Spiral toy track set

Information

  • Patent Grant
  • 9457284
  • Patent Number
    9,457,284
  • Date Filed
    Thursday, May 16, 2013
    11 years ago
  • Date Issued
    Tuesday, October 4, 2016
    8 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Bumgarner; Melba
    • Baldori; Joseph B
    Agents
    • Sheppard, Mullin, Richter & Hampton LLP
Abstract
A track set is disclosed herein. The track set includes a track portion configured for receiving at least one device configured to traverse within the track portion, and a rotatable track portion. The rotatable track portion includes a receiving member and a generally spiral portion. The rotatable track portion is selectively rotatable about an axis. The receiving member is positioned to selectively receive the at least one device from the track portion as the rotatable track portion rotates. Movement of the device within the spiral portion generally maintains rotation of the rotatable track portion about the axis.
Description
BACKGROUND

Various embodiments of the present invention are related to toys, and in particular, a track set on which toy vehicles may travel.


Toy vehicle track sets have been popular for many years and generally include one or more track sections arranged to form a path around which one or more toy vehicles can travel. Toy vehicles which may be used on such track sets may be either self-powered vehicles or may receive power from an external source.


Accordingly, it is desirable to provide toy track set with features that provide unique paths for the toy vehicles of the toy track to travel on.


SUMMARY OF THE INVENTION

In one embodiment, a track set is disclosed. The track set includes a track portion configured for receiving at least one device configured to traverse within the track portion, and a rotatable track portion. The rotatable track portion includes a receiving member and a generally spiral portion. The rotatable track portion is selectively rotatable about an axis. The receiving member is positioned to selectively receive the at least one device from the track portion as the rotatable track portion rotates. Movement of the device within the spiral portion generally maintains rotation of the rotatable track portion about the axis.


In another embodiment, a track set toy is disclosed. The track set includes a track portion configured for receiving at least one device configured to traverse within the track portion, a rotatable track portion, and a diverter member. The rotatable track portion includes a receiving member, a generally spiral portion, and an exit portion. The rotatable track portion is selectively rotatable about an axis. The receiving member is positioned to receive the device from the track portion. Movement of the device within the spiral portion generally maintains rotation of the rotatable track portion about the axis. The rotatable track portion terminates at the exit portion. The diverter track portion is positioned to receive the device from the exit portion of the rotatable track portion. The track portion is configured to allow the device to exit therefrom via the exit portion to another track portion.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, advantages and details appear, by way of example only, in the following description of embodiments, the description referring to the drawings in which:



FIG. 1 is a perspective view of one non-limiting exemplary embodiment of a track set according to the present invention;



FIGS. 2-5 are front views of one non-limiting exemplary embodiment of a track set according to the present invention illustrating rotational movement of a portion of the track set; and



FIGS. 6-8 illustrate a scoop transitioning a toy vehicle from a first track segment to a second track segment according to one non-limiting exemplary embodiment of the present invention.





DETAILED DESCRIPTION

Referring now to FIG. 1, a track set 10 in accordance with an exemplary embodiment of the present invention is illustrated. In the embodiment as shown, the track set 10 includes a plurality of track segments. The track segments may include, for example, a receiving track portion or track portion or first track portion 20, a rotatable track segment or rotatable track portion 22, a linear track segment or second track portion or second track segment 70, a diverter track set 24 including a plurality of segments, a curved bridge 28, a second diverter track segment 30, and a drawbridge track segment 32. Of course, any other suitable configuration having fewer track segments or additional track segments is considered to be within the scope of exemplary embodiments of the present invention, and the track set 10 is not limited to the specific configurations illustrated herein.


In the embodiments as shown in FIGS. 1-8, the track set 10 may be mounted to a generally planar surface 36 via a plurality of wall mounts 11. In some embodiments, the track set 10 is mounted to a wall. In one embodiment, the wall mounts may be those described in commonly owned U.S. patent Ser. No. 13/220,364 filed on Aug. 29, 2011, and U.S. Provisional Patent Application Ser. Nos. 61/377,743 and filed on Aug. 27, 2010 and 61/480,793 filed on Apr. 29, 2011, the contents each of which are incorporated herein by reference thereto in their entirety. It is to be understood that although a wall is discussed, the track set 10 may be mounted to other types of surfaces, as well. While the planar surface 36 is generally mounted to a vertical surface, the track set 10 may be mounted to a surface that is oriented in other configurations as well (e.g., a generally horizontal surface such as, for example, a floor). For example, the track set may include a stand that connects to the track set and supports the track set at a particular distance above the floor.


The receiving track portion 20 may include various track segments configured for receiving at least one moveable device (shown in FIG. 2) such as, for example, a toy vehicle 50 that is configured to traverse within the receiving track portion 20. One non-limiting example of such a toy vehicle 50 is commercially available from Mattel, Inc. and sold under the trademark HOT WHEELS. Of course, any other type of toy vehicle may be utilized as well. Also, although a toy car is discussed, it is understood that any other type of moveable device or object that is configured to traverse or travel within the track segments as illustrated may be used as well. For example, the object may be a toy figurine with wheels. The receiving track portion 20 is configured for receiving a queue of toy vehicles 50.


