Not applicable.
1. Field of the Invention
The invention relates generally to the field of seismic exploration of subsurface rock formations. More particularly, the invention relates to seismic sensor configurations for relatively high frequency seismic exploration.
2. Background Art
International Patent Application Publication No. WO 2009/062286 filed by Guigné et al. describes a method for seismic imaging of subsurface rock formations. The described method disposing a plurality of seismic sensors in a selected pattern above an area of the Earth's subsurface to be evaluated. A seismic energy source is repeatedly actuated proximate the seismic sensors. Signals generated by the seismic sensors in response to detected seismic energy, indexed in time with respect to each actuation of the seismic energy source are recorded. The recorded signals are processed to generate an image corresponding to at least one point in the subsurface. The processing includes stacking recordings from each sensor for a plurality of actuations of the source and beam steering a response of the seismic sensors such that the at least one point is equivalent to a focal point of a response of the plurality of sensors.
The described method includes deployment of the seismic sensors in a plurality of lines extending radially from a center point to form an array. A longitudinal spacing between seismic sensors on each sensor cable, and a number of such seismic sensors on each cable may be determined by the frequency range over which a seismic analysis of the subsurface rock formations is to be performed. Such seismic frequencies, of course, must have been radiated by the seismic energy source. The longitudinal spacing between seismic sensors forming the receiver array is preferably selected such that for a particular seismic frequency the spacing should not be greater than about one-half the seismic energy wavelength. At each frequency an example cable length may be about 80 to 120 wavelengths of the longest wavelength seismic energy frequency. Thus, it is possible to use an array having sensor cables of overall length 120 wavelengths at the lowest frequency, but variable longitudinal spacing along each cable between the seismic sensors, so that the overall array will include 120 wavelength-long sensor arrays at higher frequencies with a half-wavelength spacing at such higher frequencies. The sound speed (seismic velocity) used to determine the wavelength is that within the rock formations near the water bottom (or the Earth's surface in land based surveys).
Using the technique described in the foregoing publication, however, requires custom made receiving element lines. Custom fabrication is considerably more expensive than commercially available seismic sensor arrays which have very well defined, equal spacing between individual seismic sensing elements but also bias for handling the conventional low frequencies typically seen in seismic mapping.
It is desirable to have a method for deploying seismic sensors usable with the techniques described in the foregoing publication that can use commercially available seismic sensor lines or streamers.
A seismic sensor array according to one aspect of the invention includes a plurality of seismic sensors disposed on a line. The line is arranged in a spiral. The seismic sensors are disposed at at least one of equal angular spacing between adjacent sensors and equal linear spacing between adjacent sensors. A recording system is in signal communication with each of the seismic sensors. The recording system includes means for beam steering a response of the sensors.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
The seismic sensors 10 each may be single component particle motion responsive sensors, multiple component particle motion sensors, pressure or pressure time gradient responsive sensors, or combinations of the foregoing types of sensors. The sensor array 12 is disposed in the form of a spiral as shown in
In another example array, shown at 14 in
In order to define the geometry of the spiral in the array it is necessary to determine or define a desired overall array diameter, the total number of seismic sensors in the array and the spacing between individual seismic sensors. From the foregoing information the value of a parameter a is derived. The parameter a is related to the diameter of the array, D, measured in wavelengths of the seismic energy to be detected, and the spacing between the seismic sensors, d, also measured in wavelengths of the seismic energy to be detected. “Spacing as that term is used with reference to the spiral is measured in a direction along the spiral curve. In examples having equal linear spacing between adjacent sensors the spacing may be referred to by the parameter d. In examples of a spiral having equal angular spacing between adjacent sensors, the spacing is that which results from using the same total length of spiral, the same number of sensors, and distributing the sensors angularly equally throughout the total angular extent of the sensor line used to generate the spiral.
In a hub and multi spoke seismic array such as the one described in the WO 2009/062286 publication referred to in the Background section herein, the same array diameter could be used and sensors placed along each of the N radial arm at a radial spacing of d resulting in the same overall diameter D and the same number of sensors as in a spiral according to the present invention. For practical deployment and manufacturing of sensor lines, the spiral arrays described herein may have advantages as contrasted with the hub and multi spoke array known in the art. The overall diameter D of the spiral may be in the range of 80 to 120 wavelengths of the lowest frequency seismic energy imparted into the subsurface by the source (S in
The length of a radius from the center of the spiral to any selected point on the spiral can be defined by the expression . The parameter α is dimensionless and is determined, as will be explained below, by minimizing a relationship shown which connects the total length L of the spiral, the overall diameter D of the spiral and the radius R0 from the spiral center to the first sensor location on the spiral. Such parameters are related to what is referred to as the “design frequency” of the array. The design frequency is the frequency to which the array will exhibit the greatest sensitivity to seismic energy.
