative movement of two vertebrae between which the vertical rod 720 extends. A distal end of the deflection rod 711 can be fixedly mated with a spherical (or semi-spherical) ball or joint 718 that can pivot within a cradle at a proximal end of the vertical rod 720. The vertical rod 720 can pivot in a posterior-to-anterior or anterior-to-posterior direction about the joint 718, and optionally can pivot in a lateral direction. The pivoting motion can allow adjustment of the vertical rod 720 relative to the deflection rod system 710 to ease manipulation of the dynamic stabilization system during implantation and optionally to reduce torque forces applied to the deflection rod 711. A distal end of the vertical rod 720 can be fixedly connected with an upper or lower vertebra of the two vertebrae by an additional anchoring device 752. The anchoring device can resemble anchoring devices as described in U.S. Provisional Application No. 61/031,598. As shown, the anchoring device 752 includes a saddle 758 that can receive the vertical rod 720. A locking set screw 754 can be urged along threads of the saddle 758 so that the locking set screw 754 secures the vertical rod 758 against the U-shaped channel of the saddle 758. A bone screw thread 756 can optionally be mated with a body of the anchoring device 752 by a fastener 772 that permits at least cranial-to-caudal pivoting. The saddle 758 can include a hex-shaped outer surface to assist in seating the bone screw 756 within the upper pedicle 8. As shown in FIGS. 8 and 9, the deflection rod system 700 can be arranged with the deflection rod system 710 anchored to an upper of two vertebrae, or alternatively, the lower of two vertebrae.



FIG. 10 is a posterior view of a still further embodiment of a deflection rod system implant 1000 in accordance with the present invention comprising an deflection rod system 610 that is engaged during spine extension, but not engaged during spine flexion. The deflection rod system 610 and associated structures resemble the deflection rod system and associated structures of FIG. 6, and can be connected with a horizontal rod 680 extending between pedicles of a vertebra. A vertical rod 1020 is connected at a proximal end to a deflection rod 111 of the deflection rod system 610. The distal end of the vertical rod 1010 is unattached and slides within a boot 1090. The boot 1090 blocks movement of the vertical rod 1020 when the distal end of the vertical rod 1020 abuts the base of the boot 1090, and further extension movement will cause the vertical rod 1020 to deflect the deflection rod 111. The boot 1090 is preferably sized to accommodate movement of vertical rod 1020 within the boot 1090 that spans a length of natural movement of the spine during extension, to avoid separation of the vertical rod 1020 from the boot 1090. Alternatively, the distal end of the vertical rod can include a ball or other slidable structure that is held within a cavity of the boot, enabling the boot to resist both extension and flexion, and to permit a range of free motion determined by the surgeon. As shown, the boot 1090 is connected with an anchoring device 1052 by an arm 1070. A locking screw 1062 resists rotation of the boot 1090 about the anchoring device 1052 in response to a force applied by the vertical rod 1020.



FIG. 11A is a posterior view (in partial cross-section) and FIG. 11B is a lateral view (in partial cross-section) of a still further embodiment of a deflection rod system implant 1100 for use with dynamic stabilization systems accordance with the present invention. The deflection rod system implant 1100 is adapted to support multiple motion segments and comprises a first deflection rod system 1110a connected with a vertical rod 1120a extending cranially, a second deflection rod system 1110b connected with a vertical rod 1120b extending caudally, and an anchoring device 1102. The first and second deflection rod systems 1110a, 1110b can have similar or different bending or load carrying or stiffness characteristics, as prescribed by the surgeon or a physician. A common arm 1130 connects the first and second deflection rod systems 1110a, 1110b with the anchoring device 1102. The arm 1130 includes an aperture 1131 through which the anchoring device 1102 is received and driven into the bone. The anchoring device 1102 includes a head 1104 that interferes with passage of the anchoring device 1102 through the aperture 1131. Threads 1106 of the anchoring device 1102 grip the bone to hold the arm 1130 between the bone and the head 1104, thereby affixing the arm 1103 and by extension the deflection rod systems 1110a, 1110b. The arm 1130 can be adapted to connect with a horizontal rod 1180 that extend between pedicles 10 of a vertebra. The horizontal rod 1180 can be received in U-shaped slots of the arm 1130 and urged against the head 1104 of the anchoring device 1102 by a locking set screw 1144 having external threads that mate with internal threads of the walls of the arm channel.



FIG. 12 is a lateral view of a deflection rod system implant 1200 resembling the deflection rod system implant 1100 of FIG. 11B with a compressor element or cradle 1236 positioned within the channel and between the horizontal rod 1180 and anchoring device 1202. As shown, the head 1204 of the anchoring device 1202 has a spherical or semi-spherical shape, although alternatively the head can have some other shape that complements the compressor element or cradle 1236 while permitted at least limited movement between the two structures to allow flexibility in relative arrangement during implantation. For example, the head can have a rounded indention mateable with a spherical surface.


The compressor element or cradle 1236 has a generally cylindrical body so that the compressor element 1236 can fit within a bore of the arm 1230. A posterior surface of the compressor element 1236 is concave and generally complementing the horizontal rod 1180 which rests thereon. The anterior surface of the compressor 1236 is in sliding contact with the head 1204 to allow the anchoring device 1202 to be positioned as appropriate. The locking set screw 1144 urges the horizontal rod 1180 against the compressor element 1236, which in turn is urged against the anchoring device 1202. Alternatively, the compressor element 1236 and head 1204 can have some other complementary shape that allows some or no sliding contact between the structures.



FIG. 13 is a posterior view of the deflection rod system implant 1200 of FIG. 11 comprising the first deflection rod system 1110a and second deflection rod system 1110b secured to a vertebra common to two adjacent motion segments targeted for stabilization by an anchoring device 1102. A first vertical rod 1120a is connected to a deflection rod 1111a of the first deflection rod system 1110a and extends cranially to the upper vertebra of the upper targeted motion segment, and is secured to the upper vertebra by a clamp 162. A second vertical rod 1120b is connected to a deflection rod 1111b of the second deflection rod system 1110b and extends caudally to the lower vertebra of the lower targeted motion segment, and is secured to the lower vertebra by a clamp 162. The vertical rods 1120a, 1120b urge respective deflection rods 1111a,1111b in response to relative movement of the two vertebrae between which the vertical rods 1120a,1120b extend. Preferably, vertical rod 1120a is aligned with vertical rod 1120b in order to reduce or eliminate torque forces. An arm 1130 common to the deflection rod systems 1110a,1110b is connected with a horizontal rod 1180 that extends between pedicles of the common vertebra to a complementary pair of deflection rod systems. The horizontal rod 1180 is positioned between adjacent spinous processes 2,4 associated with the vertebrae and can pierce or displace the interspinal ligament without severing or removing tissue. The horizontal rod 1180 can resist rotation of the deflection rod systems 1110a,1110b and can be used in place of locking screws.



FIGS. 14A and 14B illustrate yet another embodiment of a deflection rod system implant 1400 in accordance with the present invention comprising an deflection rod system 1410 connectable with an anchoring device 1402, preferably after the anchoring device 1402 is secured to a pedicle. An arm 1430 of the deflection rod system 1410 comprises a collar 1464 that can be received over a head 1404 of the anchoring device 1402 to capture a horizontal bar 1480. The arm 1430 can be secured to the head 1404 by a collar screw 1450. The horizontal bar 1480 can be held in place by one or both of the arm 1430 which is urged against the horizontal bar 1480 by the collar screw 1450, and a locking set screw 1458. Optionally, the head 1404 of the anchoring device can be connected with a yoke 1407 by a pin 1403 to allow the head 1404 to be pivoted during implantation. Such an arrangement can allow a thread 106 of the anchoring device 1402 to be seated within the pedicle at an acute angle relative to a plane of the collar.


