The foregoing and other features and advantages of the present invention should be more fully understood from the accompanying detailed description of illustrative embodiments taken in conjunction with the following Figures in which like elements are numbered alike in the several Figures:
It should be appreciated that the present invention is described herein in terms for use in combination with a molded thermoplastic end cap 100, such as that shown in
Referring to
Additionally, the side upright portions 206 are disposed inside of the end cap cavity to be located adjacent the lower openings 106 in large buttress 114 and large buttress 118. The side upright portions 206 may be configured to engage interior features of the end cap 100 and resist any longitudinal motion of the splash plate 200 in or out of the end cap 100 along the x-axis (as shown in
Additionally, the baffle portion 208, which may include a plurality of integrated perforations 214, extends perpendicularly upright along the edge of the base panel 204 such that the baffle portion 208 nominally runs vertically and parallel to the plane of the end flange 112 of the end cap 100, wherein the baffle portion 208 is inset from the plane of the end of end cap 100. The opposing ends of the baffle portion 208 may be configured to engage recesses within the interior portion of the end flange 112 of the end cap 100. This allows the baffle portion 208 to remain upright against the force of water flowing from the cavity of the end cap 100 toward the attached leaching chamber. Moreover, the engagement of the baffle portion 208 with the opposing sides of the end cap 100 helps to restrain the baffle portion 208 and the whole splash plate 200 from moving sideways along the y-axis (as shown in
It should be appreciated that the tab portion 210 may extend outwardly more than shown to at least partially underlie the curved outer edge of the base flange portion 110 to keep the edge of splash plate 200 from lifting. Optionally, an indicator tab 216, shown in phantom in
Referring to
In an alternate embodiment, the baffle portion 208 may be solid (i.e. lack integrated perforations 214) and as such, water deposited onto the base panel 204 may flow around the edges of the baffle portion 208, or it may accumulate and flow over the top edge of the baffle portion 208. In both instances, the baffle portion 208 may inhibit the lengthwise flow of water. Thus, it should be appreciated that any accumulation of water on the base panel 204 further serves to mitigate erosion of the soil, by providing a water cushion that absorbs the energy of the dropping water. Furthermore, in
Referring to
In accordance with the present invention, the baffle portion 208, 308 should sufficient height to impede the flow of water which may cause erosion, but not so high that it creates a dam having a resultant water fall affect which itself may cause erosion of the soil downstream and/or under the splash plate. For example, one such embodiment might include a baffle 208, 308 that is between about 0.5 inches high and about 5 inches high. Furthermore, while the baffle portion 208, 308 is shown herein as being a vertical portion, the baffle portion 208, 308 may be sloped or may be non-planar. For example, the end of base panel 204, 304 and the baffle portion 208, 308 may run along a zig-zag path from one side of the chamber to the other and/or the baffle portion 208, 308 may be corrugated.
The holes 214, 314 may have various sizes, shapes and patterns that differ from the holes 214, 314 shown in splash plate 100, 200, the holes 214, 314 should be sufficiently small and spaced apart to avoid soil erosion and to achieve the purposes of the invention. One advantage of the holes is that they may enable metering of the water flow when the flow is moderate, rather than forcing all of the flow to run over the top of the baffle portion 208, 308. According to the soil type it may be acceptable to have even greater open area than suggested by the pictures here, to the point that the base panel 204, 304 may be screen or grid like. Furthermore, it is contemplated that the holes 214, 314 may also be located strategically within the splash plate 200, 300 to direct the water to desired flow paths.
Still other embodiments that are considered within the scope of the invention might include a splash plate 200, 300 having side upright portions 206, 306 having different shapes and sizes or a splash plate 200, 300 having no side upright portions 206, 306 at all. One embodiment would be a splash plate 200, 300 configured to interact with the end cap 100 to prevent movement within the end cap cavity. For example, the splash plate 200, 300 may include laterally extending members, such as arms or pins, configured to interact with the end cap 100. Another example would be a splash plate 200, 300 with a base panel 204, 304 sized such that a portion of the base panel 204, 304 underlies the base flange 110. The splash plate 200, 300 may also be fastened to the end cap 100 via a fastening device, such as a clip, tab, screw, pin, snap, Velcro and/or adhesive. Another embodiment may be a splash plate 200, 300 having a base panel 204, 304 and/or baffle portion 208, 308 configured to interact with the soil below/around the splash plate 200, 300, such as by protrusions that dig into the soil to prevent movement.
Another embodiment may include side upright portions 206, 306 that don't have circular cutouts 212, 312, but rather have a top portion which is square or some other shape. This would be especially appropriate for end caps 100 that only accommodate a pipe entering along the x-axis. In another embodiment, the side upright portions 206, 306 may have a width or x-axis dimension that is smaller than the x-axis dimension of the base panel 204, 304. In still another example, the side upright portions 206, 306 may comprise one or more foldable portions, such as two spaced apart segments.
In still yet another embodiment, the side upright portions 206, 306 may be configured as separate pieces as opposed to integral pieces. For instance, the side upright portions 206, 306 may be L-shaped pieces which have a base that lies in the plane of the base panel 204, 304 to which they may be mechanically associated. In still yet another embodiment, side upright portions 206, 306 may be positionably adjustable in the x-axis, y-axis and/or z-axis direction and/or sizably adjustable in the x-axis, y-axis and/or z-axis direction. In still yet another embodiment, side upright portions 206, 306 may be curved or otherwise shaped to interact with the end cap 100.
Additionally, it is contemplated that splash plate 200, 300 may be made by various methods, including injection molding. For example, in one approach splash plate 200, 300 may be made from a flat sheet (see
Furthermore, the splash plate 200, 300 (and any portion thereof) may be adjustable in the x-axis, y-axis and/or z-axis. For example, the base panel 204, 304 may include a plurality of plates that slidably adjust in the x-axis direction to make the base panel 204, 304 longer or shorter and/or in the y-axis direction to make the base panel 204, 304 wider or thinner. Moreover the base panel 204, 304 may be adjustable in the z-axis direction via extendable legs to increase the height of the base panel 204, 304 such that base panel 204, 304 lies in a plane above the plane of the base flange 110. Also, the baffle portion 208, 308 may include a plurality of plates that slidably adjust in the y-axis direction to make the baffle portion 208, 308 wider or thinner and/or in the z-axis direction to make the baffle portion 208, 308 taller or shorter. Similarly, the side upright portions 206, 306 may include a plurality of plates that slidably adjust in the x-axis direction to make the side upright portions 206, 306 wider or thinner and/or in the z-axis direction to make the side upright portions 206, 306 taller or shorter.
It should be appreciated that end caps having other shapes than that described herein may be used with the present invention. Additionally, the present invention may be used with various types of chambers, such as those which have integrally closed ends, i.e., when the chamber has an end wall, such as that shown in U.S. Pat. No. 5,087,151 to DiTuillo. It should be further appreciated that only certain embodiments of the invention have been illustrated and that there may be other variations within the spirit and scope of the invention. For example, a splash plate 200, 300 may omit baffle portion 208, 308 and may only have side upright portions 206, 306 which lock into place so that they provide the means for resisting both lengthwise x-axis and sideways y-axis motion, when installed.
While the invention has been described with reference to an exemplary embodiment, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, unless specifically stated any use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/799,593 filed May 10, 2006 entitled “Full Coverage Perforated Splash Plate for Leaching Chamber”, the contents of which are incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60799593 | May 2006 | US |