The invention relates to a spinneret for spinning threads from a spinning mass, according to the preamble of the independent device claim, a spinning device which has a large number of spinnerets and a method for spinning threads, according to the preamble of the independent method claim.
In general, spinning threads takes place by longitudinal drawing of a thread-forming mass from a spinneret, the longitudinal drawing being implemented mechanically by forces acting on the threads, by means of devices such as winders, or aerodynamically by accompanying gas flows, mostly airflows, as in the spunbonded process, to which also meltblowing belongs. Out of a spinneret opening, a thread of a smaller diameter than that of the spinneret opening, boring or hole is thereby produced.
The procedure is different with split spinning in which a plurality of threads are produced from one spinneret opening by splicing or splitting the liquid, thread-forming flow of spinning mass, whether it be melts or solutions, as described in EP 1 192 301 or EP 1 358 369. This process, frequently also called Nanoval process in the meantime, is distinguished by more throughput per spinneret boring being achieved, in particular in the case of finer threads, measured for example in g/min, with simple technical apparatus since 20, 50 up to a few hundred threads are readily able to be produced per hole. The threads are essentially endless and have a specific size distribution of the thread diameters according to the type of operation.
The airflows which cause splitting of the emerging spinning mass according to the “Nanoval effect” move close to the spinneret openings. These are situated in conically ending nipple-shaped spinnerets which project from a spinneret plate, as described in EP 1 902 164 A1, and cool these since the air in general has a lower temperature than that of the spinning mass which flows in the spinnerets, also termed spinning nipples here. This is disadvantageous in particular with small throughputs for producing finer threads by splitting into as many fine threads as possible. This disadvantage can be eliminated at least partially by heating the air reaching the spinnerets, which however entails higher energy expenditure. The individual spinnerets or nipples can also be heated, the expenditure in technical apparatus also being increased here.
Hence the object underlying the invention is to produce a spinneret for use of the known split-spinning process and a device and a method for spinning threads with which it is possible to achieve finer threads, relative to the state of the art, with a higher throughput and simple construction of the spinneret at the same time.
This object is achieved according to the invention by a spinneret having the features of claim 1, by a device using a plurality of such spinnerets and a method having the features of claim 12.
Advantageous developments and improvements are possible by means of the measures indicated in the sub-claims.
As a result of the fact that the rotationally symmetrical spinneret inner part with supply channel of the spinneret is surrounded at least partially by a rotationally symmetrical outer part and at least one insulating chamber is configured between the spinneret inner part and outer part in the longitudinal direction of the spinneret, in which insulating chamber a gas, preferably air, is received in order to form an insulating gas layer, the heat loss of the spinning mass which flows in the supply channel in the air which flows at least partially around the spinning nipple is less. If the at least one insulating chamber is designed such that it is sealed in a gas-tight manner to the exterior, a vacuum instead of gas can also be formed therein. This means that the spinning mass in the supply channel retains a higher temperature for longer and arrives at the exit boring with a higher temperature, which has a positive effect on the viscosity of the spinning mass which flows in the exit boring, i.e. the viscosity is less than in the case of a spinneret of the same dimensions without an insulating chamber. Lower viscosities lead advantageously to finer threads and to a higher throughput. As a result of the fact that the spinning mass in the insulated supply channel retains its temperature for longer and arrives hotter at the at least one exit boring, the exit boring can be provided with a smaller diameter which basically makes possible finer threads. The spinneret inner part and the outer part can be configured respectively at least partially rotationally symmetrically, also other shapes being conceivable however. Polymers and solutions of a synthetic and natural origin can be used as spinning mass. Relative to spinnerets which are provided with heating elements, the advantage of less constructional complexity results. According to the invention, fine threads of an average thread diameter below 1 μm can hence be produced.
In a particularly advantageous embodiment, a plurality of exit borings is disposed in the spinneret tip part. The exit borings are connected to the supply channel and out of which respectively one monofilament can be spun out. By providing a plurality of exit borings, the throughput of spinning mass can be increased, which in turn leads to an increase in the temperature at the transition point between supply boring and exit borings. Consequently, a thinner monofilament which splits into finer threads can be spun out per exit boring. The exit borings or openings can be of the same shape and cross-section but need not be, rather they can have different shapes and cross-sections.
In an advantageous embodiment, the spinneret tip part has directional elements incorporated in the circumferential surface thereof which serve for guiding gas to flow around the monofilaments. They can thereby be configured as flattened surface elements which are disposed over the circumference and/or as groove-, channel- or trough-shaped recesses which taper towards the tip. As a result, the airflows can be conducted more uniformly and essentially in a laminar manner to all the monofilaments which are spun out of the spinneret.