The rotatable track segment 22 is rotatable about an axis A-A (shown in FIG. 1). The axis A-A is generally perpendicular to the generally planar surface 36. In the embodiment as shown in FIGS. 1-2, the rotatable track segment 22 is rotatable about a shaft 52 that, in this instance, defines the axis A-A. Specifically, the rotatable track segment 22 is configured to receive an initial force (e.g., a relatively light push from a user) that is oriented in a counterclockwise direction. The initial force causes the rotatable track segment 22 to rotate or spin about the shaft 52. In addition, the rotatable track segment 22 may include a weight 53 or is balanced so that rotational movement of the rotatable track segment 22 continues in the direction of arrow 54 when a toy vehicle or toy vehicles 50 is/are travelling thereon or when a toy vehicle 50 is exiting and/or entering the rotatable track segment or about to enter the rotatable track segment 22 and no other toy vehicles 50 are on the rotatable track segment 22. In the exemplary embodiment as shown in FIGS. 1-2, the track segment 22 includes an arrow 54 (shown in FIG. 1). In this embodiment, the arrow points in a desired direction of rotation. The arrow 54 thus provides direction of where and how the initial force should be exerted.


The rotatable track segment 22 includes a receiving member 60, a generally spiral portion 62, and an exit portion 64. The receiving member 60 may include a scoop 61 that is configured to receive or scoop up one of the toy vehicles 50 from an end or end portion 63 of a feeding segment 66 (shown at least in FIG. 2 with a plurality of toy vehicles 50 placed thereon). The feeding segment 66 is coupled to the receiving track portion 20 such that as the rotatable track segment 22 rotates about the shaft 52 toy vehicles 50 can be queued up to be scooped into the receiving member 60 as the rotatable track segment 22 rotates about shaft 52. The generally spiral portion 62 is rotatably connected or rotatably secured to the shaft 52 by a plurality of connectors 58. As shown, the connectors are of differing lengths, where successive connectors about the shaft 52 are of increasing length from one end of the generally spiral portion 62 to another end of the generally spiral portion 62, until the longest connector is next to the shortest connector thereby defining the spiral configuration of the spiral portion 62 by its securement to the connectors 58 of varying lengths. Also as shown, the longest connector supports two sections of the spiral portion 62. The toy vehicles 50 traverse generally in the direction of arrow D1 as the spiral portion 62 rotates in the direction of arrow 54. That is, rotation of the rotatable track segment 22 about the shaft 52 in the counterclockwise direction causes the toy vehicle or toy vehicles 50 to move or traverse in generally in the direction of arrow D1 or travel clockwise on the track of spiral portion 62 as the spiral portion 62 rotates in a counterclockwise direction. Although the rotatable track segment 22 is rotating in the counterclockwise direction, it is to be understood that in other embodiments the rotatable track segment 22 may rotate in the clockwise direction, and the toy vehicles 50 may traverse within the spiral portion 62 in the counterclockwise direction as well.


In the exemplary embodiment shown in FIGS. 1-2, the toy vehicle or vehicles 50 may travel within the rotatable track segment 22 for about one and one-fourth revolutions of the rotatable track segment 22 before exiting the rotatable track segment 22 through the exit portion 64. Of course, any other configuration having the toy vehicle 50 travel within the rotatable track segment 22 for a greater or fewer number of revolutions is considered to be within the scope of exemplary embodiments of the present invention.



FIG. 6 illustrates a toy vehicle 50 after it has entered the end portion 63 of the feeding segment 66. The toy vehicle 50 rests against a positioning block 110 that locates the toy vehicle 50 in a position on the end portion 63 where the scoop 61 may engage the toy vehicle 50. As illustrated in FIG. 7 and FIG. 8, as the rotatable track segment 22 rotates about the shaft 52, the receiving member 60 approaches the end portion 63 of the feeding portion 66 of the receiving track portion 20, and scoop 61 scoops up one of the toy vehicles 50 located on the feeding portion 66. Once the scoop 61 passes the end portion 63, the position vacated by the previous toy vehicle 50 may be filled by the next toy vehicle 50 as it moves onto the end portion 63 and comes to rest against the positioning block 110. Thus, as long as there are available toy vehicles 50 located within the receiving track portion 20, each time the receiving member 60 approaches the feeding portion 66 or end portion 63 of the feeding portion 66 of the receiving track portion 20, the receiving member 60 scoops up one of the toy vehicles 50. As shown in the attached FIGS. the spiral portion 62, the receiving member 60 and the end 64 are offset from the feeding portion 66 so that the spiral portion 62, receiving member 60 and end 64 can rotate about axis A-A of shaft 52. However, the scoop 61 extends away from receiving member 60 so that it is aligned with the end portion or end 63 of the feeding portion 66 when the rotatable track segment 22 rotates about shaft 52 and receiving member 60 is adjacent to end portion 63. As illustrated, scoop 61 is configured to guide toy vehicles 50 located on end portion 63 into receiving member 60 as the spiral portion 62 and receiving member 60 rotate about axis A-A of shaft 52 and scoop 61 passes over end portion 63. Thereafter and as the spiral portion 62 rotates, the toy vehicles 50 travel from receiving member 60 onto the spiral track of the rotatable track segment 22 and ultimately out end 64.