Referring to FIG. 15, the deflection rod system implant 1400 of FIGS. 14A and 14B is shown implanted between two vertebrae to stabilize the motion segment associated with the vertebrae. The deflection rod system 1410 is anchored to the upper vertebra of the motion segment and a vertical rod 120 is connected between a deflection rod 111 of the deflection rod system 1410 and a clamp 162 connected with the lower vertebra by an anchoring device 152. FIG. 16 is a posterior view of a still further embodiment of a deflection rod system implant 1600 in accordance with the present invention comprising an deflection rod system 1610 connected with an arm 1630 that resembles the arm 1430 of FIG. 14A-15; however, the deflection rod system 1610 is connected with the arm 1630 so that the deflection rod 111 extends toward the spinous process 2 rather than away from the spinous process (i.e., the deflection rod system 1610 is “inboard). The clamp 162 is connected with the anchoring device 152 by a clamp arm 1670 that likewise extends toward a spinous process 4.


The embodiments described above comprise deflection rods extending generally in a transverse direction to the orientation of the bone anchor screw. In still other embodiments, deflection rod systems can be oriented generally in a co-axial or collinear or parallel orientation to a bone anchor screw. Referring to FIGS. 17-22, the deflection rod system can extend substantially co-axial or parallel to the threaded shaft of an anchoring device. As will be appreciated upon reflecting on the teaching provided herein, such embodiments can simplify implantation, reduce trauma to structures surrounding an implantation site, and reduce system components.



FIG. 17 illustrates an embodiment of a deflection rod system implant 1700 comprising an anchoring device 1702 with a cavity 1709 for receiving a deflection rod system 1710. It has been observed that acceptable anchoring can be achieved in a bone such as a pedicle using a thread 1706 pattern that include deep threads 1706x (i.e., having a maximum difference between inner diameter, DII, and outer diameter, DO, of a shaft of the anchoring device) nearer the distal end of the shaft and comparatively shallow threads 1706y nearer the shank 1705. The comparatively shallow threads 1706y can enable a larger inner diameter, DI2, of the anchoring device 1702 shaft which can accommodate the deflection rod system 1710. In some embodiments, the cavity can have a size and shape that can accommodate deflection rod systems having a range of different performance characteristics (e.g., stiffness, range of motion). A physician or surgeon can implant an anchoring device 1702 selected independently from the deflection rod system 1710 and based on the anatomy into which it is implanted. For example, the anchoring device 1702 can be selected based on the location of the vertebrae (e.g., L5-S1 vs. C7-T1) or the age and sex of the patient. The deflection rod system 1710 can then be selected based on the desired performance characteristics. The deflection rod system 1710 can be seated within the cavity using myriad different techniques. For example, the distraction rod guide or shield 1716 can be press fit into the walls of the cavity 1709, or the distraction rod guide 1716 can be cemented or otherwise adhesively fixed to the walls of the cavity 1709. Alternatively, the distraction rod guide or shield 1716 can be captured in the cavity 1709 by a locking set screw or ratchet feature. Further, the distraction rod guide 1716 (and deflection rod system 1710) can have a length longer than that of the cavity 1709 so that a portion of the distraction rod guide 1716 extends outside of the cavity 1702 and posterior to the anchoring device 1702. One of ordinary skill in the art, upon reflecting on the teachings provided herein, will appreciate the myriad ways in which the deflection rod system 1710 can be fixedly associated with an anchoring device 1702.


The distraction rod system 1700 of FIG. 17 generally includes less, or simpler footprint than the previously described embodiments, potentially reducing the amount of displacement of tissue and/or bone, reducing trauma to tissue and/or bone during surgery. Further, the smaller footprint can reduce the amount of tissue that needs to be exposed during implantation. Still further, arranging the deflection rod system 1710 co-axial with a shaft of the anchoring device 1702 can substantially transfer a moment force applied by the deflection rod system 1710 from a moment force tending to pivot or rotate the anchoring device 1702 about the axis of the shaft, to a moment force tending to act perpendicular to the axis of the shaft. The distraction rod system implant 1700 can effectively resist repositioning of the deflection rod system 1710 and/or anchoring device 1702 without the use of locking screws or horizontal bars to resist rotation. Eliminating locking screws and/or horizontal bars can reduce exposure of tissue and/or bone to foreign bodies.



FIG. 18 illustrates an alternative embodiment of a deflection rod system implant 1800 comprising an anchoring device 1802 with a cavity 1809 for receiving a distraction rod 111. The embodiment resembles the deflection rod system 1700 of FIG. 17; however, the distraction rod guide or shield 1816 is integrally formed in a shank 1805 of the anchoring device 1802. The distraction rod guide or shield 1816 can be sized and shaped to provide, in combination with the choice of inner rod 112 and outer shell 114, a desired performance characteristic. Integrally forming the distraction rod guide 1816 in a shank 1805 of the anchoring device 1802 can potentially reduce a thickness otherwise required to accommodate separate components. The distraction rod 111 can be mated with the distraction rod guide 1816 applying similar techniques to mate distraction rods within previously described distraction rod guide or shield.



FIG. 19 illustrates a still further embodiment of a deflection rod system implant 1900 comprising an anchoring device 1902 with a cavity 1909 including inner threads for receiving an deflection rod system screw 1913, with complementary external threads extending from an deflection rod system 1910. The deflection rod system screw 1913 provides easy mating of the deflection rod system 1910 with the anchoring device 1902. The deflection rod system 1910 can further include a spherical (or semi-spherical) ball or joint 1918 that allows pivoting of a vertical rod 1920 connected with the deflection rod system 1910 so that the vertical rod 1920 can be oriented in a needed direction as the deflection rod system 1910 is rotated and the deflection rod system screw 1913 is seated within the cavity 1909. The vertical rod 1920 can then be pivoted into place extending between pedicles. The embodiment of FIG. 19 can simplify and shorten surgery by providing an easy technique for implanting the deflection rod system 1910.



FIGS. 20A and 20B illustrate yet another embodiment of a deflection rod system implant 2000 in accordance with the present invention comprising an anchoring device 2002 with a housing 2009 for receiving a deflection rod system 2010. The embodiment resembles the deflection rod system implant 1700 of FIG. 17; however, housing 2009 is connected with the anchoring device 2002 at the shank 2005, but is not formed in the shank 2005. Depending on the outer diameter of the housing 2009 and the inner diameter of the cavity that receives the deflection rod system 2010, the housing 2009 permits use of one or both of (1) a threaded shaft 2006 having a smaller diameter (for example for use in smaller bones, such as in the cervical region) and (2) a deflection rod system 2010 comprising a deflection rod guide shield 2016 with a larger diameter (e.g., for use with thicker (and stiffer) deflection rods). As shown, the housing 2009 further comprises a threaded screw hole 2057 extending along an axis at an acute angle to the axis of the threaded shaft. The threaded screw hole 2057 receives a locking set screw 2058 that when seated (FIG. 20B) protrudes into the housing 2009 or against the deflection rod system 2010, where the deflection rod system 2010 is seated within the housing 2009. The locking set screw 2058 holds the deflection rod system 2018 in place within the housing 2009. In this embodiment, a deflection rod system 2010 can be selected to have an appropriate stiffness for the patient. Further, if several deflection rod system implants 2000 are used in a patient, each deflection rod system 2010, if desired, can have a different stiffness.



FIG. 21 is a posterior view of the deflection rod system implant 2000 of FIGS. 20A and 20B implanted between pedicles 8,10 of adjacent vertebrae of a targeted motion segment. As shown, both ends of a vertical rod 2020 connected with the deflection rod system implant 2000 is connected with an deflection rod system 2010, in contrast to previous figures. Alternatively, one end of the vertical rod 2020 can be connected with an anchoring device such as described above, for example in FIG. 9. As will be appreciated, the deflection rod system implant 2000 has a small footprint from a posterior perspective.