In a preferred embodiment, the exit borings are directed to the exterior at an acute angle towards the centre line of the spinning nipple, as a result of which it is avoided that the liquid monofilaments which are spun out of the exit borings do not converge. However the exit borings can also extend outwards in a curve. The term “exit boring” does not mean that it must always have a round cross-section. It can also have for example an oval or polygonal cross-section, such as rectangular or square.
The insulating chamber of the spinneret can be produced in a simple manner as a result of the fact that the rotationally symmetrical spinneret inner part has a projection or shoulder with which the rotationally symmetrical, sleeve-shaped outer part can come into engagement at one end whilst forming the likewise rotationally symmetrical, oblong insulating chamber if the spinneret can be inserted by its thread provided on the outer part into a mounting, e.g. a spinneret plate.
Preferably, directional elements can be provided on the spinneret tip, which directional elements are configured such that the cross-section of the spinneret tip part has a polygonal, cruciate, cloverleaf-shaped or star-shaped configuration.
In the case of the spinning device according to the invention, a plurality of spinnerets according to the invention are inserted in a spinneret part, a gas nozzle part being disposed at a spacing relative to the spinneret part and having a plurality of gas nozzles assigned to the spinnerets, which gas nozzles are configured as acceleration nozzles of a gas flow which is conducted through the respective gas nozzle and surrounds the monofilaments. With a spinning device of this type, a large number of thin threads which are produced by splitting a large number of monofilaments can be produced, both the number of threads and the fineness of the threads being able to be increased by increasing the exit borings of the spinnerets.
The gas nozzles are preferably rotationally symmetrical and assigned respectively to one spinneret, as a result of which the gas flow can flow uniformly around the spun-out monofilaments, however also slot-shaped gas nozzles or Laval nozzles can be provided, in particular when the exit borings are disposed in a row in the spinneret tip part.
In a preferred embodiment, the spinneret part has a plurality of rows of spinnerets and, for particular preference, the spinnerets of one row are offset relative to the spinnerets of an adjacent row. Consequently, spunbonded fabrics of greater uniformity can be produced.
A further advantageous embodiment of spinnerets which are insulated against heat losses in the interior thereof and the positioning thereof relative to the acceleration nozzles situated behind in the flow direction e.g. in the form of Laval nozzles, is the rigid connection and hence defined positioning of the spinneret centre relative to the acceleration nozzle centre. This has the advantage that the emerging liquid spinning material jets are caught uniformly at the circumference by the gas-, generally air jets, since in general the otherwise produced irregularities over the thread cross-section are not desired. In this way the different expansion between the warmer spinneret part and the following gas nozzle part can be equalized even over fairly large spinning widths in a spinning device, also often termed spinning beam, so that the centres of the spinning lines of both parts which produce the “Nanoval effect” are always aligned: in the case of a plurality of outflow openings in the spinneret, the centre thereof in the spinneret tip is considered as the beginning of the spinning line, if special effects, such as a twist for the yarn formation in the acceleration nozzle, are not intended to be produced, which is generally avoided in the case of nonwovens.
According to the invention, a monofilament is spun out of at least one spinneret in the case of the method for spinning threads from a spinning mass by splitting, which monofilament is accelerated by a surrounding gas flow until splitting, the spinning mass for spinning out being conducted via a supply channel which is insulated against heat losses by a gas cushion surrounding it. The advantages relative to the method according to the state of the art without insulation correspond to those which were described in connection with the spinneret.
In a preferred embodiment of the method, the spinning mass which is conveyed in the supply channel is divided into a plurality of partial flows which are separated from each other, are spun out respectively as monofilament and are split into a large number of essentially endless threads by means of the accelerated gas flow.
In order to produce particularly fine threads from synthetic and natural polymers, such as polypropylene, polyester and other thread-forming spinning materials, such as cellulose solutions or those made of PAN or aramids, the flowing spinning mass per exit opening must be reduced in order that the necessary deformation work on the liquid monofilament is increased. However this implies the danger of greater cooling, particularly in the exposed region of the spinnerets, which counteracts splitting or bursting into a higher number of individual threads. As a result of the fact that a plurality of exit borings is provided on the spinneret, i.e. the spinning mass in the spinneret tip is divided into a plurality of partial flows, the flowing spinning mass per exit boring can be reduced and nevertheless there is no danger that the spinning mass in the supply channel is cooled too greatly since the throughput therein is increased and hence the temperature at the exit borings is higher and the quantity of spinning mass in the supply channel no longer depends upon the size of the exit boring alone, but upon the number of exit borings and the size thereof.
