The invention relates to a regularity rotation motion device applicable to lumbar physiotherapy, and more particularly, to a lumbar regularity rotation motion device capable of redressing the lumbar spine to its correct angle or location.
The skeletal system of the human body is like steel bars that support a building. The skeletal system is like a “skeleton axis”; the head is like the roof, and the pelvis is like the foundation. When the axis is deformed, the person may experience pain or soreness. More severe deformation in the “skeletal axis” may be physically visible, for example, symptoms like one side of the shoulders being higher than the other side, Thoracic scoliosis, waist bending, humpback, pelvic skew, hip overturned or excessively flat etc. may be observed. Slight deformation may not be easily observed and can sometimes be overlooked. If the real cause of a discomfort is not identified, the body may be suffering from long-term pain, soreness or numbness.
Therefore, it is important to prevent or redress symptoms caused by deformation of the skeleton axis. Of course, prevention requires early detection, early intervention in posture correction and continuous tracking to avoid excessive deterioration. Early detection and intervention eliminate the need for invasive surgical treatment in the future.
One conventional technique involves a thoracic scoliosis brace embedded at either side of the chest of a patient and used in conjunction with a bed disclosed in U.S. Pat. No. 8,882,802 titled “Chiropractic Machine” or TW Patent No. I324511 titled “Three Dimensional Vector Spine Rehabilitation Device”, which includes a total of four sets of adjustable safety belts and sections to gradually relieve symptoms such as vertebral soreness, thoracic scoliosis or waist bending, in the end help restore patient's spine to the normal angle or location.
In U.S. Pat. No. 8,882,802, a spine massage machine is disclosed, which mainly includes a base, a pelvic section, an abdominal section, a leg section, a head section, a cervical traction section, and mattresses. One side of an elevating post installed at the base is connected to the pelvic section, while the other side is connected to the abdominal section. A motion device driven by a drive device is provided at the base, its swing shaft is connected to a second drive device and is secured at the bottom part of the pelvic section to push the pelvic section up and down. The second drive device is capable of adjusting the up and down swing angle of the pelvic section. A third drive device is provided at the front section of the center axis of the pelvic section, its end is connected to a lower side of a pelvic seat to rotate the pelvic section. A fourth drive device connected with a sliding bracing frame is provided at the middle section of the pelvic seat to allow the pelvic seat to move back and forth. Another side of the pelvic section is connected with the leg section. A fifth drive device connected with the elevating post is provided at one side of the abdominal section to allow the abdominal section to swing left and right. The abdominal section is also connected to the head section. A supporting rod of a sixth drive device is provided below the head section to allow up and down movement of the head section. The front end of the head section is connected to the cervical traction section. The cervical traction section has a supporting rod with a seventh drive device attached to a traction rod to allow rotation of the cervical section. The various drive devices are separately controlled manually or with a computer program to assist in spine rehabilitation to address the syndromes of cervical vertebrae bending, thoracic vertebrae bending, vertebral errors, adhesion, and prominent cartilage etc.
In view of the above drawbacks, the present invention is developed to address the abovementioned disadvantages.
One main objective of the present invention is to provide a lumbar regularity rotation motion device capable of redressing deformed and twisted lumbar spines through horizontal rotation motion.
Another objective of the present invention is to provide a lumbar regularity rotation motion device that allows users to make adjustments and traction themselves. This can be an active therapy performed before operations to allow gradual rehabilitation or even render the operations unnecessary.
Still another objective of the present invention is to provide a lumbar regularity rotation motion device that can be controlled in a wired or wireless manner manually or through a computer controlled program to collectively or individually adjust various parts of the body according to the best input data to accommodate different need and symptoms.
Yet another objective of the present invention is to provide a lumbar regularity rotation motion device that helps user achieve safe rehabilitation and correction of cervical vertebrae, thoracic vertebrae, lumbar spine and pelvis by pulling from potentially different directions and angles in combination with a horizontal rotary drive platform.
In order to achieve the above objectives and efficacies, the technical means employed by the present invention may include: a base including an enclosure with an opening on one side and a main elevating post sheath mount extending vertically from a side of the enclosure opposite to the opening; a hanger including: a main elevating post sheathed in the main elevating sheath mount, a first power telescopic actuator fastened to the main elevating post at one end, a pulling belt fastened to the first power telescopic actuator at one end, and an arm extending perpendicularly from the main elevating post including a pulley at the distal end for guiding the pulling belt; a neck traction belt held in suspension on the other end of the pulling belt via the pulley; and a horizontal rotary drive platform including: a horizontal turntable driven by a motor gear set, and a seat provided on top of the horizontal turntable for moving in a rhythmic manner actuated by the horizontal turntable.