FIG. 22 is a posterior view of still another embodiment of a deflection rod system implant 2200 in accordance with the present invention adapted to support multiple motion segments. An anchoring device 2202 resembles the anchoring devices of FIGS. 17-20B and includes an outer wall 2203 having a hex portion for gripping using a torque wrench or other tool during implantation of the anchoring device 2202 in a bone. An anchoring device 2202 is secured to the two pedicles 10 of a vertebra common to the two motion segments to be supported. A vertical rod 2220 connected with an deflection rod system 2210 mated with the anchoring device 2202, extends between the vertebra and an upper vertebra of the upper motion segment, and is connected to a pedicle 8 of the segment by an upper anchoring device 752. As above, the vertical rod 2220 is connected to the deflection rod and can deflect the deflection rod in response to relative movement of two vertebrae between which the vertical rod 2220 extends. Another vertical rod 2222 includes a yolk 2223 resembling a box-end wrench with a shape generally complementing the hex pattern of the outer wall of the bone anchor. The yolk 2223 is received over the outer wall 2203 of the anchoring device 2202, and can resist rotation the vertical rod 2222 relative to the anchoring device 2202. The vertical rod 2222 extends to the lower vertebra of the lower motion segment, and is connected to a pedicle 12 of the motion segment by a lower anchoring device 752. The vertical rod 2222 can resist movement between vertebrae 4 and 6, and thus supplement or substitute for other fusion devices, for example.



FIG. 23 is a lateral view (in partial cross-section) of an alternative embodiment of a deflection rod system implant 2300 for use with dynamic stabilization systems in accordance with the present invention and adapted to dynamically support multiple motion segments of the spine. The deflection rod system implant 2300 resembles the deflection rod system implant 1100 of FIG. 11A, but includes deflection rod systems generally oriented in an anterior-to-posterior direction. The deflection rod system implant 2300 is adapted to support multiple motion segments and comprises a first deflection rod system 2310a connected with a vertical rod 120a extending cranially, a second deflection rod system 2310b connected with a vertical rod 120b extending caudally, and an anchoring device 2302. The first and second deflection rod systems 2310a, 2310b can have similar or different bending characteristics, as prescribed by the surgeon or a physician. A common arm 2330 connects the first and second deflection rod systems 2310a, 2310b with the anchoring device 2302. The orientation of the deflection rod systems 2310a, 2310b can reduce the moment force that tends to cause rotation of the arm 2330; however, in other embodiments it may be desirable to include a head capable of receiving a horizontal rod to further resist moment force. In this embodiment, the deflection rod systems 2310a, 2310b are substantially parallel.



FIG. 24A is a lateral view (in partial cross-section) and FIG. 24B is a cranial view (in partial cross-section) of still another embodiment of a deflection rod system implant 2400 for use with dynamic stabilization systems accordance with the present invention and adapted to dynamically support multiple motion segments is shown. The deflection rod system implant 2400 resembles the deflection rod system implant 2300 of FIG. 23. An arm 2430 that is mated with the anchoring device 2402 after the anchoring device 2402 has been implanted within a bone. The arm 2430 receives a locking screw 2440 having threads that complement threads of a screw hole within the head 2404 of the anchoring device 2402. The locking screw 2440 fixedly connects the arm 2430 to the anchoring device 2402 when the locking screw 2440 is seated within the head 2404. The embodiment also includes a distraction rod guide or shield 2416 integrally formed with the arm 2430. In this embodiment, the deflection rod systems 2410 are substantially parallel. As seen in FIGS. 24A, 24B the arm 2430 can connect to the head 2404 in a number of orientations. This can be accomplished with an arm 2430 with a convex surface that mates with a concave surface of the head 2404 as shown, by way of example only, as depicted in FIG. 7C.



FIG. 25 is a posterior view of the deflection rod system implant 2300 of FIG. 23 comprising the first deflection rod system 2310a and second deflection rod system 2310b secured to a vertebra common to two adjacent motion segments or vertebrae targeted for stabilization by an anchoring device. A first vertical rod 2320a is connected to a deflection rod 2311a of the first deflection rod system 2310a and extends cranially to the upper vertebra of the upper targeted motion segment, and is secured to the upper vertebra by an upper anchoring device 752. A second vertical rod 2320b is connected to a deflection rod 2311b of the second deflection rod system 2310b and extends caudally to the lower vertebra of the lower targeted motion segment, and is secured to the lower vertebra by a lower anchoring device 752. The vertical rods 2320a, 2310b deflect respective deflection rods 2311a, 2311b in response to relative movement of the two vertebrae between which the vertical rods 2320a, 2320b extend.



FIG. 26 illustrates an embodiment of a deflection rod system implant 2600 comprising an anchoring device 2602 with a cavity 2609 for receiving a deflection rod system 2610. As mentioned above, it has been observed that acceptable anchoring can be achieved in a bone such as a pedicle using a thread 2606 pattern that include deep threads 2606y and shallow threads 2606x. The anchoring device 2602 can have a length such that when implanted a portion of the anchoring device 2602 further from the deflection rod system 2610 is seated within cancellous bone while a portion of the anchoring device 2602 nearer the deflection rod system 2610 is seated within cortical bone. Screw threads 2606x having a high pitch (i.e., having a comparatively large gap between threads) and deep threads are usable with satisfactory results in cancellous bone, which bone is an osseous tissue with a low density strength but high surface area. Screw threads 2606y having a low pitch and shallow threads are usable with satisfactory results in cortical bone, which bone is an osseous tissue with a high density strength. The diameter, D12, of the anchoring device shaft can be expanded along a portion of the shaft that is seated within the cortical bone and/or a portion of the shaft that accommodates the deflection rod system 2610. Expanding the diameter of the shaft can allow the threads to cut new thread patterns within the cortical bone, and can accommodate a deflection rod system 2610 (or range of deflection rod systems) having a larger diameter. Further, the diameter of the shaft can be larger where the cortical threads are shallow, as the vertebral bone is thicker in this area. For the same reason, the corresponding diameter of the bone as shown in FIG. 27 can be larger.



FIG. 27 illustrates a still further embodiment of a deflection rod system implant 2700 comprising an anchoring device 2702 including an external thread pattern resembling the external thread pattern of FIG. 26, and further including a cavity 2709 with inner threads for receiving an deflection rod system screw 1913, with complementary external threads extending from an deflection rod system 1910. The deflection rod system screw 1913 provides easy mating of the deflection rod system 1910 with the anchoring device 1902. The deflection rod system 1910 can further include a spherical (or semi-spherical) ball or joint 1918 that allows pivoting of a vertical rod 1920 connected with the deflection rod system 1910 so that the vertical rod 1920 can be oriented in a needed direction as the deflection rod system 1910 is rotated and the deflection rod system screw 1913 is seated within the cavity 1909. The vertical rod 1920 can then be pivoted into place extending between pedicles.


Referring again to FIG. 22, multiple motion segments can be stabilized by stringing together vertical rods and deflection rod systems individually selected for the corresponding motion segment. As shown in FIG. 22, the yoke 2223 of a vertical rod 2222 is fitted over the outer wall 2203 of a deflection rod system 2210. An opposite end of the vertical rod 2222 is connected to an anchoring device 2202. However, in still other embodiment (as shown in FIG. 28), the vertical rod 2822 can be connected with a second deflection rod system 2810b anchored by an anchoring device 2802b to a pedicle 12 of a lower vertebra of the motion segment. The deflection rod system 2810b allows controlled relative movement of the two vertebrae. Systems and methods in accordance with the present invention can comprise a series of implants connected with, and selected for the corresponding motion segment. The implants can comprise vertical rods rigidly connected between vertebrae as shown in FIG. 22 (for example to support fusion), or alternatively the vertical rods can be dynamically connected between vertebrae by a deflection rod system as shown in FIG. 28. Any combination of implants can be used having a stiffness selected for the respective motion segment. For example, FIG. 29 illustrates dynamic stabilization of three motion segments with two yoked vertical rods 2922a, 2922b fitted over dynamic stabilization systems 2810a, 2810b anchored at an upper vertebra of the targeted segment.


While the vertical rods 2822, 2922 of FIGS. 28 and 29 are shown to be connected with dynamic stabilization systems implanted in respective pedicles, embodiments of systems and methods can comprise vertical rods that are connected with dynamic stabilization systems after implantation of dynamic stabilization systems. The vertical rods 2822, 2922 can be attachable with a dynamic stabilization system at or near the connection with the spherical ball joint. Such an arrangement can allow a yoke of a vertical rod to be placed over and around the outer wall of a dynamic stabilization system (or simply past the spherical ball joint in a staging position for further adjustment) without interference from the vertical rod of that dynamic stabilization system.


