1. Field of the Invention
The invention relates to a spinning method and a spinning apparatus suitable to be applied when integrally forming a member having a three-dimensionally complex cylindrical shape, such as an exhaust pipe of a vehicle for example, from a cylindrical work.
2. Description of Related Art
Japanese Patent Application Publication No. 2001-25826 (JP 2001-25826 A), for example, describes one such spinning method that reduces the diameter of a processed portion of a cylindrical work, by pressing approximately two to four rollers against an outer peripheral surface of the processed portion of the work while revolving the rollers, while a cylindrical work is being supported by a chuck or a clamping device.
However, with this kind of spinning method, processing is performed by pressing the rollers from the outside of the work toward the inside of the work (i.e., toward the axis of the work). Therefore, normally, forming beyond the outer shape of the work (i.e., processing to form the axis of the work in a given direction without being limited to the area within the outer shape (the cylindrical shape) of the work), e.g., an offsetting process, is unable to be performed on the work.
The invention thus provides a spinning method that makes it possible to perform forming beyond the outer shape of the work. The invention also provides a spinning apparatus suitable for implementing such a spinning method.
A first aspect of the invention relates to a spinning method. This spinning method includes supporting a supported portion of a cylindrical work by a work supporting portion; pressing a first roller of a spinning head against a processed portion of the work while revolving the first roller; and performing a forming process that points a tube axis of the processed portion of the work in a given direction by pressing the first roller and a second roller in which a plane of revolution thereof is provided in a different position, in a rotational axis direction of a spindle of the spinning head, than a plane of revolution of the first roller, while revolving the first roller and the second roller, arid moving the work supporting portion relative to the spinning head or moving the spinning head relative to the work supporting portion, while the first roller and the second roller work in cooperation with each other to retain the work.
According to this aspect, the forming process that points the tube axis of the processed portion of the work in a given direction is performed in the spinning process that is performed on the cylindrical work. As a result, forming beyond the outer shape of the cylindrical work is able to be performed on the cylindrical work.
Also, in the aspect described above, the spinning method may also include performing an offsetting process in which the tube axis of the processed portion of the work is offset from a tube axis of the supported portion of the work by moving the processed portion of the work relative to the work supporting portion, by moving the work supporting portion or moving the spinning head.
According to this aspect, the offsetting process in which the tube axis of the processed portion of the work is offset from the tube axis of the supported portion of the work is performed. As a result, forming beyond the outer shape of the cylindrical work is able to be performed on the cylindrical work.
Also, in the aspect described above, the forming process may include inclining the tube axis of the processed portion of the work with respect to a tube axis of the supported portion of the work, by appropriately swinging the work supporting portion while the supported portion of the work is supported by the work supporting portion.
According to this aspect, the tube axis of the processed portion of the work is inclined with respect to the tube axis of the supported portion of the work, when the forming process is performed on the cylindrical work. As a result, forming beyond the outer shape of the cylindrical work is able to be performed on the cylindrical work.
Also, in the aspect described above, the first roller may be provided in plurality at substantially equiangular intervals on a circumference of a circle that is centered around the rotational axis of the spindle; and the second roller may be provided in plurality at substantially equiangular intervals on a circumference of a circle that is centered around the rotational axis of the spindle, in a manner arranged alternately with the first rollers when viewed from the rotational axis direction of the spindle.
According to this aspect, a plurality of the first rollers and a plurality of the second rollers are provided at substantially equiangular intervals on the circumference of a circle that is centered around the rotational axis of the spinning head. Therefore, the support points of the first rollers and the second rollers with respect to the work increase, and the processed portion of the work is pressed on substantially evenly by the first rollers and the second rollers. As a result, the processing accuracy of the work is able to be improved.
Also, in the aspect described above, the first roller and the second roller may be configured to be able to move independent of each other in a radial direction with respect to the rotational axis of the spindle.
According to this aspect, the first roller and the second roller are configured to be able to move independent of each other in a radial direction with respect to the rotational axis of the spindle. Therefore, the first roller and the second roller are able to be made to reliably contact the outer peripheral surface of the work, according to the processing shape of the work, when performing the forming process on the cylindrical work. Therefore, the processing accuracy of the work is able to be improved even if the processing shape of the work is complex.
Also, in the aspect described above, the spinning method may also include reducing a diameter of the processed portion of the work by appropriately reducing a revolution diameter of the first roller and the second roller, with the forming process.
According to this aspect, the processed portion of the work is able to be reduced in diameter, with the forming process on the cylindrical work. Therefore, the forming process and the diameter reducing process on the work are simultaneously performed, so productivity improves.