Based on the structure above, the correction seat may be a curved seat with a curved top surface and a flat bottom surface; a balance disk with curved top and bottom surfaces; or a balance ball with a flat top surface and a semi-circular bottom surface.
Based on the structure above, when the first power telescopic actuator of the T-shaped hanger generates a pulling force, the neck traction belt is pulled through the traction rod by the pulling belt and is able to lift the head of a user up and increase the space between the cervical joints and align the skeleton axis. The first power telescopic actuator can be replaced with weights.
Based on the structure above, when the second power telescopic actuator of the n-shaped base generates a pushing force, the right handle pad connected with the right elevating post and the left handle pad connected with the left elevating post are pushed upwards. As such, the spine is raised to reduce stacking, such that there is no gravity oppression from the scapula to the pelvis of the lumbar spine in order to help redress the spine to its correct place.
Based on the structure above, the n-shaped base includes first to fourth adjustment belt mounts which wrap around the chest and apply forces to chest from the right and/or the left to gradually guide the spines of patients with thoracic scoliosis back to the centerline. Based on the above structure, the horizontal rotary drive platform rotates clockwise or anti-clockwise at a speed of 10˜60 times per minute from the pelvic area to redress the spine through reverse mechanics.
Based on the above structure, when a user sits on the correction seat, the underlying horizontal turntable, the horizontal rotary motor gear setting platform, the motor gear set, and the vibrator become closely connected and create high-speed vertical vibration, which helps loosen the spine joints and speed up the redressing process.
The objectives, efficacies and features of the present invention can be more fully understood by referring to the drawing as follows:
Referring to
Referring to
The main elevating post 11 of the T-shaped hanger 1 fits into the n-shaped base 3. More specifically, the main elevating post 11 is sheathed into an open-ended tube 312 of a main elevating post sheath mount 31. The third joining mount 311 extends from two sides of the main elevating post sheath mount 31 at a suitable location. A right elevating post sheath mount 32 and a left elevating post sheath mount 33 are provided at right and left sides of the n-shaped base 3, respectively. A right elevating post 322 having a plurality of holes 3221 can be inserted through an open-ended tube 341 of a first adjustment belt mount 34, then through an open-ended tube 351 of a second adjustment belt mount 35, and finally into an open-ended tube 321 of the right elevating post sheath mount 32. A right handle pad 323 extends on top of the right elevating post 322 with a telescopic right handle 324 extending from one end of the right handle pad 323. On the other side, a left elevating post 332 having a plurality of holes 3321 can be inserted through an open-ended tube 361 of a third adjustment belt mount 36, then through an open-ended tube 371 of a fourth adjustment belt mount 37, and finally into an open-ended tube 331 of the left elevating post sheath mount 33. A left handle pad 333 extends on top of the left elevating post 332 with a telescopic left handle 334 extending from one end of the left handle pad 333. Left and right handle joining parts 335 and 325 extend vertically from respective joining ends of the left and right handle pads 333 and 323. Holes 3351 and 3251 on the left and right handle joining parts 335 and 325 are aligned with a hole 115 on the main elevating post 11, such that the left and right joining parts 335 and 325 are secured to the main elevating post 11 via a screw 336 and a bolt 337. The first adjustment belt mount 34, the second adjustment belt mount 35, the third adjustment belt mount 36 and the fourth adjustment belt mount 37 of the n-shaped base 3 are similarly used for mounting a first adjustment belt 340, a second adjustment belt 350, a third adjustment belt 360 and a fourth adjustment belt 370, respectively, such that two adjustment belts are assembled on each side of the device.
The details of the adjustment belt mounts 34-37 will now be explained using the third adjustment belt mount 36 as an example. The third adjustment belt mount 36 includes a fixed frame 362 and a moveable frame 363 combined together by two semi-circular pivot shafts 3621a and 3621b. Pins 3263 passing through holes 36211a and 36211b at either end of the shafts 3621a and 3621b are inserted and fastened inside holes 36241 of upper and lower plates 3624. Ratchets 3622a and 3622b are fitted on two ends of the shafts 3621a and 3621b. Then, semi-circular holes 36311a and 36311b on one end of wing plates 3631 are further fitted on two ends of the shafts 3621a and 3621b. A guide slot 3626 is provided on each of upper and lower plates 3624 of the fixed frame 362 to allow a snap fastener 3625 to elastically slide back and forth inside the slot 3626. An elastic element is sheathed on the snap fastener 3625. A guide slot 3633 is provided on upper and lower wing plates 3631 of the moveable frame 363 to allow a moveable element 3632 to elastic slide back and forth within the guide slot 3633. An elastic element 3634 is hooked onto the moveable element 3632 at a suitable location. A handle rod 3635 is sandwiched between ends of the wing plates 3631. Circular recesses 36351a and 36351b are provided at both ends of the handle rod 3635 and are combined with C-shaped fasteners 3638a and 3638b to be fitted inside holes 36312. A connecting rod 3637 is further provided in the middle of the wing plates 3631. Fasteners 3638 are provided on both ends of the connecting rod 3637 so as to be fitted in the upper and lower wing plates 3631. The third adjustment belt 360 sleeves the connecting rod 3637 at one end; inserts between the two semi-circular pivot shafts 3621a and 3261b; and comes out from the handle rod 3635. The moveable element 3632 controls the length of the third adjustment belt 360 and secures it in place. In addition, a pipe 3629 extends from one side of the fixed frame 362 for receiving a positioning rod 3628 sheathed with an elastic element 36201 and two clips 3622 correspondingly placed at a groove 362811 of a first neck portion 36281 and a groove 362821 of a second neck portion 36282. The positioning rod 3628 is secured to the pipe 3629 via a fastener 36283. The open-ended tube 361 of the third adjustment belt mount 36 is sleeved onto the left elevating post 332, and the positioning rod 3628 can be selectively inserted into one of the holes 3321 of the left elevating post 332 depending on the desired height of the belt.