A support member 65 is configured to support end portion 63 and also allow scoop 61 to pass over the end portion 63 of the feeding portion 66 as the rotatable track segment 22 rotates in the counter clockwise direction. As mentioned above, when scoop 61 passes over the end 63 of feeding portion 66, a toy vehicle 50 located on the end portion 63 is scooped or shifted laterally and/or downwardly from the feeding portion 66 onto the rotatable track segment 22 or the spiral portion 62 via receiving member 60. Once received onto the spiral portion 62, the weight of the toy vehicle(s) 50 within or on the rotatable track segment 22 exert a reactive centrifugal force upon the rotatable track segment 22 or a force that causes rotational movement of the rotatable track segment 22 in the direction of arrow 54, via gravity acting upon the toy vehicle 50 as the toy vehicle(s) 50 traverse(s) within or on the rotatable track segment 22. The force or forces are partially created by movement of the toy vehicle(s) 50 within or on the rotatable track segment 22, and this movement generally sustains or promotes rotation of the rotatable track segment 22. Therefore, rotation of the rotatable track segment 22 is generally self-sustaining as long as there are available toy vehicles 50 queened up on the end portion 63 of the feeding portion 66 such that they can be scooped into the receiving portion 60 of the rotatable track segment 22 as the scoop 61 travels over the end portion 63. In other words, for every rotation of scoop 61 about axis A-A, a new toy vehicle 50 is introduced or scooped into the receiving portion 60 of the rotatable track segment 22, so long as the toy vehicle 50 is located at end portion 63 as the scoop 61 travels over it. In addition and as illustrated, end portion 63 is lower than the opposite end 69 of the feeding portion 66 of the receiving track portion 20 so that the toy vehicles 50 will roll towards end portion 63 and be scooped into receiving portion 60 of the spiral portion 62 as it rotates about axis A-A.


In various embodiments, the rotatable track segment 22 may be configured to allow for the toy vehicle(s) 50 to generally sustain or promote rotation of the rotatable track segment 22 in a specific (e.g., clockwise or counterclockwise) direction. This may accomplished, as seen in the exemplary embodiment, by configuring the rotatable track segment 22 with an increasing radius from its axis of rotation. This feature is readily apparent from the connectors 58 of increasing length that support the rotatable track segment 22 about the shaft 52. The weight of the wheeled toy vehicle 50 imparts a centrifugal force on the rotatable track segment 22 via gravity. In particular, the generally spiral portion 62 of the rotatable track segment 22 begins at the receiving member 60 and ends at end 64, and winds or revolves about a center axis (e.g., at the axis A-A or shaft 52 as seen in FIG. 1) wherein the radius increases from receiving member 60 towards end 64. The generally spiral portion 62 increases in radius as the generally spiral portion 62 winds about the center axis (e.g., the axis A-A), thereby creating the generally spiral shape of the rotatable track segment 22. In the embodiment as shown, the generally spiral portion 62 winds or extends from receiving member 60 to end 64 in a clockwise direction about the axis A-A such that the radius of the track segment increases with respect to axis A-A while in operation it rotates in a counter clockwise direction, however it is to be understood that in various embodiments, the generally spiral portion 62 may wind in the counterclockwise direction and rotate in the clockwise direction as well.


As such and once the spiral portion 62 is imparted with an initial rotational movement, the spiral configuration of track segment 22 and the weight of the toy vehicle 50 causes the spiral portion 62 to continue to rotate in the same direction until the toy vehicle exits from end 64 of the track segment 22. As such, the spiral portion 62 may also be viewed as an elevator transferring a toy vehicle 50 vertically from the feeding segment 66 to the second track portion 70 located below the spiral portion 62. During this rotational movement of spiral portion 62 additional toy vehicles 50 may enter the track segment 22 via operation of the scoop 61 and receiving member 60 and in one embodiment multiple toy vehicles 50 may be received on the track segment 22 as it is rotating.


As mentioned above, the rotatable track segment 22 terminates at the exit portion 64. Referring specifically to FIG. 2, one of the toy vehicles 50 is shown ejected or rolling off the rotatable track segment 22 at the exit portion 64 in a direction that is indicated by the arrow D1, and is received by a linear segment 70 or a non-linear segment of the diverter track set 24. Specifically, one of the linear segments 70 of the diverter track set 24 is positioned relative to the rotatable track segment 22 to receive the toy vehicles 50 as the toy vehicles 50 are ejected or dropped from the rotatable track segment 22. The diverter track set 24 includes a plurality of linear segments 70, a diverter segment 72, and a generally U-shaped or curved segment 74. Of course, any other suitable configuration having fewer track segments or additional track segments is considered to be within the scope of exemplary embodiments of the present invention, and the diverter track set 24 is not limited to the specific configurations illustrated herein.