It is proposed that a preferred embodiment may have the following preferred dimensions, although dimension can vary substantially based on a number of performance factors.

    • Inner rod having a diameter of about 0.080 inches.
    • Outer shell having a major diameter of about 165 inches and the tapered portion tapers at about 2.5 degrees per side.
    • Shield and deflection guide having a housing diameter of about 0.265 inches.
    • The deflection rod is secured to the deflection guide along a length of about 0.200 inches from the end of the deflection rod system.
    • The deflection rod system has a working length from the end of the system to the center of the ball joint of about 1.040 less the press fit length of about 0.200 which is length of about 0.840.
    • The overall length of the deflection rod system is about 1.100 inches.
    • The spherical ball in the ball and socket joint that secures the vertical rod to the deflection rod system has a diameter of about 188 inches.
    • The vertical rod has a diameter of about 0.150 inches.


      Materials of Embodiments of the Invention:


In addition to Nitinol or nickel-titanium (NiTi) other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However for biocompatibility the nickel-titanium is the preferred material.


As desired, the implant can, in part, be made of titanium or stainless steel. Other suitable material includes by way of example only polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK). Still, more specifically, the material can be PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (www.ghardapolymers.com).


As will be appreciated by those of skill in the art, other suitable similarly biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention.


Reference to appropriate polymers that can be used in the spacer can be made to the following documents. These documents include: PCT Publication WO 02/02158 A1, dated Jan. 10, 2002, entitled “Bio-Compatible Polymeric Materials;” PCT Publication WO 02/00275 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials;” and PCT Publication WO 02/00270 A1, dated Jan. 3, 2002, entitled “Bio-Compatible Polymeric Materials.”


The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.

Claims
  • 1. A deflection rod system adapted to be mounted to a bone anchor implanted in a spine, the deflection rod system comprising: a shield having a shield cavity having a shield cavity axis;a deflectable rod having a proximal end and a distal end, the deflectable rod being disposed in the shield cavity aligned with the shield cavity axis such that the proximal end extends out of the shield cavity and the distal end is connected to said shield;wherein a proximal portion of the deflectable rod is spaced from the shield within the shield cavity such that the proximal portion of the deflection rod can deflect within said shield cavity transverse to the shield cavity axis thereby permitting the proximal end of the deflection rod to deflect;a connector rod that is attached to said proximal end of said deflectable rod with a connector; anda mount connected to said shield that mounts said deflection rod system relative to said bone anchor in one of a plurality of positions.
  • 2. The deflection rod system of claim 1 wherein said connector is adapted to be mounted in-line with the bone anchor so as to minimize any torque that said connector rod can place on the bone anchor.
  • 3. The deflection rod system of claim 1 wherein the bone anchor includes a bone anchor head and said mount is adapted to mount said deflection rod system relative to said bone anchor head in one said plurality of positions.
  • 4. The deflection rod system of claim 1 wherein the bone anchor includes a curved anchor surface and wherein said mount includes a curved mount surface adapted to be mated with the curved anchor surface with the curved mount surface moveable relative to said curved anchor surface.
  • 5. The deflection rod system of claim 1 wherein said deflectable rod includes an inner rod and an outer shell positioned about said inner rod.
  • 6. The deflection rod system of claim 1 wherein said deflectable rod comprises a super elastic material.
  • 7. The deflection rod system of claim 1 wherein said connector permits movement between said connector rod and said deflectable rod.
  • 8. The deflection rod system of claim 1 wherein said mount mounts said deflection rod system such that the shield cavity axis is oriented about transverse to the bone anchor.
  • 9. The deflection rod system of claim 1 wherein said mount mounts said deflectable rod about perpendicular to said connector in a first position and said mount allows said connector and said deflectable rod to move relative to each other from said first position.
  • 10. The deflection rod system of claim 5 wherein said inner rod has a proximal end that extends from said outer shell and from said shield, and said connector is connected to said proximal end of said inner rod.
  • 11. A deflection rod system adapted to be mounted to a bone anchor which is implanted in a spine wherein the deflection rod system comprises: a shield having a shield cavity having a shield cavity axis;a deflectable rod having a proximal end and a distal end, the deflectable rod being disposed in the shield cavity aligned with the shield cavity axis such that the proximal end extends out of the shield cavity and the distal end is connected to said shield;wherein a proximal portion of the deflectable rod is spaced from the shield within the shield cavity such that the proximal portion of the deflection rod can deflect within said shield cavity transverse to the shield cavity axis thereby permitting the proximal end of the deflection rod to deflect;a connector rod that is attached to said proximal end of said deflectable rod with a connector;said shield including a mount that is adapted to mount to said deflection rod relative to the bone anchor in one of a plurality of positions; andwherein the bone anchor includes a curved anchor surface and wherein said mount includes a curved mount surface adapted to be mated with the curved anchor surface with the curved mount surface moveable relative to said curved anchor surface.
  • 12. The deflection rod system of claim 11 wherein said connector is adapted to be mounted in-line with the bone anchor so as to minimize any torque that said connector rod can place on the bone anchor.
  • 13. The deflection rod system of claim 11 wherein said mount is adapted to mount said deflection rod system about transverse to the bone anchor.
  • 14. The deflection rod system of claim 11 wherein said deflectable rod includes an inner rod and an outer shell positioned about said inner rod.
  • 15. The deflection rod system of claim 11 wherein said deflectable rod comprises a super elastic material.
  • 16. The deflection rod system of claim 11 wherein said connector is a ball and socket connector and said ball and socket connector is adapted to be positioned in-line with the bone anchor.
  • 17. A deflection rod system adapted to be mounted to a bone anchor implanted in a spine, the deflection rod system comprising: a shield having a shield cavity having a shield cavity axis;a deflectable rod having a proximal end and a distal end, the deflectable rod being disposed in the shield cavity aligned with the shield cavity axis such that the proximal end extends out of the shield cavity and the distal end is connected to said shield;wherein a proximal portion of the deflectable rod is spaced from the shield within the shield cavity such that the proximal portion of the deflection rod can deflect within said shield cavity transverse to the shield cavity axis thereby permitting the proximal end of the deflection rod to deflect;a connector rod that is attached to said proximal end of said deflectable rod with a connector;a mount connected to said shield that is adapted to mount said deflection rod system relative to a bone anchor in one of a plurality of positions;wherein said bone anchor includes a curved anchor surface and said mount includes a curved mount surface adapted to mate with the curved anchor surface with the curved mount surface moveable relative to said curved anchor surface;wherein said connector is adapted to be mounted in-line with the bone anchor so as to minimize any torque that said connector rod can place on the bone anchor; andwherein said mount is adapted to mount said deflection rod system such that the shield cavity axis is about transverse to the bone anchor.
  • 18. The deflection rod system of claim 17, wherein said deflectable rod includes an inner rod and an outer shell positioned about said inner rod, and said inner rod comprises a super elastic material.
  • 19. The deflection rod system of claim 17, wherein said connector is a ball and socket connector, and said ball and socket connector is positioned in-line with the bone anchor.
  • 20. The deflection rod system of claim 17, wherein said connector permits movement between said connector rod and said deflectable rod.
CLAIM TO PRIORITY