Referring to
Referring to
In addition, a second eccentric shaft 42114b, a third eccentric shaft 42114c, and a fourth eccentric shaft 42114d are similar driven elements, and only the second eccentric shaft 42114b is explained below for simplicity. The second eccentric shaft 42114b includes a supporting shaft 421143 and a short shaft 4211 on opposite sides. The supporting shaft 421143 passes through an elastic gasket 42115, a bottom bearing 4223, and into a hole 4222 of the turntable bottom part 422. The bottom bearing 4223 is also fitted on a corresponding fitting mount 4131 on the rotary motor gear setting platform 413. An inertial centrifugal force is generated when the horizontal turntable 42 is turning, which drives the correction seat 43 placed on top of it.
There are many possible implementations of the correction seat 43 to achieve different rhythmic motion patterns, in particular, three exemplary rhythmic motion patterns are described below with reference to
A first implementation is a curved seat 431, wherein the top surface is curved and the bottom surface is flat, so it can be stably placed on the horizontal turntable 42. A second implementation is a balance disk 432 with curved top and bottom. A third implementation is a balance ball 433 wherein the top surface is flat and the bottom is semi-circular.
Referring to
As shown in
As shown in
In addition to the above actions, the vibrator 414 beneath the horizontal turntable 42 and the rotary motor gear setting platform 413 can generate high-speed vibrations when the weight of the user is applied on the correction seat 43, for example, at 1000 times per minute, to loosen the vertebral joints and help in redressing the lumbar spine. In conclusion, the lumbar regularity rotation motion device of the present invention is applicable to physiotherapy of the spine by gently raising the head to reduce the weight and increase the space between the cervical joints with adjustable neck traction belt; redressing thoracic scoliosis through optional adjustment belts pulled at either side of the chest; and redressing twisted or bent lumbar spine or pelvis skew using a correction seat of an appropriate shape that moves in a reverse direction to the twisted, bent or skewed direction.
Slowing the degree of vertebral soreness, or thoracic scoliosis, lumbar rotation, bending, pelvic tilt symptoms
In view of this, the present invention is submitted to be novel and non-obvious and a patent application is hereby filed in accordance with the patent law. It should be noted that the descriptions given above are merely descriptions of preferred embodiments of the present invention, various changes, modifications, variations or equivalents can be made to the invention without departing from the scope or spirit of the invention. It is intended that all such changes, modifications and variations fall within the scope of the following appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
106107271 | Mar 2017 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2665685 | Kaufman | Jan 1954 | A |
3088457 | Dersch | May 1963 | A |
3824991 | Whitaker | Jul 1974 | A |
5113851 | Gamba | May 1992 | A |
5365621 | Blain | Nov 1994 | A |
5716331 | Chang | Feb 1998 | A |
5868687 | Tedesco | Feb 1999 | A |
8496605 | Chavers | Jul 2013 | B1 |
20030130602 | Chang | Jul 2003 | A1 |
20080146357 | Hsu | Jun 2008 | A1 |
20090050187 | Lamb | Feb 2009 | A1 |
20100210978 | Oddsson | Aug 2010 | A1 |
20100258152 | Lin | Oct 2010 | A1 |
20160058659 | Angelov | Mar 2016 | A1 |
20170021230 | Osler | Jan 2017 | A1 |
20170113097 | Wu | Apr 2017 | A1 |
20180064988 | Xu | Mar 2018 | A1 |
20180207048 | Janzen | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
900182 | Nov 1984 | BE |
4233606 | Oct 1993 | DE |
2004121854 | Apr 2004 | JP |
2009066194 | Apr 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20200323725 A1 | Oct 2020 | US |