The toy vehicles 50 traverse within the linear segments 70 of the diverter track set 24 in the general direction D1. In the exemplary embodiment as shown in FIGS. 1-2, the diverter 72 directs the toy vehicles 50 towards the curved segment 74 of the diverter track set 24, however, it is to be understood that in alternative embodiments, the diverter segment 72 may be used to direct the toy vehicles 50 to various other track segments. The curved segment 74 receives the toy vehicles 50 and redirects the toy vehicles 50 in a direction D2. The direction D2 is oriented approximately 220° degrees from the linear segments 70, however it is understood that the curved segment 74 may be oriented with respect to the linear segments 70 in any other configuration as well. The toy vehicles 50 traverse within the curved segment 74 of the diverter track set 24 and into the curved bridge 28.


The curved bridge 28 is movably mounted to the track set 10 so that it can receive toy vehicles 50 from an end portion 76 of the curved segment 74 of the diverter track set 24. The curved bridge 28 is configured for selectively pivoting or swinging in the direction of arrows 75 by movement of the toy vehicles 50 about the curved bridge 28 as they are received from the curved segment 74. The curved bridge 28 includes a generally curved or arcuate profile having a plurality of up and down features for the toy vehicles 50 to traverse within. In the illustrated embodiment, the curved bridge 28 has a curved profile to create a trough T, surrounded by raised portions 77. Of course, any other configuration having multiple troughs is contemplated to be within the scope of exemplary embodiments of the present invention. Also, although a trough T is illustrated, the curved bridge 28 may also be curved in an upwards direction as well, to create a raised portion.


Referring now to FIGS. 3-4, the toy vehicles 50 may traverse towards an end portion 80 of the curved bridge 28 and into the second diverter track segment 30 (which is illustrated in FIG. 3). Alternatively, the toy vehicles 50 may traverse or roll back and forth within the trough T of the curved bridge 28 (which is shown in FIG. 4). In the embodiment as shown in FIG. 3, the curved bridge 28 is positioned such that a first distance or gap G1 is created between the curved bridge 28 and the second diverter track segment 30. The gap G1 is relatively short, thereby allowing the toy vehicles 50 to traverse downwardly into the second diverter track segment 30. In the embodiment as shown in FIG. 4, the curved bridge 28 is positioned such that a second distance or gap G2 exists between the curved bridge 28 and the second diverter track segment 30, where first gap G1 is less than the second gap G2.


Depending on the specific motion dynamics, the curved bridge 28 may swing such that the end portion 80 is positioned adjacent to the second diverter track segment 30 to receive one of the toy vehicles 50 (shown in FIG. 3). In one approach, one of the toy vehicles 50 (e.g., illustrated as R1 in FIG. 3) may impact or collide with another one of the toy vehicles 50 (e.g., illustrated as R2 in FIG. 3), thereby causing the toy vehicle R2 to traverse onto the second diverter track segment 30. Alternatively, instead of colliding the toy vehicle R1 with the toy vehicle R2, movement of the toy vehicle R2 along the curved bridge 28 may cause the curved bridge 28 to pivot about the end portion 76 of the diverter track set 24 as well, where swinging of the curved bridge 28 about the end portion 76 may cause the toy vehicle R2 to travel into the second diverter track segment 30.


In a basic embodiment, the curved bridge 28 is connected to a member 90. The member 90 is attached to the remainder of the system via a pivot point at one end of the member 90. Thus, the curved bridge 28 and the member 90 rotate about the fixed pivot point. In some embodiments, the curved bridge 28 is attached to the member 90 at a point that is offset from the center of the length of the curved bridge 28. For example, the curved bridge 28 may be attached to the member 90 at a point offset from the bottom of the trough T. The offset adds complexity to the rotation of the curved bridge 28 about the fixed pivot point. Additional complexity to the motion occurs with the introduction of motion from a moving toy vehicle 50 traversing the curved bridge 28.


In an intermediate embodiment, the member 90 extends beyond the curved bridge. Additional weight may be attached to the member 90. In some embodiments, the member 90 has one or more appendages upon which the additional weight may be attached. Thus, the additional weight may be attached offset from a main line of the member 90. For example, an end member 92 is illustrated as attached to an appendage and offset from the main line of the member 90.


