This invention relates generally to a toy top that is put into rotational movement through the use of a turning gear powered by pulling a rip cord. Specifically, the toy top of the invention is directionally maneuvered while in rotational movement by using opposing magnetic fields.
Traditional toy tops are generally used in recreation by spinning the top and watching its rotational and gyroscopic movement along with its eventual collapse. This invention overcomes the traditional and simplistic model of only watching the top by allowing the user to interact with the top while it is spinning. Being able to maneuver the top introduces many possible new aspects of play including but not limited to colliding several spinning tops together.
The toy of the present invention includes a top having an egg-shaped body, a magnetic controller with an arched controller-body surface, a top-handle of rectangular shape, a spinning gear, a rip cord with gear-teeth, at least one controlling magnet, and at least one repelled magnet. The top has a balancing tip that is inversely conical, and a gear fitting fixed in the center at the topmost point of the top. The at least one repelled magnet is positioned and enclosed within the top with the repelled magnets fixed inside a magnet encasement. On the exterior of the top, a reinforcing band wraps the circumference of the top with view holes positioned on the reinforcing band. The magnetic controller houses a at least one controlling magnet which directs a magnetic field of opposite polarity than the field directed outwards by the at least one repelled magnet. The top is put into a rotational movement through the use of a top-handle with a spinning gear and powered by pulling a rip cord through the top-handle. The top is then maneuvered by allowing the magnetic field of the magnetic controller to contact the magnetic field of the at least one repelled magnet.
Terminology and Lexicography:
A spinning toy top controlled by repelling magnetic controller comprises of a main body 10, a balancing tip 11, a reinforcing band 12, a plurality of view holes 13, a gear fitting 14, a top-half body 15, a lower-half body 16, a controller body 20, a plurality of controller view holes 21, at least one controlling magnet 22, a magnet fitting space 23, a top-handle 30, a rip cord handle 31, a rip cord 32, a spinning gear 33, a plurality of gear-teeth 34, a plurality of repelled magnets 40, a plurality of magnet encasements 41, and a hollow space 42.
In reference to
In reference to
In reference to
In reference to
During play, the top is spun and a user can maneuver the directional movement of the top while it is spinning by using the magnetic controller. The plurality of repelled magnets 40 of the top and the at least one controlling magnet 22 of the magnetic controller have an opposite magnetic polarity directed away from their embodiment. When a user holding the magnetic controller moves it towards the top, the magnetic field of the controlling magnet 22 contacts the magnetic fields of the plurality of repelled magnets 40. When these two opposing magnetic fields come into contact, the resulting magnetic force repels the top away from the magnetic controller. To effectively maneuver the top, relative heights of the repelled magnets 40 and the at least one controlling magnet 22 are important. The positional height of each of the plurality of repelled magnets 40 and the at least one controlling magnet 22 is measured from the bottom-most point of their respective embodiments. The positional height of the plurality of repelled magnets 40 is equal to the positional height of the at least one controlling magnet 22 so that their magnetic forces, when in contact, repel directly horizontal without angulations. In addition, the top and magnetic controller interacts on a level surface where the magnetic controller slides along this level surface to maintain the positional heights of the plurality of repelled magnets 40 and the at least one controlling magnet 22. This configuration is of the preferred embodiment although the positional heights of the plurality of repelled magnets 40 and the at least one controlling magnet 22 may be different to allow angular repelling magnetic forces resulting in different effects to the movement of the top. The use of magnetic force to maneuver the top allows the top to maintain the speed of its rotational movement and stay balanced. A physical object making contact with the top in order to maneuver the top would result in friction between the object used and the top, reducing the top's rotational speed. In the present invention, the magnetic controller uses magnetic forces to maneuver the top without making physical contact to the top itself. As a result, friction and reduction of the top's rotational speed, if any, is minimized.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Name | Date | Kind |
---|---|---|---|
3224142 | Pawelka et al. | Dec 1965 | A |
3583092 | Schoenfield | Jun 1971 | A |
6443801 | Bell | Sep 2002 | B1 |
6739939 | Matsukawa | May 2004 | B2 |
20100159798 | Bertrand et al. | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20110097965 A1 | Apr 2011 | US |