Embodiments of the invention are represented in the drawing and are explained in more detail in the subsequent description. There are shown
In
In
The supply channels 5 of each spinneret 1 are connected to corresponding supply channels 11 which are configured in the spinneret part 9 and a part 8 situated thereabove and which are connected to a distribution chamber, not shown, into which spinning mass is introduced. Below the spinneret part 9, at a spacing forming a space 13, a gas nozzle plate 15 is disposed, which gas nozzle plate has a large number of acceleration nozzles 14 which can be configured as Laval nozzles, i.e. with a tapering region and an abruptly or continuously widening region. The spinneret plate 15 is thereby disposed, relative to the spinnerets 1, such that the tips of the spinnerets 1 dip slightly into the acceleration nozzles 14 or lie somewhat above the acceleration nozzles 14. Preferably, a plurality of rows of spinnerets 1 is provided in the spinneret part 9, adjacent rows being able to be offset relative to each other. In order to produce a spunbonded fabric, preferably a plurality of rows of spinnerets 1 of such a spinneret arrangement are disposed transversely relative to the direction of travel of a collection belt or a collection drum corresponding to the desired web width.
The space 13 between spinneret part 9 and gas nozzle plate 15 serves for supplying a gas, preferably air, which flows through the acceleration nozzles 14 corresponding to the arrows 12. Respectively one monofilament 16 is spun out of the exit borings 7 of the spinnerets and, according to the Nanoval process, the air flows around these monofilaments 16 or the lower region of the spinnerets 1, according to the arrows 12 in the space 13, with increasing speed towards the acceleration nozzles 14 through which it leaves the space 13. The openings of the acceleration nozzles 14 are in general round but can also have a slot-shaped configuration. They are convergent in the flow direction and can be configured, in their cross-sections, in the form of a convergently-divergently extending Laval nozzle, also abrupt transitions being possible. The acceleration nozzles 14 correspond in their longitudinal axis to the longitudinal axis of the spinning nipples 1. As can be noted, the monofilament 16 splits into a large number of threads 17 as a result of the pressure ratios inside and outside the monofilament, which threads can be deposited, during the production of the web, on a collection belt or a collection drum or can be collected as yarns on bobbins with normal winding devices.
Particularly in the lower part of the spinning nipple 1 or of the spinning nipples, the cooling effect of the air increases with increasing air speed due to the flow which is directed for example rotationally symmetrically towards the opening of the acceleration nozzles 14. In an accelerating flow, the air should surround the liquid monofilament essentially parallel as soon as possible and be significantly greater than the thread speed. It follows therefrom at the same time that the cooling, in particular of the nipple tip, should be paid great attention, because, in the case of the method which is applied, the thread fineness is primarily dependent upon the temperature of the spinning mass and only thereafter upon the acting air speed which causes splitting due to the production of shear stresses on the liquid flow. The cooling is reduced by the air layers of the insulating chamber 4 which surround the supply channel 5 with the flowing fibre-forming spinning mass. Since the heat loss of the spinning mass to the exterior and hence the temperature difference between the upper region of the supply channel 5 and the exit boring is less, it arrives at a higher temperature at the exit borings 7 of the respective spinneret 1. Since the temperature is higher, the viscosity in the case of most spinning masses is lower and respectively more spinning mass can flow through the supply channels 5 and exit borings 7.
In
By way of example, the following dimensions can be indicated for the nipple tip, as have proved to be advantageous for threads around and below 1 μm diameter: d1=diameter of the supply channel=1.5 mm to 2 mm, d2=diameter of the capillary=0.2 mm to 0.6 mm. The length of the exit boring or of the capillary is thereby for example 1 mm to 2.4 mm. The length of the spinneret is of the order of magnitude of 30 mm. All these data are merely by way of example, other dimensions can be used as a function of the specifications.
As represented in
Consequently, the danger is avoided that the monofilaments spun out of the exit borings 7 and the multifilaments after splitting converge.
The outer surfaces of the spinneret tip between the borings 7 can be configured in the form of flat portions or groove-shaped recesses which taper towards the tip for better introduction of air with the aim of uniform encompassing of the emerging monofilaments. For this purpose, some “flesh” is removed from the round cross-section of the tip.
In
For this embodiment according to
In an arrangement according to
In
According to the aim of the present invention, a cavity 24 is also provided between the jacket 21 and the spinneret 1 for insulation by means of gas or air. Furthermore, insulating chambers 4, as shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2010 019 910.9 | May 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/002382 | 5/4/2011 | WO | 00 | 1/11/2013 |