The distance from the center of the spiral to the first sensor position on the spiral is determined by the expression , and as may be inferred from the previous statement, such distance may be selected based on the design frequency of the array. The spiral is specified by the following equation where the angle φ can extend to the amount required to extend the spiral to the desired diameter D for a given value of α:
r=exp(αφ)
x=r cos(φ)=exp(αφ) cos(φ)
y=r sin(φ)=exp(αφ) sin(φ)
The sensors (10 in
L=md
In order to perform beam steering, it is necessary to determine the coordinates of each sensor in the array. The coordinates of each of the sensors when deployed in a spiral having equal linear separation between adjacent sensors can be determined as follows. The length of an arc of the spiral between angles φi and φi+Δφ is equal to d where:
The angular separation between each of the sensors Δφi can be determined by the expression:
The angle at which each of the sensors is disposed is:
φi=φi-1+Δφi where i=(1, m) and φ1=φ, which determines how far from the center of the array that the first sensor is disposed.
Let R0=exp(αφ) represent the distance the first sensor is from the center.
The total length of the line of sensors in the spiral is determined by the expression:
The diameter of the spiral D is taken as the average of two orthogonal measures of the diameter:
Given the specified values of L, R0 and D, the value of a can be obtained by a minimization of the expression:
The physical size of the array remains as specified at F=1 where F is the ratio between the frequency at which the spacing of sensors along the spiral is a half wavelength of the frequency of operation (the frequency to which the array is most sensitive). A low frequency is indicated by F<1 and a high frequency is indicated by F>1. The beam patterns are the same regardless of the frequency provided that the spacing between seismic sensors is the same when measured in wavelengths of the seismic energy imparted into the subsurface. In the present example, the spacing between sensors is selected to be a half wavelength along the spiral at a particular frequency called the design frequency. If the seismic energy source emits energy at the design frequency, the ratio of the seismic energy frequency with respect to the design frequency is unity. If the seismic energy frequency changes, F changes, and the beam pattern changes. An important attribute of the spiral array is that the beam pattern changes with respect to F are small and are well known.
The foregoing may be better understood when explained in terms of a line array of sensors. When a straight line array of sensors is steered (e.g., using time delay for individual sensors) such array has a narrow beam width in a direction normal to its length if all sensor outputs are combined. This is called “broadside.” The broadside pattern has no directional preference in the orthogonal plane. If the outputs of the sensors have appropriate time delays applied, the beam can be steered to 90 degrees from the normal to length direction, so that in the limit the beam can point along the direction of the line. This is called “endfire”. The endfire beam pattern is much broader than the broadside beam pattern. If two line arrays are crossed, then the broadside beam will have directional preferences. In the limit, as many line arrays are crossed (at smaller and smaller angles between sensor line arrays), the broadside beam becomes conical with sidelobes. In the case of two crossed line arrays steered to endfire only one array actually becomes endfire and the other remains broadside. So now in the endfire direction the resultant beam for the two crossed lines is asymmetrical, having the narrowness of the broadside in one plane and the greater beam width of the endfire in the other. For the hub and spoke array described above steered to 90 degrees, the diameter of the array provides a narrow beam in one plane. In the other plane the beam is endfire and has somewhat greater vertical width. The spiral array has similar beam steering properties.
The spiral array is designed to operate over a range of frequencies. To explain the possible benefits of the spiral array, compared for example, to a filled square array of equally spaced sensors, the latter configuration would have a much larger number of sensors. The larger number of sensors would benefit the signal to noise ratio but would be relatively expensive. At the design frequency, where the grid spacing is a half wavelength, the beam pattern of the square array would consist of a main beam with well defined sidelobes which decrease with increasing angle off axis. This would persist as the main beam was steered. At frequencies higher than the design frequency extra sidelobes would appear, and as the beam is steered diffraction secondaries would appear. The diffraction secondaries are aliased versions of the main beam and are of the same strength.
In the spiral, the effective grid spacing is non uniform (except along the spiral itself) and the number of sensors is much smaller than the filled square. At the design frequency the main beam would be almost the same as the main beam of the filled square, but the sidelobes would be roughly constant at the level of the first sidelobe of the filled square. The foregoing sidelobe properties would persist as the main beam is steered. At frequencies higher than the design frequency, the sidelobes remain very similar but as the beam is steered no diffraction secondaries appear.
Response of the spiral arrays described above with reference to
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims
Not applicable.