By means of
Distinction is made between hose-end A and hose-end B shown in
In the spliced high-pressure hose according to the invention liner 1 is made by splicing the liners 1A and 1B of the two hoses for instance by welding, adhesive bond, or vulcanization. The load-distributing rubberized textiles 2A, 2B are joined at the place of splicing by overlapping rubberized textile 8, reinforcing plies 11A, 11B, 12A, and 12B above the rubberized textiles are embedded in resin 7. One or more reinforcing plies of the hose-ends A and B are arranged overlapping each other. Reinforcing plies are surrounded by a rigid outer sleeve 4 which is bonded to reinforcing plies by resin 7. Resin 7 gets into the hose structure through an inlet. The inlet is closed by a resin inlet closing screw 6. The rigid outer sleeve 4 can be made of metal, fibre-reinforced plastic, or other structural materials having adequate mechanical strength. According to a preferred embodiment of the invention the inner envelope of the rigid outer sleeve 4 is flaring conically towards the central point and has a circular or helically slotted surface for the better fixing of resin 7. At the same time spiral cone supports 3A, 3B formed conically towards the central point are arranged in hose-ends A and B under the reinforcing plies. Said spiral cone 3 is expediently slashed helically. Filling rubber 9 is placed between the conical rigid outer sleeve 4 and reinforcing plies 12A, 12B.
The main steps of the method for manufacturing the spliced long-length hose according to the invention are as follows.
A rigid outer sleeve 4 is pulled onto one of the hose-ends A and B to be spliced, then at least one of the reinforcing plies 11A, 11B of either hoses to be spliced is folded back. The liners 1 (liquid sealing layer) of the two hoses are leak-tightly spliced by one of the above mentioned bonding methods; the back-folded reinforcing plies 11A, 11B are laid back in their original direction; the rigid outer sleeve 4 is pulled to the location of the splicing; and the free space below is filled with resin 7.
In the case of rubber hoses manufactured on rigid mandrel the main steps of the method are as follows.
When building the hoses, the two hose-ends A and B to be spliced are already formed so that splicing can be made easily and quickly.
A hose-end A prepared for splicing in the phase of manufacturing is shown in
For splicing the cover rubber 13 is removed from one of the hoses (hose-end A) in the section to be spliced and the conical rigid outer sleeve 4 is pulled onto it. The other hose (hose-end B) is pulled from the mandrel 30 and its end is pulled onto the end of the mandrel of hose A. Reinforcing plies 11A, 11B, 12A, 12B are folded back after removing the cover rubber 13, and the separation strip 29 and leak-tight splicing of the exposed liner-ends 11A, 11B is carried out for instance by uncured rubber compound 5, bonding the liner-ends by overlapping. If there is load-distributing rubberized textile 2 above the liner, then it is also spliced with uncured-rubberized textile 8, then vulcanized by electrical heating. Thereafter reinforcing plies 11A, 11B are overlapped with each other and plies 12A, 12B being butt-jointed and overlapping with reinforcing plies 11A, 11B are folded back into their original direction. The rigid outer sleeve 4 is moved onto the spliced section and its ends are closed with filling green rubber 9. The space between reinforcing plies is filled through the middle inlet of the conical rigid outer sleeve 4 with filling/adhesive material, particularly resin 7, for instance epoxy resin, then the resin inlet is closed by the resin inlet closing screw 6. In a preferred embodiment cover fabric 10 and cover rubber 13 are applied above the conical rigid outer sleeve 4 which will be vulcanized. Finally the spliced hose is pulled from the hose mandrel.
The splicing can be designed so that neither of the hoses is on the mandrel when implementing the splicing but a relatively rigid inner sleeve is placed under the liner at least in some part of the area to be spliced, thus the splicing can be fulfilled either in the field or on a ship, on a platform.
Example 1 explained in greater details below, is associated to the drawings above.
Two rubber hoses with an inner diameter of 76 mm were built up. The hose liner 1 (liquid sealing layer) was made of rubber compound containing NBR. Load-distributing rubberized textile layers 2 were arranged above the liner. The hoses contained two reinforcing plies (cables) 11 and 12. A 70 mm long spiral cone 3 having a wall thickness increasing gradually from the direction of the hose-body up to 3.6 mm is built in under said reinforcing plies at the location of the splicing. The hoses were vulcanized on hose mandrel. The conical rigid outer sleeve 4, made of steel in this case, with an inner diameter flaring in an angle of 1° to the central point and with an inner surface formed circularly corrugated was pulled onto hose A. The splicing was carried out on hose mandrel, liner-ends 1A, 1B, were spliced with uncured rubber compound 5, and load-distributing rubberized textiles 2A, 2B were joined by using unvulcanized load-distributing textile 8 after folding back the reinforcing plies 11, 12, then this section was vulcanized by electrical heating. Reinforcing ply (lower cable ply) 11A of hose A was folded on the spliced vulcanized load-distributing rubberized textile 2 and was fixed there by binding, then the lower reinforcing ply 11B of hose B was laid on it. Reinforcing plies 11A and 11B of the two hoses were overlapped each other at a length of 100 mm after lying. Reinforcing plies (upper cable plies) 12A and 12B of hoses A and B were folded back and after laying-back were butt-jointed with small gap without overlapping. The conical rigid outer sleeve 4 was moved to its final place and fixed at its ends with filling rubber 9. The space between reinforcing plies was filled with filling/adhesive material, resin (epoxy resin) 7, rubberized textile 10 reinforcing the cover was applied after inserting the resin inlet closing screw 6, then cover rubber 13 was also applied. While vulcanizing the cover rubber 13, the epoxy resin crosslinked to its final network density.
The complete spliced hose was exposed to a pressure test of 700 bar, then the pressure was increased till failure of the hose. Failure took place at a pressure of 836 bar at the end of the hose opposite to the splicing by cable breakage. The spliced section was cut lengthwise and it was found that cables were not damaged in this section.
Bonded rubber hoses with four cable plies were spliced. The spliced section is shown in
By means of
Number | Date | Country | Kind |
---|---|---|---|
21558/06 | Aug 2006 | HU | national |
P 06 00676 | Aug 2006 | HU | national |