In a complex embodiment, the additional weight is in the form of a free-swinging pendulum 82. As illustrated, the swinging pendulum 82 includes a plurality of baskets 84 that are configured for receiving a mass, such as one or more of the toy vehicles 50. The specific motion of the curved bridge 28 (e.g., the swinging of the curved bridge 28) may depend on at least the movement of the toy vehicles 50 along the curved bridge 28, the number of toy vehicles 50 presently located on the curved bridge 28, the free-swinging pendulum 82 that is attached to the curved bridge 28, and their respective points of attachment/pivot with respect to each other. The presence of a mass in either or both the baskets 84 also affects the dynamics of the curved bridge 28.


The second diverter track segment 30 may be attached to the drawbridge track segment 32, and directs the toy vehicles 50 towards the drawbridge track segment 32. The drawbridge track segment 32 includes a normally raised bridge portion R. However, turning now to FIG. 5, as one of the toy vehicles 50 travels onto the drawbridge track segment 32 and through the normally raised bridge portion R, the weight of the toy vehicle 50 exerted upon the normally raised bridge portion actuates the normally raised bridge portion into a lowered position.


Turning back to FIGS. 2-3, a second pendulum 94 is attached to the drawbridge track segment 32. The second pendulum 94 includes a plurality of members 98 that are pivotably connected to one another, and a restoring weight 100. The restoring weight 100 is a free-swinging weight that causes the members 98 to pivot relative to one another. The restoring weight 100 is raised when the drawbridge track segment 32 is lowered (shown in FIG. 5), and is lowered when the drawbridge track segment 32 is raised. The swinging of the restoring weight 100 is used to raise the drawbridge track segment 32 from the lowered position (shown in FIG. 5) back to the normally raised configuration as shown in FIG. 3-4.


While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the present application.

Claims
  • 1. A track set, comprising: a first track portion configured for receiving at least one toy vehicle, the at least one toy vehicle configured to traverse along the first track portion in a first direction; anda rotatable track portion that includes a receiving member and a generally spiral portion, the rotatable track portion selectively rotatable about an axis generally perpendicular to the first direction, wherein the receiving member is selectively positioned to receive the at least one toy vehicle from an end of a feeding portion from the first track portion as the rotatable track portion rotates about the axis, wherein the receiving member further comprises a scoop configured to scoop the at least one toy vehicle from the end of the feeding portion and shift the at least one toy vehicle laterally into the receiving member as the rotatable track portion rotates about the axis, wherein the scoop is aligned with and passes over the end of the feeding portion as the rotatable track rotates about the axis, and wherein movement of the at least one toy vehicle within the spiral portion imparts a force on the rotatable track portion in order to assist in the rotation of the rotatable track portion about the axis.
  • 2. The track set of claim 1, wherein the rotatable track portion includes an exit portion, wherein the rotatable track portion terminates at the exit portion, and wherein the rotatable track portion is configured to allow the at least one toy vehicle to exit therefrom via the exit portion.
  • 3. The track set of claim 1, wherein the rotatable track portion transfers the at least one toy vehicle from the feeding portion to a second track portion separated from and located below the rotatable track portion, the second track portion being aligned with the rotatable track portion and located below the rotatable track portion wherein at least a portion of the second track portion extends generally in the first direction.
  • 4. The track set of claim 3, wherein the generally spiral portion of the rotatable track portion extends from the receiving member and terminates at an end portion, wherein a radius of the generally spiral portion from the axis increases in a direction from the receiving member to the end portion.
  • 5. The track set of claim 4, wherein the track set is mounted to a vertical wall by a plurality of wall mounts.
  • 6. The track set of claim 1, wherein the generally spiral portion of the rotatable track portion extends from the receiving member and terminates at an end portion, wherein a radius of the generally spiral portion from the axis increases in a direction from the receiving member to the end portion.
  • 7. A track set comprising: a first track portion configured for receiving at least one toy vehicle, the at least one toy vehicle configured to traverse along the first track portion in a first direction; anda rotatable track portion that includes a receiving member, a generally spiral portion, and an exit portion, the rotatable track portion selectively rotatable about an axis generally perpendicular to the first direction, wherein the receiving member is selectively positioned to receive the at least one toy vehicle from an end of the first track portion, wherein the first track portion is offset from the rotatable track portion and wherein the receiving member comprises a scoop configured to scoop the at least one toy vehicle and shift the at least one toy vehicle laterally from the first track portion to the rotatable track portion as the rotatable track portion rotates about the axis, and wherein movement of the at least one toy vehicle within the spiral portion imparts a force on the rotatable track portion in order to assist in the rotation of the rotatable track portion about the axis, and the rotatable track portion terminates at the exit portion; anda second track portion that is positioned to receive the at least one toy vehicle from the exit portion of the rotatable track portion, the rotatable track portion configured to allow the at least one toy vehicle to exit therefrom via the exit portion to the second track portion.
  • 8. The track set of claim 7, wherein the second track portion is aligned with and located below the generally spiral portion and wherein at least a portion of the second track portion extends generally in the first direction.
  • 9. The track set of claim 8, wherein the track set further comprises a generally curved bridge that is moveably mounted to the track set and receives the at least one toy vehicle from the second track portion.
  • 10. The track set of claim 7, wherein the generally spiral portion is rotatably secured to a shaft via a plurality of connectors each having different lengths.
  • 11. The track set of claim 10, wherein the plurality of connectors are of increasing length from one end of the generally spiral portion to another end of the generally spiral portion.
  • 12. The track set of claim 7, wherein the rotatable track portion is offset from the first track portion and the generally spiral portion of the rotatable track portion extends from the receiving member and terminates at the exit portion, wherein a radius of the generally spiral portion from the axis increases in a direction from the receiving member to the exit portion and wherein the generally spiral portion is rotatably secured to a shaft via a plurality of connectors each having differing lengths, wherein the plurality of connectors are of increasing length from one end of the generally spiral portion to another end of the generally spiral portion until a longest connector is next to a shortest connector of the plurality of connectors and wherein the longest connector supports two sections of the generally spiral portion.
  • 13. The track set of claim 7, wherein the track set is mounted to a vertical wall by a plurality of wall mounts.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/649,564, filed May 21, 2012, the entire contents of which are incorporated herein by reference thereto.