This application claims priority to all of the following applications including U.S. Provisional Application No. 60/942,162, filed Jun. 5, 2007, entitled “Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,260, filed Aug. 1, 2007, entitled “Shaped Horizontal Rod for Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,273, filed Aug. 1, 2007, entitled “Multi-directional Deflection Profile for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,305, filed Aug. 1, 2007, entitled “A Horizontal Rod with a Mounting Platform for a Dynamic Stabilization and Motion Preservation Spinal Implant System and Method”, U.S. patent application Ser. No. 11/832,330, filed Aug. 1, 2007, entitled “Multi-dimensional Horizontal Rod for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,338, filed Aug. 1, 2007, entitled “A Bone Anchor With a Yoke-Shaped anchor head for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,358, filed Aug. 1, 2007, entitled “A Bone Anchor With a Curved Mounting Element for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,377, filed Aug. 1, 2007, entitled “Reinforced Bone Anchor for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,400, filed Aug. 1, 2007, entitled “A Bone Anchor With a Compressor Element for Receiving a Rod for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,413, filed Aug. 1, 2007, entitled “Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method with a Deflection Rod”, U.S. patent application Ser. No. 11/832,426, filed Aug. 1, 2007, entitled “Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method with a Deflection Rod Mounted in Close Proximity to a Mounting Rod”, U.S. patent application Ser. No. 11/832,436, filed Aug. 1, 2007, entitled “Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,446, filed Aug. 1, 2007, entitled “Super-Elastic Deflection Rod for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,470, filed Aug. 1, 2007, entitled “Revision System and Method for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,485, filed Aug. 1, 2007, entitled “Revision System for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,494, filed Aug. 1, 2007, entitled “Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,517, filed Aug. 1, 2007, entitled “Implantation Method for Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,527, filed Aug. 1, 2007, entitled “Modular Spine Treatment Kit for Dynamic Stabilization and Motion Preservation of the Spine”, U.S. patent application Ser. No. 11/832,534, filed Aug. 1, 2007, entitled “Horizontally Loaded Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. patent application Ser. No. 11/832,548, filed Aug. 1, 2007, entitled “Dynamic Stabilization and Motion Preservation Spinal Implantation System with Horizontal Deflection Rod and Articulating Vertical Rods”, U.S. patent application Ser. No. 11/832,557, filed Aug. 1, 2007, entitled “An Anchor System for a Spine Implantation System That Can Move About three Axes”, U.S. patent application Ser. No. 11/832,562, filed Aug. 1, 2007, entitled “Rod Capture Mechanism for Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. Provisional Application No. 61/028,792, filed Feb. 14, 2008, entitled “A Deflection Rod System for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, U.S. Provisional Application 61/031,598, filed Feb. 26, 2008, entitled “A Deflection Rod System for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method”, and U.S. Provisional Application No. 61/057,340, filed May 30, 2008, entitled “A Spine Implant With A Deflection Rod System Aligned With A Bone Anchor And Method”. All of the afore-mentioned applications are incorporated herein by reference in their entireties. This application is related to all of the following applications including U.S. patent application Ser. No. 12/130,335, filed May 30, 2008, “A Deflection Rod System For A Spine Implant Including An Inner Rod And An Outer Shell And Method”; U.S. patent application Ser. No. 12/130,359, filed May 30, 2008, entitled “A Deflection Rod System With A Deflection Contouring Shield For A Spine Implant And Method”; U.S. patent application Ser. No. 12/130,367, filed May 30, 2008, entitled “Dynamic Stabilization And Motion Preservation Spinal Implantation System With A Shielded Deflection Rod System And Method”; U.S. patent application Ser. No. 12/130,377, filed May 30, 2008, entitled “A Deflection Rod System For Spine Implant With End Connectors And Method”; U.S. patent application Ser. No. 12/130,383, filed May 30, 2008, entitled “A Deflection Rod System For A Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method”; U.S. patent application Ser. No. 12/130,395, filed May 30, 2008, entitled “A Deflection Rod System For A Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method”; U.S. patent application Ser. No. 12/130,411, filed May 30, 2008, entitled “A Deflection Rod System With Mount For Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method”; U.S. patent application Ser. No. 12/130,423, filed May 30, 2008, entitled “A Deflection Rod System With A Non-Linear Deflection To Load Characteristic For Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method”; U.S. patent application Ser. No. 12/130,454, filed May 30, 2008, entitled “A Deflection Rod System Dimensioned For Deflection To A Load Characteristic For Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method”; U.S. patent application Ser. No. 12/130,457, filed May 30, 2008, entitled “A Deflection Rod System For Use With A Vertebral Fusion Implant For Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method”; U.S. patent application Ser. No. 12/130,467, filed May 30, 2008, entitled “A Dual Deflection Rod System For Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method”; U.S. patent application Ser. No. 12/130,475, filed May 30, 2008, entitled “Method For Implanting A Deflection Rod System And Customizing The Deflection Rod System For A Particular Patient Need For Dynamic Stabilization And Motion Preservation Spinal Implantation System”; U.S. patent application Ser. No. 12/130,095, filed May 30, 2008, entitled “A Spine Implant With A Deflection Rod System Including A Deflection Limiting Shield Associated With A Bone Screw And Method”; U.S. patent application Ser. No. 12/130,127, filed May 30, 2008, entitled “A Spine Implant With A Dual Deflection Rod System Including A Deflection Limiting Shield Associated With A Bone Screw And Method”; and U.S. patent application Ser. No. 12/130,152, filed May 30, 2008, entitled “A Spine Implant With A Deflection Rod System And Connecting Linkages And Method” All of the afore-mentioned applications are incorporated herein by reference in their entireties.