A second aspect of the invention relates to a spinning apparatus. This spinning apparatus includes a work supporting portion that supports a supported portion of a cylindrical work; a first roller that is provided on a spinning head and that is pressed against a processed portion of the work while being revolved; and a second roller in which a plane of revolution thereof is provided in a different position, in a rotational axis direction of a spindle of the spinning head, than a plane of revolution of the first roller. The first roller and the second roller work in cooperation with each other to retain the work. The first roller and the second roller are pressed against the work while revolving, and the work supporting portion moves relative to the spinning head or the spinning head moves relative to the work supporting portion, while the work is being retained.
According to this aspect, effects similar to those obtained by the first aspect of the invention are able to be obtained.
Also, in the aspect described above, the work supporting portion may be configured such that an offsetting process, in which a tube axis of the processed portion of the work is offset from a tube axis of the supported portion of the work by the processed portion of the work being moved relative to the work supporting portion, is performed by the work supporting portion or the spinning head being moved.
According to this aspect, effects similar to those obtained by the first aspect of the invention, as well as the aspects accompanying the first aspect, are able to be obtained.
In the aspect described above, the work supporting portion may swing such that a tube axis of the processed portion of the work is inclined with respect to a tube axis of the supported portion of the work.
According to this aspect, effects similar to those obtained by the first aspect of the invention, as well as the aspects accompanying the first aspect, are able to be obtained.
In the aspect described above, the first roller may be provided in plurality at substantially equiangular intervals on a circumference of a circle that is centered around the rotational axis of the spindle. Also, the second roller may be provided in plurality at substantially equiangular intervals on a circumference of a circle that is centered around the rotational axis of the spindle, in a manner arranged alternately with the first rollers when viewed from the rotational axis direction of the spindle.
According to this aspect, effects similar to those obtained by the first aspect of the invention, as well as the aspects accompanying the first aspect, are able to be obtained.
In the aspect described above, the first roller and the second roller may be configured to be able to move independent of each other in a radial direction with respect to the rotational axis of the spindle.
According to this aspect, effects similar to those obtained by the first aspect of the invention, as well as the aspects accompanying the first aspect, are able to be obtained.
Features, advantages, and technical and industrial significance of exemplary embodiments of the invention will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
Hereinafter, example embodiments of the invention will be described.
Also, a spinning head 7 is arranged near (to the right in
That is, the spindle base, not shown, is provided upright on the table 2. The annular spindle 10 is supported, in a manner so as to be able to rotate about the rotational axis CT1 by driving means, not shown, in a position facing the chuck 6, as shown in
More specifically, the spinning head 7 is such that the spindle 10 is formed by a housing 16 and a faceplate 17, and the support shafts 11 (i.e., the first support shafts 11A and the second support shafts 11B) are formed by sliders 18 and roller holders 20, as shown in
That is, this spinning head 7 has a main shaft 15 that is supported horizontally, as shown in
The spinning apparatus 1 is configured as described above, so the procedure for performing spinning on the cylindrical work 4 using this spinning apparatus 1 is as described below.
First, in a work preparation process, a supported portion 4a of the work 4 is gripped by the chuck 6 of the work support base 3, as shown in
Next, a roller contact process is performed. In this process, the six support shafts 11 are moved toward the rotational axis CT1 of the spindle 10 in the radial direction of the spindle 10. As a result, the six pairs of rollers 12 (i.e., the three pairs of first rollers 12A and the three pairs of second rollers 12B) contact the outer peripheral surface of the work 4. As a result, the work 4 is in a state retained by the three pairs of first rollers 12A and the three pairs of second rollers 12B working in cooperation with each other. The six support shafts 11 are arranged at equiangular intervals on the circumference of the circle C1 that is centered around the rotational axis CT1 of the spindle 10, just as described above. Therefore, the six pairs of rollers 12 are also arranged at equiangular intervals around the work 4.
Finally, an offsetting and diameter reducing process is performed. In this process, the spindle 10 is rotated about the rotational axis CT1. As a result, the six pairs of rollers 12 revolve at a predetermined rotation rate about the rotational axis CT1. As a result, the rollers 12 revolve around the work 4 while spinning with respect to the outer peripheral surface of the processed portion 4b of the work 4.
In this state, the six pairs of rollers 12 are moved toward the center in the radial direction of the spindle 10, and the work support base 3 is moved away from the spinning head 7 in the X direction. Further, simultaneously, the work support, base 3 is moved upward in the Z direction.
As a result, the supported portion 4a of the work 4 moves upward at an angle (in the direction of arrow M in
At this time, the six pairs of rollers 12 are arranged at equiangular intervals around the work 4, just as described above. Therefore, the support points of the rollers 12 with respect to the work 4 increase, and the processed portion 4b of the work 4 is pressed on substantially evenly by these rollers 12. As a result, the processing accuracy of the work 4 is able to be improved.
With this, the spinning process performed on the work 4 ends.
