The present invention relates to heat exchangers having one or several substantially flat and rigid elongated tubing elements.
In the technical field of heat exchangers such as evaporators, condensers and radiators and coolers there have been many attempts to provide compact and energy efficient heat exchangers. A heat exchanger is hereby generally known to provide for an exchange of thermal energy between a first medium such as, for example, water and/or a cooling agent, and a second medium such as, for example, air.
For instance, EP 1 840 494 A2 discloses a heat exchanger, whereby the heat exchanger comprises a profile having two flat tubes with several channels and whereby the tubes are connected by means of a bar. The profile is a one-piece profile and may consist of aluminium or an aluminium alloy.
Moreover, DE 20 2008 006 379 U1 discloses an aluminium or aluminium alloy profile, which can be used for tubes for heat exchangers. The profile has a central channel and several further channels arranged around the central channel.
DE 2 209 325 discloses a tube for heat exchangers having a helical structure. Furthermore, DE 2 209 329 discloses heat exchanger tubes having ribs on the inner side and the outer side of the tube.
Additionally, GB 1 390 782 discloses a heat-exchange tubing having spaced metal fins projecting inwardly of the tubing from the wall sections of the tubing and extending longitudinally of the tubing.
Further, EP 0 640 803 A1 relates to heat transfer coil, where a second piece of tubing is wound around the first piece of tubing while the first piece is straight and where the first piece of tubing is then formed to define the overall coil shape and then the first and second pieces of tubing internally sized by internal pressurization to also force the two pieces of tubing to intimate contact with each other.
JP 2004 218954 A relates to a heat exchanger, whereby two flat tubes can be carried out spirally at the same diameter and form a substantially overall cylindrical structure. The flat tube is bent in direction of the major axis and interposition fixing of the fin is carried out at the gap between the opposite planes.
However, it is still desirable to improve the already known technical solutions in the field of heat exchangers.
Needs exist for improved heat exchangers.
It is therefore an object for the present invention to improve heat exchangers, in particular in that the efficiency of the heat exchanges increases and that the overall structure of the heat exchangers is improved and simplified and allows a more compact structure of the heat exchanger means.
The above object is solved according to the present invention by heat exchanger means with a conic spiral shape. Accordingly, a heat exchanger means comprising several substantially flat and rigid elongated tubing elements is provided, whereby the tubing elements form a substantially overall cylindrical structure having a central longitudinal axis, and the tubing elements are spirally curved around the central longitudinal axis and interleaved in the structure, whereby the tubing elements have a plurality of fins in at least one of the outer surfaces of the first side wall and/or of the second side wall and whereby the fins are at least partially covered by covering wall, whereby the tubing elements are at least partially tilted or at least partially tilted and sloped and at least partially helically wound and are twisted so as to form at least a part of a conic spiral structure.
The conic spiral shape of this disclosure may refer to a variety of different shapes, all of which may refer to a curve that turns around an axis at a constant or continuously varying distance while moving parallel to the axis.
The conic spiral shape may allow control over heat exchange or air flow through the tube based on the angle of tilt of the spiral shape, allowing for more balanced cooling operation. The conic spiral shape has the added benefit of controlling air or liquid pressure through the tube. It may also prevent recirculation of air or liquid entering into one end of the spiral.
The tubing element, having a plurality of fins on at least one of the outer surfaces of the first side wall and/or of the second side wall and whereby the fins are at least partially covered by a covering wall, increases the tubing element surface for a better heat exchange between said second medium, such as air, and the heat exchanger.
The opening of the tubing element may vary across the opening. In some embodiments, the opening is an elongated tear drop shape or a crescent shape. This shape serves to control air flow over the tube.
The interior volume of the tubing element may be subdivided into a plurality of microtubes, which may facilitate high pressures of liquids or gasses passing through the tubes. Alternatively, the tubing element may consist of one continuous open volume to allow a more rapid passage of gasses or liquids.
The conic spiral shaped structure of the tubing element is determined merely by variables radius r, angle α, and angle β. Radius r defines the distance between the centre of the tubing element and the central longitudinal axis X of the heat exchanger. Angle α defines the slope of the tubing element and extends between the central longitudinal axis X of the heat exchanger and the central axis Z of the tubing element. Angle β defines the tilt of the tubing element and extends between the central longitudinal axis X of the heat exchanger and the central transversal axis Y of the tubing element.