US Referenced Citations (263)
Number Name Date Kind
469948 Reed Mar 1892 A
806930 Smith Dec 1905 A
812595 Roberts Feb 1906 A
831907 Townsend Sep 1906 A
889169 Brothen Jun 1908 A
1113945 Bain Oct 1914 A
1116577 Dugger Nov 1914 A
1209127 Corey Dec 1916 A
1244457 Bain Oct 1917 A
1244702 Christ Oct 1917 A
1247226 Cole Nov 1917 A
1252616 Reif Jan 1918 A
1261691 Bunkley Apr 1918 A
1279271 Cole Sep 1918 A
1284477 Seils Nov 1918 A
1287450 Sabina et al. Dec 1918 A
1287608 Austin Dec 1918 A
1295504 Howard et al. Feb 1919 A
1301552 Gaines Apr 1919 A
1314238 Bain Aug 1919 A
1315108 Gaines Sep 1919 A
1317184 Voss Sep 1919 A
RE14902 Gaines Jun 1920 E
1347968 O'Doie Jul 1920 A
1351981 Zipf Sep 1920 A
1355636 Bain Oct 1920 A
1361449 Danner Dec 1920 A
1392727 Welsh Oct 1921 A
1454173 Keiner May 1923 A
1472783 Bauer Nov 1923 A
1478350 Okel Dec 1923 A
RE15900 Hetzner Aug 1924 E
1523244 Bain Jan 1925 A
1527006 O'Reilly Feb 1925 A
1546377 Gunderman Jul 1925 A
1560181 Marx Nov 1925 A
1561633 Bain Nov 1925 A
1568492 Zabel Jan 1926 A
1599699 Zabel Sep 1926 A
1599982 Bauer Sep 1926 A
1617846 Hawk Feb 1927 A
RE16791 Hawk Nov 1927 E
1666417 Harris Apr 1928 A
1696532 Enloe Dec 1928 A
RE17312 Beck Jun 1929 E
1715891 Beck Jun 1929 A
1724447 Abbott et al. Aug 1929 A
1725536 Marx Aug 1929 A
1739719 Gunderman Dec 1929 A
1748184 Nichols Feb 1930 A
1758061 Rentz et al. May 1930 A
1870586 Platakis Aug 1932 A
1872204 Wily Aug 1932 A
2128863 Turrian Aug 1938 A
2211220 Verplanck Aug 1940 A
2249728 Cross Jul 1941 A
2336773 Black et al. Dec 1943 A
2391529 Walker Dec 1945 A
2392722 Burlin Jan 1946 A
2400013 Lowell et al. May 1946 A
2400410 Hatcher May 1946 A
2419990 Dishmaker May 1947 A
2434571 Long Jan 1948 A
2531564 Garbe Nov 1950 A
2616699 Franks Nov 1952 A
2634128 Reed Apr 1953 A
2655116 Gowland Oct 1953 A
2672709 Ernst Mar 1954 A
2756687 Fields Jul 1956 A
2785504 Kooistra, Sr. Mar 1957 A
2838159 Siegfried Jun 1958 A
2853301 Glass Sep 1958 A
2998673 Rhodes Sep 1961 A
2999689 Litwinczuk Sep 1961 A
3251155 Bjork May 1966 A
3298692 Glass et al. Jan 1967 A
3300891 Glass et al. Jan 1967 A
3314169 Wold Apr 1967 A
3343793 Waser Sep 1967 A
3401484 Anslover Sep 1968 A
3542366 Schocker Nov 1970 A
3548534 Beny et al. Dec 1970 A
3570171 Shook Mar 1971 A
3572713 Krause Mar 1971 A
3600849 Faller Aug 1971 A
3621602 Barcus et al. Nov 1971 A
3633308 Yang Jan 1972 A
3666264 Bartlett May 1972 A
3703989 Tomiyama Nov 1972 A
3708116 Woodward Jan 1973 A
3712538 Starr et al. Jan 1973 A
3726476 Porter et al. Apr 1973 A
3734404 Baynes et al. May 1973 A
3735923 Brigham et al. May 1973 A
3795983 Gallagher et al. Mar 1974 A
3803756 Strongin Apr 1974 A
3818628 Ensmann et al. Jun 1974 A
3860238 Kojima Jan 1975 A
3908303 McKay et al. Sep 1975 A
3986296 Hamano Oct 1976 A
4037355 Street Jul 1977 A
4055913 Sindelar Nov 1977 A
4068402 Tanaka Jan 1978 A
4091561 Kimura May 1978 A
4094089 Sano Jun 1978 A
4128964 Ogasawara Dec 1978 A
4140276 Halford Feb 1979 A
4146991 Sano Apr 1979 A
4159593 Miller Jul 1979 A
4161279 Halford Jul 1979 A
4185409 Cheng Jan 1980 A