US Referenced Citations (574)
Number Name Date Kind
4041939 Hall Aug 1977 A
4065817 Branemark et al. Jan 1978 A
4347845 Mayfield Sep 1982 A
4369770 Bacal et al. Jan 1983 A
4382438 Jacobs May 1983 A
4409968 Drummond Oct 1983 A
4411259 Drummond Oct 1983 A
4422451 Kalamchi Dec 1983 A
4479491 Martin Oct 1984 A
4567885 Androphy Feb 1986 A
4573454 Hoffman Mar 1986 A
4604995 Stephens et al. Aug 1986 A
4611580 Wu Sep 1986 A
4611581 Steffee Sep 1986 A
4611582 Duff Sep 1986 A
4641636 Cotrel Feb 1987 A
4648388 Steffee Mar 1987 A
4653481 Howland et al. Mar 1987 A
4653489 Tronzo Mar 1987 A
4655199 Steffee Apr 1987 A
4658809 Ulrich et al. Apr 1987 A
4696290 Steffee Sep 1987 A
4719905 Steffee Jan 1988 A
4763644 Webb Aug 1988 A
4773402 Asher et al. Sep 1988 A
4805602 Puno et al. Feb 1989 A
4815453 Cotrel Mar 1989 A
4887595 Heinig et al. Dec 1989 A
4913134 Luque Apr 1990 A
4946458 Harms et al. Aug 1990 A
4950269 Gaines, Jr. Aug 1990 A
4955885 Meyers Sep 1990 A
4987892 Krag et al. Jan 1991 A
5005562 Cotrel Apr 1991 A
5024213 Asher et al. Jun 1991 A
5030220 Howland Jul 1991 A
5042982 Harms et al. Aug 1991 A
5047029 Aebi et al. Sep 1991 A
5067955 Cotrel Nov 1991 A
5074864 Cozad et al. Dec 1991 A
5084049 Asher et al. Jan 1992 A
5092866 Breard et al. Mar 1992 A
5102412 Rogozinski Apr 1992 A
5112332 Cozad et al. May 1992 A
5113685 Asher et al. May 1992 A
5127912 Ray et al. Jul 1992 A
5129388 Vignaud et al. Jul 1992 A
5129900 Asher et al. Jul 1992 A
5147359 Cozad et al. Sep 1992 A
5154718 Cozad et al. Oct 1992 A
5176680 Vignaud et al. Jan 1993 A
5180393 Commarmond Jan 1993 A
5190543 Schläpfer Mar 1993 A
5201734 Cozad et al. Apr 1993 A
5207678 Harms et al. May 1993 A
5261911 Carl Nov 1993 A
5261912 Frigg Nov 1993 A
5261913 Marnay Nov 1993 A
5281222 Allard et al. Jan 1994 A
5282801 Sherman Feb 1994 A
5282863 Burton Feb 1994 A
5290289 Sanders et al. Mar 1994 A
5312402 Schläpfer et al. May 1994 A
5312404 Asher et al. May 1994 A
5344422 Frigg Sep 1994 A
5346493 Stahurski et al. Sep 1994 A
5360429 Jeanson et al. Nov 1994 A
5360431 Puno et al. Nov 1994 A
5380325 Lahille et al. Jan 1995 A
5380326 Lin Jan 1995 A
5382248 Jacobson et al. Jan 1995 A
5385583 Cotrel Jan 1995 A
5387213 Breard et al. Feb 1995 A
5415661 Holmes May 1995 A
5429639 Judet Jul 1995 A
5437672 Alleyne Aug 1995 A
5443467 Biedermann et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5474555 Puno et al. Dec 1995 A
5487742 Cotrel Jan 1996 A
5496321 Puno et al. Mar 1996 A
5498264 Schlapfer et al. Mar 1996 A
5520689 Schläpfer et al. May 1996 A
5534001 Schlapfer et al. Jul 1996 A
5536268 Griss Jul 1996 A
5540688 Navas Jul 1996 A
5545167 Lin Aug 1996 A
5549607 Olson et al. Aug 1996 A
5562737 Graf Oct 1996 A
5569248 Mathews Oct 1996 A
5609592 Brumfield et al. Mar 1997 A
5609593 Errico et al. Mar 1997 A
5611800 Davis et al. Mar 1997 A
5624441 Sherman et al. Apr 1997 A
5628740 Mullane May 1997 A
5630816 Kambin May 1997 A
5643260 Doherty Jul 1997 A
5645599 Samani Jul 1997 A
5651789 Cotrel Jul 1997 A
5653708 Howland Aug 1997 A
5658284 Sebastian et al. Aug 1997 A
5667506 Sutterlin Sep 1997 A
5667507 Corin et al. Sep 1997 A
5669910 Korhonen et al. Sep 1997 A
5672175 Martin Sep 1997 A
5672176 Biedermann et al. Sep 1997 A
5676665 Bryan Oct 1997 A
5676703 Gelbard Oct 1997 A
5681311 Foley et al. Oct 1997 A
5681319 Biedermann et al. Oct 1997 A
5683391 Boyd Nov 1997 A
5683392 Richelsoph et al. Nov 1997 A
5683393 Ralph Nov 1997 A
5688272 Montague et al. Nov 1997 A
5688273 Errico et al. Nov 1997 A
5690629 Asher et al. Nov 1997 A
5690632 Schwartz et al. Nov 1997 A
5690633 Taylor et al. Nov 1997 A
5693053 Estes Dec 1997 A
5697929 Mellinger Dec 1997 A
5700292 Margulies Dec 1997 A
5702392 Wu et al. Dec 1997 A
5702394 Henry et al. Dec 1997 A
5702395 Hopf Dec 1997 A
5702396 Hoenig et al. Dec 1997 A
5702399 Kilpela et al. Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5713900 Benzel et al. Feb 1998 A
5713904 Errico et al. Feb 1998 A
5716355 Jackson et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5716357 Rogozinski Feb 1998 A
5716358 Ochoa et al. Feb 1998 A
5716359 Ojima et al. Feb 1998 A
5720751 Jackson Feb 1998 A
5725528 Errico et al. Mar 1998 A
5725582 Bevan et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5735851 Errico et al. Apr 1998 A
5741254 Henry et al. Apr 1998 A
5743907 Asher et al. Apr 1998 A
5743911 Cotrel Apr 1998 A
5752957 Ralph et al. May 1998 A
5766254 Gelbard Jun 1998 A
5776135 Errico et al. Jul 1998 A
5782833 Haider Jul 1998 A
5785711 Errico et al. Jul 1998 A
5797911 Sherman et al. Aug 1998 A
5800435 Errico et al. Sep 1998 A
5810819 Errico et al. Sep 1998 A
5863293 Richelsoph Jan 1999 A
5879350 Sherman et al. Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5891145 Morrison et al. Apr 1999 A
5899904 Errico et al. May 1999 A
RE36221 Breard et al. Jun 1999 E
5910142 Tatar Jun 1999 A
5925047 Errico et al. Jul 1999 A
5928231 Klein et al. Jul 1999 A
5928232 Howland et al. Jul 1999 A
5928233 Apfelbaum et al. Jul 1999 A
5947965 Bryan Sep 1999 A
5947969 Errico et al. Sep 1999 A
5954725 Sherman et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5964760 Richelsoph Oct 1999 A
5980521 Montague et al. Nov 1999 A
5980523 Jackson Nov 1999 A
5984922 McKay Nov 1999 A
5989251 Nichols Nov 1999 A
5989254 Katz Nov 1999 A
6001098 Metz-Stavenhagen et al. Dec 1999 A
6004322 Bernstein Dec 1999 A
6010503 Richelsoph et al. Jan 2000 A
6015409 Jackson Jan 2000 A
6036693 Yuan et al. Mar 2000 A
6050997 Mullane Apr 2000 A
6053917 Sherman et al. Apr 2000 A
6063089 Errico et al. May 2000 A
6077262 Schläpfer et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090111 Nichols Jul 2000 A
6096039 Stoltenberg et al. Aug 2000 A
6113600 Drummond et al. Sep 2000 A
6113601 Tatar Sep 2000 A
6127597 Beyar et al. Oct 2000 A
6132430 Wagner Oct 2000 A
6132434 Sherman et al. Oct 2000 A
6136000 Louis et al. Oct 2000 A
6146383 Studer et al. Nov 2000 A
6171311 Richelsoph Jan 2001 B1
6193720 Yuan et al. Feb 2001 B1
6197028 Ray et al. Mar 2001 B1
6210413 Justis et al. Apr 2001 B1
6217578 Crozet et al. Apr 2001 B1
6248106 Ferree Jun 2001 B1
6254602 Justis Jul 2001 B1
6261287 Metz-Stavenhagen Jul 2001 B1
6273888 Justis Aug 2001 B1
6273914 Papas Aug 2001 B1
6280443 Gu et al. Aug 2001 B1
6287311 Sherman et al. Sep 2001 B1
6293949 Justis et al. Sep 2001 B1
6302882 Lin et al. Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6325802 Frigg Dec 2001 B1
6328740 Richelsoph Dec 2001 B1
6344057 Rabbe et al. Feb 2002 B1
6355040 Richelsoph et al. Mar 2002 B1
6379354 Rogozinski Apr 2002 B1
6402749 Ashman Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6402752 Schäffler-Wachter et al. Jun 2002 B2
6413257 Lin et al. Jul 2002 B1