Therefore, due to the tilted orientation of the tubing element, there are almost no horizontal surfaces of the tubing element within the heat exchanger. Natural condensate from air moisture disappears very quickly, because of the tilted surfaces that result from each tube element being tilted while at least partially helically wound and twisted. Natural condensate from air moisture disappears to the outside surface of the heat exchanger, because of the sloped surfaces tilted orientation of the tubing element. So, freezing of condensate from air moisture between each of said tubing elements can be eliminated or minimized.
Compared to the prior art, the tubing element, being tilted while at least partially helically wound and twisted so as to form at least a part of a helical structure, is more efficient with less material. Also the heat exchanger needs a smaller volume in the whole heat exchanger system, due to the compact set of tubing elements.
Further, this tubing element, being tilted while being at least partially helically wound and/or twisted so as to form at least a part of a conic spiral structure, effects a better interaction between a second medium such as air and the surface of the tubing element, due to the tilted orientation of the tubing element.
Such a tubing element for a heat exchanger may be an elongated heat exchanger microchannel tube. Such an elongated heat exchanger microchannel tube may have a first and a second open end. There may be relatively large parallel opposite side walls of the microchannel tube with generally flat surfaces, which are joined with relatively small opposite edge walls between the side walls. These edge walls may be convexly curved.
Heat transfer vapor or fluid may fill a heat exchanger microchannel tube and may flow from one end of the microchannel tube to the other end. The term microchannel is also known as microport.
A second medium such as air may flow around the outer sides of the tubing element and may transport the heat from the tube away or vice versa.
By providing a plurality of fins on at least one of the outer surfaces of the first side wall and/or of the second side wall the surface for heat exchange is increased. Thus, also the efficiency of the heat exchanger may be significantly improved.
Moreover, it is possible that the width of the first side wall and the second side wall is approximately at least 10 times larger than the distance between the first side wall and the second side wall and/or that the first side wall and second side wall are connected respectively on both sides by a rounded connection wall.
The width of the first side wall and/or the second side wall may be equal and/or chosen within a range of about 10 mm to about 30 mm. Preferably, the width of the first side wall and/or the second side wall may be about 15 mm.
The distance between the first side wall and the second side wall may be chosen respectively, i.e. within a range of about 1 mm to about 3 mm. Preferably the distance may be about 1.5 mm.
Additionally, it is possible that the tubing element is at least partially tilted or at least partially tilted and sloped and at least partially helically wound and twisted so as to form at least a part of a conic spiral structure, whereby preferably the conic spiral structure has an overall cylindrical structure and that the helical structure is formed in a cylindrical shape.
In particular, the structure according to the present invention of heat exchangers allows a more efficient heat exchange and a more compact structure of heat exchangers.
The heat exchanger may be embodied as a heat exchanger.
It is possible that the fins are arranged between the covering wall and at least one of the outer surfaces of the first side wall and/or of the second side wall and that the covering wall and the outer surface are substantially parallel.
Furthermore, it is possible that the interleaved tubing elements are arranged one upon the other.
The first ends of adjacent tubing elements may be connected by a connecting means, whereby preferably the connecting means is a connector tubing element, which is for instance at least partially bent in a U-shape.
Additionally, the second ends of adjacent tubing elements may be connected by a connecting means, whereby preferably the connecting means comprises plurality of connector tubing elements and a central connector portion, whereby for instance the connector tubing elements and the central connector portion are arranged in star-shaped manner.
Moreover, it is possible that the tubing element has a plurality of fins on both of the outer surfaces of the first side wall and of the second side wall.
The fins may be monoblock fins.
Further, the fins may be perpendicularly arranged on the at least one of the outer surfaces of the first side wall and/or of the second side wall.
It is possible that the fins are inclined arranged on the at least one of the outer surfaces of the first side wall and/or of the second side wall, whereby exemplarily the angle between the fins and the outer surface is substantially perpendicular.