4195776 Lehmann Apr 1980 A
4203247 Moe et al. May 1980 A
4219198 Meyer et al. Aug 1980 A
4223834 Fechter Sep 1980 A
4241534 Larsson et al. Dec 1980 A
4249733 Eddins et al. Feb 1981 A
4254576 Matsumoto et al. Mar 1981 A
4267661 Hanson May 1981 A
4291488 Orenstein Sep 1981 A
4301613 Kooistra, Sr. Nov 1981 A
4312149 Iwao Jan 1982 A
4357778 Matsumoto et al. Nov 1982 A
4373693 Greenberger Feb 1983 A
4386777 Prehodka Jun 1983 A
4394961 Muller Jul 1983 A
4426797 Burkemper et al. Jan 1984 A
4468031 Barlow et al. Aug 1984 A
4475303 Ribas et al. Oct 1984 A
4496100 Schwager et al. Jan 1985 A
4513966 Mucaro et al. Apr 1985 A
4519789 Halford et al. May 1985 A
4557064 Thompson Dec 1985 A
4558867 Hippely Dec 1985 A
4564197 Lambert et al. Jan 1986 A
4575350 Hippely et al. Mar 1986 A
RE32106 Lemelson Apr 1986 E
4585166 Stephens Apr 1986 A
4609363 Udagawa Sep 1986 A
4659320 Rich et al. Apr 1987 A
4673308 Reilly Jun 1987 A
4678449 Udagawa Jul 1987 A
4708685 Udagawa Nov 1987 A
4715843 Ostendorff et al. Dec 1987 A
4734076 Goldstein et al. Mar 1988 A
4795394 Thompson Jan 1989 A
4874342 Klitsner Oct 1989 A
4909464 Levine et al. Mar 1990 A
4928955 Chuan May 1990 A
4932917 Klitsner Jun 1990 A
4951872 Sheffield Aug 1990 A
4961716 Hippely et al. Oct 1990 A
5022884 Hippely et al. Jun 1991 A
5075515 Yoneda et al. Dec 1991 A
5078642 Glessner Jan 1992 A
5102133 Chilton et al. Apr 1992 A
5107601 Semchuck Apr 1992 A
5161104 Fox et al. Nov 1992 A
5174569 Ngai Dec 1992 A
5254030 Ostendorff et al. Oct 1993 A
5299969 Zaruba Apr 1994 A
5312285 Rieber et al. May 1994 A
5342048 Jones et al. Aug 1994 A
5344143 Yule Sep 1994 A
5370571 Bosch Dec 1994 A
5392987 Ropers et al. Feb 1995 A
5419066 Harnois et al. May 1995 A
5473833 Ostrovsky Dec 1995 A
5480115 Haltof Jan 1996 A
5542668 Casale et al. Aug 1996 A
5586923 Hippely et al. Dec 1996 A
5735724 Udagawa Apr 1998 A
5767655 Ostendorff et al. Jun 1998 A
5785573 Rothbarth et al. Jul 1998 A
5803782 Selton Sep 1998 A
5846018 Frobosilo et al. Dec 1998 A
5855501 Kato et al. Jan 1999 A
5899011 Brinkman May 1999 A
5899789 Rehkemper et al. May 1999 A
5967052 Prokopf Oct 1999 A
6000992 Lambert Dec 1999 A
6026603 Kump et al. Feb 2000 A
6056620 Tobin May 2000 A
6170754 Halford Jan 2001 B1
6241573 Ostendorff et al. Jun 2001 B1
6358112 Lambert et al. Mar 2002 B1
6409132 Heisler et al. Jun 2002 B2
6439955 Feketo Aug 2002 B1
6478654 Rehkemper et al. Nov 2002 B1
6508179 Annis et al. Jan 2003 B2
6640453 Eisenmenger Nov 2003 B2
6647893 Fugitt et al. Nov 2003 B1
6676480 Sheltman Jan 2004 B2
6766585 Thomas Jul 2004 B2
6783419 Paukert et al. Aug 2004 B1
6862997 Bussink Mar 2005 B2
6951307 Lin Oct 2005 B2
6951497 Ngan Oct 2005 B1
6951498 Rudell Oct 2005 B2
6953377 Quercetti Oct 2005 B2
D511961 Jordan Nov 2005 S
6976316 Patterson Dec 2005 B1
7066783 Fischer Jun 2006 B2
7325348 Mueller et al. Feb 2008 B2
7353758 Murray Apr 2008 B2
7373731 Nyberg May 2008 B2
7517272 Bedford et al. Apr 2009 B2
7527156 Wisnoski et al. May 2009 B2
7549906 Bedford et al. Jun 2009 B2
7600757 Matilla et al. Oct 2009 B1
7600859 Huang et al. Oct 2009 B2