6416515 Wagner Jul 2002 B1
6423064 Kluger Jul 2002 B1
6440169 Elberg et al. Aug 2002 B1
6451021 Ralph et al. Sep 2002 B1
6454773 Sherman et al. Sep 2002 B1
6458131 Ray Oct 2002 B1
6458132 Choi Oct 2002 B2
6468276 McKay Oct 2002 B1
6471705 Biedermann et al. Oct 2002 B1
6478797 Paul Nov 2002 B1
6482207 Errico Nov 2002 B1
6485491 Farris et al. Nov 2002 B1
6488681 Martin et al. Dec 2002 B2
6520962 Taylor et al. Feb 2003 B1
6520990 Ray Feb 2003 B1
6537276 Metz-Stavenhagen Mar 2003 B2
6540748 Lombardo Apr 2003 B2
6540749 Schäfer et al. Apr 2003 B2
6547789 Ventre et al. Apr 2003 B1
6554832 Shluzas Apr 2003 B2
6554834 Crozet et al. Apr 2003 B1
6565565 Yuan et al. May 2003 B1
6565566 Wagner et al. May 2003 B1
6565567 Haider May 2003 B1
6565605 Goble et al. May 2003 B2
6572617 Senegas Jun 2003 B1
6572653 Simonson Jun 2003 B1
6579290 Hardcastle et al. Jun 2003 B1
6585737 Baccelli et al. Jul 2003 B1
6616669 Ogilvie et al. Sep 2003 B2
6623485 Doubler et al. Sep 2003 B2
6626905 Schmiel et al. Sep 2003 B1
6626908 Cooper et al. Sep 2003 B2
6645207 Dixon et al. Nov 2003 B2
6652526 Arafiles Nov 2003 B1
6656181 Dixon et al. Dec 2003 B2
6660004 Barker et al. Dec 2003 B2
6660005 Toyama et al. Dec 2003 B2
6695845 Dixon et al. Feb 2004 B2
6706045 Lin et al. Mar 2004 B2
6709434 Gournay et al. Mar 2004 B1
6716213 Shitoto Apr 2004 B2
6716214 Jackson Apr 2004 B1
6726689 Jackson Apr 2004 B2
6736820 Biedermann et al. May 2004 B2
6740086 Richelsoph May 2004 B2
6749614 Teitelbaum et al. Jun 2004 B2
6752807 Lin et al. Jun 2004 B2
6755829 Bono et al. Jun 2004 B1
6755835 Schultheiss et al. Jun 2004 B2
6761719 Justis et al. Jul 2004 B2
6783526 Lin et al. Aug 2004 B1
6783527 Drewry et al. Aug 2004 B2
6786907 Lange Sep 2004 B2
6793656 Mathews Sep 2004 B1
6805695 Keith et al. Oct 2004 B2
6805714 Sutcliffe Oct 2004 B2
6811567 Reiley Nov 2004 B2
6832999 Ueyama et al. Dec 2004 B2
6840940 Ralph et al. Jan 2005 B2
6843791 Serhan Jan 2005 B2
6852128 Lange Feb 2005 B2
6858030 Martin et al. Feb 2005 B2
6869433 Glascott Mar 2005 B2
6875211 Nichols et al. Apr 2005 B2
6881215 Assaker et al. Apr 2005 B2
6883520 Lambrecht Apr 2005 B2
6887242 Doubler et al. May 2005 B2
6899714 Vaughan May 2005 B2
6918911 Biedermann et al. Jul 2005 B2
6932817 Baynham et al. Aug 2005 B2
6945974 Dalton Sep 2005 B2
6951561 Warren et al. Oct 2005 B2
6964666 Jackson Nov 2005 B2
6966910 Ritland Nov 2005 B2
6986771 Paul et al. Jan 2006 B2
6991632 Ritland Jan 2006 B2
7008423 Assaker et al. Mar 2006 B2
7011685 Arnin et al. Mar 2006 B2
7018378 Biedermann et al. Mar 2006 B2
7018379 Drewry Mar 2006 B2
7022122 Amrein et al. Apr 2006 B2
7029475 Panjabi Apr 2006 B2
7048736 Robinson et al. May 2006 B2
7051451 Augostino et al. May 2006 B2
7060066 Zhao et al. Jun 2006 B2
7074237 Goble et al. Jul 2006 B2
7081117 Bono et al. Jul 2006 B2
7083621 Shaolian et al. Aug 2006 B2
7083622 Simonson Aug 2006 B2
7087056 Vaughan Aug 2006 B2
7087057 Konieczynski et al. Aug 2006 B2
7087084 Reiley Aug 2006 B2
7090698 Goble et al. Aug 2006 B2
7101398 Dooris et al. Sep 2006 B2
7104992 Bailey Sep 2006 B2
7107091 Jutras et al. Sep 2006 B2
7125410 Freudiger Oct 2006 B2
7125426 Moumene et al. Oct 2006 B2
7214227 Colleran et al. May 2007 B2
7250052 Landry et al. Jul 2007 B2
7282064 Chin Oct 2007 B2
7294129 Hawkins et al. Nov 2007 B2
7306603 Boehm, Jr. et al. Dec 2007 B2
7306606 Sasing Dec 2007 B2
7326210 Jahng et al. Feb 2008 B2
7335201 Doubler et al. Feb 2008 B2
7713288 Timm et al. May 2010 B2
7722649 Biedermann et al. May 2010 B2
7819902 Abdelgany et al. Oct 2010 B2
7854752 Colleran et al. Dec 2010 B2
20020013586 Justis et al. Jan 2002 A1
20020026192 Schmiel et al. Feb 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020082603 Dixon et al. Jun 2002 A1
20020120271 Dixon et al. Aug 2002 A1
20020143329 Serhan et al. Oct 2002 A1
20020169450 Lange Nov 2002 A1
20030004511 Ferree Jan 2003 A1
20030073996 Doubler et al. Apr 2003 A1
20030073997 Doubler et al. Apr 2003 A1
20030083657 Drewry et al. May 2003 A1
20030125742 Yuan et al. Jul 2003 A1
20030171749 Le Couedic et al. Sep 2003 A1
20040015166 Gorek Jan 2004 A1
20040030337 Alleyne et al. Feb 2004 A1
20040039384 Boehm, Jr. et al. Feb 2004 A1
20040097925 Boehm, Jr. et al. May 2004 A1
20040097933 Lourdel et al. May 2004 A1
20040111088 Picetti et al. Jun 2004 A1
20040116929 Barker et al. Jun 2004 A1
20040122425 Suzuki et al. Jun 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040143264 McAfee Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040153077 Biedermann et al. Aug 2004 A1
20040158245 Chin Aug 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040162560 Raynor et al. Aug 2004 A1
20040172022 Landry et al. Sep 2004 A1
20040172024 Gorek Sep 2004 A1
20040215192 Justis et al. Oct 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040230192 Graf Nov 2004 A1
20040236327 Paul et al. Nov 2004 A1
20040236330 Purcell et al. Nov 2004 A1
20050033441 Lambrecht et al. Feb 2005 A1
20050049589 Jackson Mar 2005 A1
20050065515 Jahng Mar 2005 A1
20050070899 Doubler et al. Mar 2005 A1
20050070901 David Mar 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050085813 Spitler et al. Apr 2005 A1
20050090822 DiPoto Apr 2005 A1
20050096652 Burton May 2005 A1
20050096659 Freudiger May 2005 A1
20050107788 Beaurain et al. May 2005 A1
20050113927 Malek May 2005 A1
20050113929 Cragg et al. May 2005 A1
20050119658 Ralph et al. Jun 2005 A1
20050124991 Jahng Jun 2005 A1
20050131404 Mazda et al. Jun 2005 A1
20050131405 Molz, IV et al. Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050143737 Pafford et al. Jun 2005 A1
20050143823 Boyd et al. Jun 2005 A1
20050171537 Mazel et al. Aug 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050177156 Timm et al. Aug 2005 A1
20050177157 Jahng Aug 2005 A1
20050177164 Walters et al. Aug 2005 A1
20050177166 Timm et al. Aug 2005 A1
20050182400 White Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050182409 Callahan et al. Aug 2005 A1
20050187548 Butler et al. Aug 2005 A1
20050192569 Nichols et al. Sep 2005 A1
20050192571 Abdelgany Sep 2005 A1
20050192572 Abdelgany et al. Sep 2005 A1
20050203514 Jahng et al. Sep 2005 A1
20050203517 Jahng et al. Sep 2005 A1
20050203518 Biedermann et al. Sep 2005 A1
20050222570 Jackson Oct 2005 A1
20050228375 Mazda et al. Oct 2005 A1
20050228382 Richelsoph et al. Oct 2005 A1
20050228385 Iott et al. Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234454 Chin Oct 2005 A1
20050234557 Lambrecht et al. Oct 2005 A1
20050240180 Vienney et al. Oct 2005 A1
20050240265 Kuiper et al. Oct 2005 A1
20050240266 Kuiper et al. Oct 2005 A1
20050261770 Kuiper et al. Nov 2005 A1
20050267470 McBride Dec 2005 A1
20050267472 Biedermann et al. Dec 2005 A1