Additionally, the fins may merely extend along the whole width of at least one of the outer surfaces of the first side wall and/or of the second side wall and/or are curved.
Furthermore, it is possible that the fins are arranged along a curve extending along the whole width of at least one of the outer surfaces of the first side wall and/or of the second side wall and/or are curved, whereby between the fins being arranged along a curve is a pitch and/or gap.
It is possible that the fins are arranged in a plurality of rows, preferably substantially parallel rows and/or preferably along at least a part of the length of the tubing element.
Further, the tubing elements may comprise at least one microchannel, preferably several microchannels with a round or circular cross-section and/or several microchannels with an angular cross-section, exemplarily several microchannels with a triangular cross-section and/or several microchannels with quadrangular cross-section are provided.
Additionally, at least some of the microchannels may be arranged with an off-set to each other, whereby exemplarily all microchannels are arranged with an off-set to each other, whereby preferably the off-set causes chamfers and/or grooves within the first side wall and/or the second side wall.
Moreover, it is possible that the heat exchangers are condensers or evaporators or radiators or coolers.
Further, the present invention relates to a tubing element with air or liquid flow. Accordingly, a tubing element for a heat exchanger is provided comprising the tubing element features as arranged in a fraction of a loop of a spiral and have constant or varies slopes.
Further details and advantages of the present invention shall be described herein after with respect to the drawings.
A heat exchanger has multiple interlaced long tubes having cross-sections that are relatively wide and relatively thin. The tubes have inner spaces, relatively wide outer side surfaces and relatively narrow outer edge surfaces. The long tubes are adapted for passing a first heat exchange fluid into the first ends, through the tubes and out of the second ends. The interlaced tubes are tilted and formed into a spiral having a central longitudinal axis. Outer side surfaces of the interlaced tubes are spaced apart and are tilted with respect to the central axis. A second heat exchange fluid flows over the spaced outer side surfaces and through spaces formed between the spaced outer side surfaces of the tubes.
One spiral is formed as a cylinder around the longitudinal central axis.
Preferably the spiral is formed about and constantly recedes from or moves towards the longitudinal central axis. The spiral is formed in a conical shape, and the outer surfaces of the long multiple interlaced tubes extend through the conical shape.
The long tubes are twisted around longitudinal axes of the tubes. Angles or slopes of portions of the outer side surfaces of the tubes vary with respect to their varied positions along the longitudinal central axis of the conical shape. The outer side surfaces near the first smaller diameter end are at smaller acute angles to the central axis. The outer surfaces near the second larger diameter end are at larger acute angles with respect to the longitudinal central axis. Angles of the portions of the outer side surfaces nearer the smaller end of the conical shape are more axial than radial to the central axis. Angles of the portions of the outer side surfaces nearer the larger end of the conical shape are more radial than axial to the longitudinal central axis. The second heat transfer fluid flows inward through spaces between outer side surfaces of the tubes near the smaller end of the conical shape in a direction more axial than radial to the longitudinal central axis. The second heat transfer fluid flows inward through spaces between outer side surfaces near the larger end of the conical shape in a direction more radial than axial to the central axis.
A new method provides a heat exchanger with multiple spaced apart interlaced long tubes having cross-sections that are relatively wide and relatively thin. The tubes have inner spaces, relatively wide outer side surfaces and relatively narrow outer edge surfaces. Tilting the interlaced tubes and forming the interlaced tubes into a spiral forms a conical shape having a smaller first end and a larger second end. Outer side surfaces of the interlaced tubes are spaced apart and tilted with respect to the central axis. A first heat exchange fluid is passed into the first ends, through the tubes and out of the second ends. A second heat exchange fluid flows over the spaced outer side surfaces and in a direction of the central axis and outward through the second larger end.
The tilting further comprises tilting the outer side surfaces of the tubes with respect to the central axis. Twisting the long tubes about longitudinal axes of the tubes occurs before interlacing the tubes. The tilting and twisting vary the tilting of the outer side surfaces with respect to the central axis.
The tilting further includes tilting the outer side surfaces of the tube at increasing obtuse angles and decreasing acute angles from the larger second end to the smaller first end.