In this way, in the spinning head 7, the plane of revolution PL1 of the first rollers 12A and the plane of revolution PL2 of the second rollers 12B are provided in different positions in the direction of the rotational axis CT1 of the spindle 10. Therefore, when spinning the cylindrical work 4, the work 4 is firmly retained by the first rollers 12A and the second rollers 12B at two points that are separated from each other in the direction of the rotational axis CT1 of the spindle 10, i.e., in the length direction of the work 4. Therefore, the retained state of the work 4 can be ensured and the rigidity of the work 4 can be increased, compared to when these planes of revolution PL1 and PL2 are provided in the same position in the direction of the rotational axis CT1 of the spindle 10. As a result, in the spinning process that is performed on the cylindrical work 4, an offsetting process in which the tube axis CT6 of the processed portion 4b of the work 4 is offset from the tube axis CT5 of the supported portion 4a of the work 4 can be performed. Therefore, forming beyond the outside shape of the cylindrical work 4 can be performed on the cylindrical work 4.
Also, in the spinning head 7, two of the first rollers 12A are mounted on each of the first support shafts 11A, and two of the second rollers 12B are mounted on each of the second support shafts 11B, just as described above. Therefore, when performing the spinning process (i.e., performing the offsetting and diameter reducing process) on the work 4, the contact area between the rollers 12 and the work 4 is greater than it is when only one of each of the first rollers 12A and the second rollers 12B are provided. Therefore, the spinning process performed on the work 4 is able to be performed highly accurately and in a short period of time.
Furthermore, in the spinning head 7, the plane of revolution PL1 of the first rollers 12A and the plane of revolution PL2 of the second rollers 12B are provided in different positions in the direction of the rotational axis CT1 of the spindle 10, just as described above. Therefore, even if the diameter of the rollers 12 is large, the rollers 12 will not easily interfere with each other, so the degree of freedom in the design of the spinning head 7 is greater compared to when these planes of revolution PL1 and PL2 are provided in the same position in the direction of the rotational axis CT1 of the spindle 10.
Also, the work support base 3 swings around the axis in the X direction (i.e., around in the RX direction), the axis in the Y direction (i.e., around in the RY direction), and the axis in the Z direction (i.e., around in the RZ direction), just as described above. When spinning the work 4, the work support base 3 is swung appropriately according to the processing shape of the processed portion 4b of the work 4, while the supported portion 4a of the work 4 is supported by the work support base 3. Accordingly, the tube axis CT6 of the processed portion 4b of the work 4 is also able to be inclined with respect to the tube axis CT5 of the supported portion 4a of the work 4. As a result, it becomes possible to suitably bend the work 4 in a three-dimensional direction.
Also, the first support shafts 11A and the second support shafts 11B are configured to be able to move independent of each other in the radial direction with respect to the rotational axis CT1 of the spindle 10, just as described above. Therefore, the first rollers 12A and the second rollers 12B are able to be made to reliably contact the outer peripheral surface of the work 4, according to the processing shape of the work 4, when performing the offsetting process and the diameter reducing process on the cylindrical work 4. Therefore, the processing accuracy of the work 4 is able to be improved even if the processing shape of the work 4 is complex.
Therefore, this second example embodiment displays similar operation and effects as those displayed by the first example embodiment described above. In addition, in the spinning process that is performed on the work 4 (i.e., in the offsetting and diameter reducing process), the core bar 13 is inserted inside the processed portion 4b of the work 4. As a result, even if the rigidity of the work 4 is low, oscillation that accompanies spinning of the work 4 is suppressed, so the work 4 can be processed with high accuracy.
In the first and second example embodiments described above, a spinning head 7 configured such that the housing 16 is rotatably attached to the main shaft 15 is described. However, a structure in which the main shaft 15 rotates together with the housing 16 may also be employed. Also, in the first and second example embodiments described above, a case is described in which the work 4 is processed by moving the work support base 3 upward at an angle (i.e., in the X direction and the Z direction), in the spinning process (i.e., the offsetting and diameter reducing process) performed on the work 4. However, the work 4 may also be processed by moving the spinning head 7 downward at an angle, instead of moving the work support base 3 upward at an angle. That is, the work support base 3 side need only be moved relative to the spinning head 7 side. Alternatively, the processed portion 4b of the work 4 may be moved in another direction (such as a vertical direction or a horizontal direction) relative to the work support base 3 side.
Also, in the first and second example embodiments described above, a spinning head 7 having six support shafts 11 (i.e., the three first support shafts 11A and the three second support shafts 11B) is described. However, the number of support shafts 11 is not limited to six.
Further, in the first and second example embodiments described above, a case is described in which the first rollers 12A and the second rollers 12B have the same diameters. However, the first rollers 12A and the second rollers 12B may also have different diameters.