7614931 Nuttall Nov 2009 B2
7618302 Collins et al. Nov 2009 B2
7628673 Bedford et al. Dec 2009 B2
7651398 Ostendorff et al. Jan 2010 B2
7690964 Nuttall et al. Apr 2010 B2
7708317 Leblanc May 2010 B2
7766720 Ostendorff Aug 2010 B2
7770811 Belding Aug 2010 B2
7857679 O'Connor et al. Dec 2010 B2
8162716 Nuttall Apr 2012 B2
8430712 O'Connor et al. Apr 2013 B2
8608527 O'Connor et al. Dec 2013 B2
8690462 Shaw et al. Apr 2014 B2
8690632 O'Connor et al. Apr 2014 B2
8747180 O'Connor et al. Jun 2014 B2
8814628 O'Connor et al. Aug 2014 B2
20030220044 Andrews et al. Nov 2003 A1
20030224697 Sheltman et al. Dec 2003 A1
20040078991 Thomas Apr 2004 A1
20050287915 Sheltman et al. Dec 2005 A1
20050287919 Sheltman et al. Dec 2005 A1
20060027779 McGuire Feb 2006 A1
20060277779 Bauer Dec 2006 A1
20060286896 Bedford et al. Dec 2006 A1
20060286897 Bedford et al. Dec 2006 A1
20070012636 Wisnoski et al. Jan 2007 A1
20070049160 Matthes et al. Mar 2007 A1
20070128969 Shrock et al. Jun 2007 A1
20070209543 Beaulieu et al. Sep 2007 A1
20080064295 Abrams Mar 2008 A1
20080066560 Yu et al. Mar 2008 A1
20080070474 Nuttall Mar 2008 A1
20080268743 O'Connor et al. Oct 2008 A1
20090075558 Ostendorff Mar 2009 A1
20100056015 Nuttall Mar 2010 A1
20100112896 Chang et al. May 2010 A1
20100184353 Jobe Jul 2010 A1
20100199598 Townsend et al. Aug 2010 A1
20100273394 O'Connor et al. Oct 2010 A1
20110086574 Nuttall et al. Apr 2011 A1
20110124265 O'Connor et al. May 2011 A1
20110269372 Nuttall Nov 2011 A1
20120052766 Payne Mar 2012 A1
20120052767 Martino et al. Mar 2012 A1
20120061484 Payne et al. Mar 2012 A1
20120062766 Park Mar 2012 A1
20120115393 Moh et al. May 2012 A1
20120164914 O'Connor et al. Jun 2012 A1
20120276808 Nuttall et al. Nov 2012 A1
20120322342 De La Torre Dec 2012 A1
20130288568 Schmid et al. Oct 2013 A1
20140070015 Matthes et al. Mar 2014 A1
Foreign Referenced Citations (13)
Number Date Country
201067632 Jun 2008 CN
101687116 Mar 2010 CN
440375 Feb 1927 DE
575170 Apr 1933 DE
4403361 Aug 1995 DE
2043469 Oct 1980 GB
07-328241 Dec 1995 JP
88-04191 Jun 1988 WO
2011137433 Mar 2011 WO
2012027737 Jan 2012 WO
2012027737 Mar 2012 WO
2012027753 Mar 2012 WO
2012027753 Mar 2012 WO
Non-Patent Literature Citations (9)
Entry
European Search Report dated Nov. 13, 2013 for Application No. 13168331.0.
European Search Report dated Nov. 5, 2013 for Application No. 13184129.8.
Partial European Search Report for Application No. 13187427.3-1658; Dated: Feb. 5, 2014.
International Search Report dated Apr. 9, 2012 for International Application No. PCT/US2011/049587.
Written Opinion dated Apr. 9, 2012 for International Application No. PCT/US2011/049587.
English Translation of Abstract CN201067632.
English Translation of Abstract CN101687116.
English Translation of Chinese Office Action for Application No. 2013101901814 dated Feb. 3, 2015.
Chinese Office Action for Application No. 2013101901814 dated Feb. 3, 2015.
Related Publications (1)
Number Date Country
20130309937 A1 Nov 2013 US
Provisional Applications (1)
Number Date Country
61649564 May 2012 US