These and further and other objects and features of the invention are apparent in the disclosure, which includes the above and ongoing written specification, with the claims and the drawings.
There are relatively large parallel opposite side walls 40 and 50 with generally flat surfaces. The opposite parallel arranged side walls 40, 50 of the tubing element are joined with relatively small opposite edge walls 45, 55, which are rounded connection walls 45, 55. The tubing element 10 is partially tilted and also helically wound and/or twisted so as to form at least a part of a conic spiral structure.
The opening at ends 20 and 30 is varies in width and has the smallest opening distance near the connecting walls 45 and 55. The width of the opening between the first side wall 40 and the second side wall 50 is considerably smaller than the width of the side walls 40, 50.
The opposite side walls 40 and 50 of the tubing element 10 are oppositely disposed in general parallel planes in the helix within the tube 10 there may be one or more media flow channels, which are formed between the oppositely disposed side walls 40, 50. The media flow channels are angularly disposed with respect to the axis. A heat transfer vapor or fluid such as water or oil or any refrigerant (liquid or vapor refrigerant) fills the tubing element 10 and flows from one end 20 of the tubing element 10 to the other end 30. Preferably, the resulting helix of the tubing element 10 is formed in a conic spiral coil (see e.g.
The tubing element 10 is an elongated heat exchanger microchannel tube. The heat exchanger microchannel tube may be longitudinally curved around a central axis X into a conic spiral shape. This axis X is shown in
Tube 10 has, as already discussed above, parallel side walls 40, 50 and the connecting walls 45, 55 which appear as curved edges. The tubing element is twisted to a desirable tilt and formed into the continuous conic spiral shape. The tube may have a plurality of adjacent small parallel internal channels with circular, angular, rectangular, square or more preferably circular cross sections (see e.g.
The heat transfer vapor or fluid flows through the channels and transfers heat through the tube bodies to the tube walls 40, 50 and edges 45, 55, from where heat is transferred between the walls and the surrounding medium or vice versa, such as e.g. already shown in
Furthermore, as shown in detail B, there may be also several microchannels 60 with a circular cross-section.
Alternatively, as shown in detail C, there may be also several microchannels 70 with an angular cross-section, i.e. quadrangular cross-section.
As shown in detail D, there may be also several microchannels 80 to a triangular cross-section.
As shown in detail E, there may be several microchannels 90 with a quadrangular cross-section, which are arranged with an off-set to each other. In particular, as shown in detail F, all microchannels 90 are arranged with an off-set to each other forming a plurality of grooves 95 on the outer sides of the tubing element 10.
As in the first embodiment, there are relatively large parallel opposite side walls 160 and 170 with generally flat surfaces. The opposite parallel arranged side walls 160, 170 of the tubing element are joined with relatively small opposite edge walls 165, 175, which are rounded connection walls 165, 175. The tubing element 130 is partially tilted and also helically wound and/or twisted so as to form at least a part of a conic spiral structure.
The opening at ends 140 and 150 is varies in width and has the smallest opening distance near the connecting walls 165 and 175. The width of the opening between the first side wall 160 and the second side wall 170 is considerably smaller than the width of the side walls 160, 170.
While the invention has been described with reference to specific embodiments, modifications and variations of the invention may be constructed without departing from the scope of the invention, which is defined in the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/968,815 filed Mar. 21, 2014, which is hereby incorporated by reference in its entirety as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2813708 | Frey | Nov 1957 | A |
3077226 | Matheny | Feb 1963 | A |
3612004 | Cancilla | Oct 1971 | A |
4542786 | Anders | Sep 1985 | A |
7849915 | Kawakubo | Dec 2010 | B2 |
20080277095 | Zhai | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
2209325 | Sep 1973 | DE |
202008006379 | Jul 2008 | DE |
102009001720 | Sep 2010 | DE |
0640803 | Mar 1995 | EP |
1840494 | Oct 2007 | EP |
1390782 | Apr 1975 | GB |
2004218954 | Aug 2004 | JP |
WO 8001104 | May 1980 | WO |
WO 2011002711 | Jan 2011 | WO |
Number | Date | Country | |
---|---|---|---|
61968815 | Mar 2014 | US |