In the first and second example embodiments described above, a spinning head 7 in which two rollers 12 (12A and 12B) are provided on each support shaft 11 (11A and 11B) is described. However, the number of rollers 12 provided on the each support shaft 11 is not limited to two, but may of course also be one or three or more. When the number of rollers 12 increases, the contact area between the rollers 12 and the work 4 will increase in the spinning process (i.e., the offsetting and diameter reducing process) performed on the work 4. Therefore, the spinning process performed on the work 4 is able to be performed highly accurately and in a short period of time.
Also, in the first and second example embodiments described above, a spinning head 7 configured such that the rollers 12 are rotatably supported by the support shafts 11, and these rollers 12 spin against the outer peripheral surface of the work 4 when spinning the work 4, is described. However, the structure may also be such that the rollers 12 are fixed to the support shafts 11, and the rollers 12 slide against the outer peripheral surface of the work 4 when spinning the work 4.
Also, in the first and second example embodiments described above, a case in which an offsetting process is performed on the work 4 when spinning the work 4, is described. However, the invention is not limited to this kind of offsetting process. That is, a forming process that points the tube axis CT6 of the processed portion 4b of the work 4 in a given direction may also be performed. This enables a variety of members having complex cylindrical shapes to be integrally formed from the cylindrical work 4.
Moreover, the processed portion 4b of the work 4 may also be reduced in diameter by suitably reducing the revolution diameter of the rollers 12 with the forming process to point the tube axis CT6 of the processed portion 4b of the work 4 in a given direction. In this case, the forming process to point the tube axis CT6 of the processed portion 4b of the work 4 in the given direction and the diameter reducing process are performed simultaneously. As a result, productivity is able to be increased.
Also, in the first and second example embodiments described above, a case is described in which the first rollers 12A and the second rollers 12B are provided on separate support shafts 11 (i.e., the first support shafts 11A and the second support shafts 11B). However, the first rollers 12A and the second rollers 12B may also be provided on the same support shafts 11 as long as the plane of revolution PL1 of the first rollers 12A and the plane of revolution PL2 of the second rollers 12B are provided in different positions in the direction of the rotational axis CT1 of the spindle 10.
Also, in the first and second example embodiments described above, a spinning head 7 in which the plane of revolution PL1 of the first rollers 12A and the plane of revolution PL2 of the second rollers 12B are provided in different positions in the direction of the rotational axis CT1 of the spindle 10, i.e., a spinning head 7 provided with two tiers of rollers 12, is described. However, a spinning head 7 provided with three or more tiers of rollers 12 may also be used instead.
The invention is extremely useful when integrally forming a member having a three dimensionally complex cylindrical shape, more specifically, a surge tank, a separation tank of a turbocharger, a muffler for a two-wheel vehicle, a catalytic converter, a diesel exhaust treatment device (i.e., a diesel particulate filter), and various pressure containers and the like, from cylindrical material by spinning.
Number | Date | Country | Kind |
---|---|---|---|
2013-077845 | Apr 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/000533 | 4/1/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/162197 | 10/9/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4143535 | Bouman | Mar 1979 | A |
5937516 | De Sousa | Aug 1999 | A |
6067833 | Irie | May 2000 | A |
6216512 | Irie | Apr 2001 | B1 |
6233993 | Irie | May 2001 | B1 |
6381843 | Irie | May 2002 | B1 |
6386010 | Irie | May 2002 | B1 |
6442988 | Hamstra | Sep 2002 | B1 |
6467322 | Nogami | Oct 2002 | B2 |
6591498 | Irie | Jul 2003 | B2 |
6729354 | Ishizu | May 2004 | B2 |
6769281 | Irie | Aug 2004 | B2 |
6823704 | Nakamura | Nov 2004 | B2 |
6990841 | Desousa | Jan 2006 | B2 |
7013690 | Massee | Mar 2006 | B2 |
7131305 | Desousa | Nov 2006 | B2 |
7143619 | Morikawa | Dec 2006 | B2 |
7251974 | Massee | Aug 2007 | B2 |
7963138 | Okada | Jun 2011 | B2 |
8091396 | Irie | Jan 2012 | B2 |
8117877 | Massee | Feb 2012 | B2 |
8635898 | Karino | Jan 2014 | B2 |
9574684 | Fonte | Feb 2017 | B1 |
20050257588 | Lancaster | Nov 2005 | A1 |
20080127699 | Okada et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
1 302 253 | Apr 2003 | EP |
1 302 253 | Apr 2003 | EP |
2 353 744 | Aug 2011 | EP |
57-112916 | Jul 1982 | JP |
2000-94069 | Apr 2000 | JP |
2001-25826 | Jan 2001 | JP |
2003-10935 | Jan 2003 | JP |
2006-181592 | Jul 2006 | JP |
Entry |
---|
International Search Report and Written Opinion dated Jun. 23, 2014 in PCT/IB2014/000533. |
Number | Date | Country | |
---|---|---|---|
20160052036 A1 | Feb 2016 | US |