20050277922 Trieu et al. Dec 2005 A1
20050277925 Mujwid Dec 2005 A1
20050277927 Guenther et al. Dec 2005 A1
20050277928 Boschert Dec 2005 A1
20050288670 Panjabi et al. Dec 2005 A1
20050288671 Yuan et al. Dec 2005 A1
20060004357 Lee et al. Jan 2006 A1
20060025771 Jackson Feb 2006 A1
20060030839 Park et al. Feb 2006 A1
20060036242 Nilsson et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058787 David Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
20060058790 Carl et al. Mar 2006 A1
20060064090 Park Mar 2006 A1
20060064091 Ludwig et al. Mar 2006 A1
20060069391 Jackson Mar 2006 A1
20060074419 Taylor et al. Apr 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060079896 Kwak et al. Apr 2006 A1
20060084978 Mokhtar Apr 2006 A1
20060084980 Melkent et al. Apr 2006 A1
20060084982 Kim Apr 2006 A1
20060084983 Kim Apr 2006 A1
20060084984 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084989 Dickinson et al. Apr 2006 A1
20060084990 Gournay et al. Apr 2006 A1
20060084993 Landry et al. Apr 2006 A1
20060084995 Biedermann et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060089643 Mujwid Apr 2006 A1
20060089644 Felix Apr 2006 A1
20060095035 Jones et al. May 2006 A1
20060095038 Jackson May 2006 A1
20060100621 Jackson May 2006 A1
20060100622 Jackson May 2006 A1
20060106380 Colleran et al. May 2006 A1
20060106383 Biedermann et al. May 2006 A1
20060111712 Jackson May 2006 A1
20060111715 Jackson May 2006 A1
20060116676 Gradel et al. Jun 2006 A1
20060122597 Jones et al. Jun 2006 A1
20060122599 Drewry et al. Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129147 Biedermann et al. Jun 2006 A1
20060129148 Simmons et al. Jun 2006 A1
20060129149 Iott et al. Jun 2006 A1
20060142761 Landry et al. Jun 2006 A1
20060149231 Bray Jul 2006 A1
20060149232 Sasing Jul 2006 A1
20060149234 de Coninck Jul 2006 A1
20060149237 Markworth et al. Jul 2006 A1
20060149238 Sherman et al. Jul 2006 A1
20060149240 Jackson Jul 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060149244 Amrein et al. Jul 2006 A1
20060149380 Lotz et al. Jul 2006 A1
20060155277 Metz-Stavenhagen Jul 2006 A1
20060155278 Warnick Jul 2006 A1
20060161153 Hawkes et al. Jul 2006 A1
20060173456 Hawkes et al. Aug 2006 A1
20060189983 Fallin et al. Aug 2006 A1
20060195093 Jahng Aug 2006 A1
20060200128 Mueller Sep 2006 A1
20060200130 Hawkins et al. Sep 2006 A1
20060200131 Chao et al. Sep 2006 A1
20060200133 Jackson Sep 2006 A1
20060217716 Baker et al. Sep 2006 A1
20060229606 Clement et al. Oct 2006 A1
20060229607 Brumfield Oct 2006 A1
20060229613 Timm et al. Oct 2006 A1
20060229615 Abdou Oct 2006 A1
20060229616 Albert et al. Oct 2006 A1
20060235385 Whipple Oct 2006 A1
20060235389 Albert et al. Oct 2006 A1
20060235392 Hammer et al. Oct 2006 A1
20060235393 Bono et al. Oct 2006 A1
20060241594 McCarthy et al. Oct 2006 A1
20060241595 Molz, IV et al. Oct 2006 A1
20060241599 Konieczynski et al. Oct 2006 A1
20060241600 Ensign et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241603 Jackson Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247624 Banouskou et al. Nov 2006 A1
20060247628 Rawlins et al. Nov 2006 A1
20060247631 Ahn et al. Nov 2006 A1
20060247636 Yuan et al. Nov 2006 A1
20060247637 Colleran et al. Nov 2006 A1
20060253118 Bailey Nov 2006 A1
20060264935 White Nov 2006 A1
20060264937 White Nov 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060282073 Simanovsky Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20070005062 Lange et al. Jan 2007 A1
20070005063 Bruneau et al. Jan 2007 A1
20070016190 Martinez et al. Jan 2007 A1
20070016194 Shaolian et al. Jan 2007 A1
20070016201 Freudiger Jan 2007 A1
20070032123 Timm et al. Feb 2007 A1
20070043356 Timm et al. Feb 2007 A1
20070043358 Molz, IV et al. Feb 2007 A1
20070049936 Colleran et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070083200 Gittings et al. Apr 2007 A1
20070088359 Woods et al. Apr 2007 A1
20070093814 Callahan, II et al. Apr 2007 A1
20070093820 Freudiger Apr 2007 A1
20070093821 Freudiger Apr 2007 A1
20070093829 Abdou Apr 2007 A1
20070118122 Butler et al. May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070123871 Jahng May 2007 A1
20070156143 Lancial Jul 2007 A1
20070161994 Lowery et al. Jul 2007 A1
20070161997 Thramann et al. Jul 2007 A1
20070162007 Shoham Jul 2007 A1
20070167947 Gittings Jul 2007 A1
20070168035 Koske Jul 2007 A1
20070198014 Graf et al. Aug 2007 A1
20070213714 Justis Sep 2007 A1
20070213719 Hudgins et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233072 Dickinson et al. Oct 2007 A1
20070233075 Dawson Oct 2007 A1
20070233090 Naifeh et al. Oct 2007 A1
20070233091 Naifeh et al. Oct 2007 A1
20070233092 Falahee Oct 2007 A1
20070233093 Falahee Oct 2007 A1
20070233094 Colleran et al. Oct 2007 A1
20070244481 Timm Oct 2007 A1
20070250061 Chin et al. Oct 2007 A1
20070270819 Justis et al. Nov 2007 A1
20070270836 Bruneau et al. Nov 2007 A1
20070270837 Eckhardt et al. Nov 2007 A1
20070270838 Bruneau et al. Nov 2007 A1
20070276380 Jahng et al. Nov 2007 A1
20070288009 Brown et al. Dec 2007 A1
20070288012 Colleran et al. Dec 2007 A1
20080009864 Forton et al. Jan 2008 A1
20080021285 Drzyzga et al. Jan 2008 A1
20080021459 Lim Jan 2008 A1
20080021461 Barker et al. Jan 2008 A1
20080033433 Implicito Feb 2008 A1
20080039838 Landry et al. Feb 2008 A1
20080045951 Fanger et al. Feb 2008 A1
20080045957 Landry et al. Feb 2008 A1
20080051787 Remington et al. Feb 2008 A1
20080065073 Perriello et al. Mar 2008 A1
20080065075 Dant et al. Mar 2008 A1
20080065079 Bruneau et al. Mar 2008 A1
20080071273 Hawkes et al. Mar 2008 A1
20080077139 Landry et al. Mar 2008 A1
Foreign Referenced Citations (35)
Number Date Country
2649042 Oct 1976 DE
3639810 May 1988 DE
0128058 Dec 1984 EP
0669109 Aug 1995 EP
1281362 Feb 2003 EP
1330987 Jul 2003 EP
2612070 Sep 1988 FR
2615095 Nov 1988 FR
2880256 Jul 2006 FR
780652 Aug 1957 GB
2173104 Oct 1986 GB
2382304 May 2003 GB
WO 8707134 Dec 1987 WO
WO 9421185 Sep 1994 WO
WO 9827884 Jul 1998 WO
WO 0145576 Jun 2001 WO
WO 0191656 Dec 2001 WO
WO 0207621 Jan 2002 WO
WO 0207622 Jan 2002 WO
WO 0217803 Mar 2002 WO
WO 0239921 May 2002 WO
WO 0243603 Jun 2002 WO
WO 02102259 Dec 2002 WO
WO 03007828 Jan 2003 WO
WO 03009737 Feb 2003 WO
WO 03015647 Feb 2003 WO
WO 03037216 May 2003 WO
WO 03077806 Sep 2003 WO
WO 2004024011 Mar 2004 WO
WO 2004034916 Apr 2004 WO
WO 2006033503 Mar 2006 WO
WO 2006066685 Jun 2006 WO
WO 2006105935 Oct 2006 WO
WO 2007080317 Jul 2007 WO
WO 2008034130 Mar 2008 WO
Related Publications (1)
Number Date Country
20080306540 A1 Dec 2008 US
Provisional Applications (4)
Number Date Country
61057340 May 2008 US
60942162 Jun 2007 US
61028792 Feb 2008 US
61031598 Feb 2008 US