The present disclosure concerns an apparatus and method for automatically splicing an unwinding roll of material to a stationary roll of material, such as tape.
Modern consumer and industrial packaging often includes reinforcing tapes or tear tapes as part of their construction. Various tape dispensers have been designed to dispense such tapes into corrugator and packaging equipment. Known tape dispensers include a first spindle that supports an unwinding spool of tape and a second spindle that supports a stationary, or standby, spool of tape. To provide a continuous feed of tape, splicing techniques have been developed for automatically splicing together the trailing end of the unwinding spool of tape to the leading end of the standby spool of tape.
One example of a tape dispenser and splicing technique is disclosed in U.S. Pat. No. 4,917,327 to Asbury, Jr. et al. In the splicing technique disclosed in the '327 patent, the trailing end of a first spool of tape is provided with a pin and the leading end of a second spool of tape is provided with a piece of string or cord. As the first spool of tape is being dispensed, an operator forms a loop around the tape of the first spool with the string by placing the string around the tape and tying the ends of the string together. When the first spool is depleted, the pin engages the loop to link the tape of the first spool to the tape of the second spool, causing the tape of the first spool to cause the second spool to begin rotating and pull the tape from the second spool into the packaging equipment.
A continuing need exists for improved techniques for splicing one spool of tape to another spool of tape.
The present disclosure concerns embodiments of an apparatus and method for splicing tapes dispensed from a tape dispensing machine where a continuous supply of tape is required. According to one embodiment, a first, running or unwinding roll of tape is provided with a first splicing element secured to its trailing end portion. A second, stationary or standby roll of tape is provided with a second splicing element secured to its leading end portion. The second splicing element comprises a body made of a self-supporting material and formed with at least one aperture sized to receive the tape from the first roll.
When the rolls are installed on a tape dispenser and the first roll is running, an operator brings the second splicing element, which is secured to the leading end portion of the second, standby tape roll, in close proximity to the running tape and inserts the running tape into the aperture in the second splicing element. The aperture is sized to allow the running tape, but not the first splicing element, to freely pass through the aperture. Thus, when the first roll of tape becomes depleted, the first splicing element engages the second splicing element, thereby splicing the leading end portion of the second tape roll to the trailing end portion of the first tape roll.
The spicing system disclosed in the present application provides several advantages over the “pin and loop” splicing system disclosed in the '327 patent. For example, less operator involvement and dexterity is required because the second splicing element can be easily placed around the running tape without the need to tie a knot with a string. In addition, in the prior system, the splice can depend on the quality of the knot and/or the size of the loop formed around the running tape. If the knot is too loose or if the loop is too large, the pin can pass through the tied string, resulting in the failure of the splice. If the knot is too tight or if the loop is too small, the running tape may contact the edges of the running tape and the friction can cut the string, resulting in the failure of the splice. In addition, a loop that is made too small can cause the running tape to prematurely pull the standby tape before the first tape roll is depleted, resulting in the first and second tapes being dispensed together into the packaging equipment. The splicing system disclosed herein does not suffer from such limitations and can be used to achieve splices at dispensing rates not previously possible with the pin and loop system. In certain embodiments, for example, the splicing elements disclosed herein can be used to form splices at dispensing rates of at least about 1100 feet per minute, and more desirably about 1400 feet per minute and greater.
In some package-forming applications, it may be desirable to provide for consistent spacing between the spliced ends of tapes from one splice to the next. For example, in one such application, multiple radio frequency identification (RFID) devices, used for managing and tracking packages, are attached to reinforcing tape at equally spaced locations on a package, as further described in co-pending U.S. application Ser. No. 11/122,977, filed May 4, 2005, which is incorporated herein by reference. Providing constant spacing (or no spacing) between the spliced ends of tapes facilitates the proper placement of the RFID devices on the tapes. Unfortunately, in the prior pin and loop splicing system, the spacing between the adjacent ends of the spliced tapes can vary depending on the size of the loop that is formed. However, in the splicing system disclosed herein, the second splicing element has an aperture of a predetermined size and therefore can achieve consistent spacing between the spliced ends of tapes in successive splices.
In particular embodiments, the second splicing element includes a slit extending from the aperture to an outer peripheral edge of the body and a flexible peripheral portion at least partially bounding the aperture. To insert the running tape into the aperture, an operator bends the peripheral portion to create a gap between the opposing edges of the slit and inserts the running tape into the aperture via the gap.
In another embodiment, the second splicing element is formed with a permanent opening or gap extending from the aperture to an outer peripheral edge of the body. The gap is of sufficient width to allow an operator to insert the running tape through the gap and into the aperture without bending or flexing of the peripheral portion of the body surrounding the aperture.
The second splicing element can be secured to the standby tape roll by inserting the leading end portion of the tape through the aperture and folding back and securing the tape to itself so as to form a loop extending through the aperture. Alternatively, the second splicing element can be formed with two separate apertures, one of which is used to secure the leading end portion of the standby tape roll and the other of which receives the running tape.
In another embodiment, the second splicing element includes a first body portion and a second body portion foldably coupled to each other along a folding axis, allowing the first and second body portions to be folded closed and opened relative to each other. The first body portion includes a first aperture for receiving the running tape, a slit extending from the first aperture to an outer peripheral edge of the first body portion, and a flexible tab portion at least partially bounding the first aperture. The second body portion includes a second aperture for receiving the running tape, a slit extending from the first aperture to an outer peripheral edge of the first body portion, and a flexible tab portion at least partially bounding the first aperture. In use, an operator first places the first body portion around the running tape by bending the respective tab portion to create a gap and inserting the running tape into the first aperture via the gap. The operator then places second body portion around the running tape in a similar manner and folds the body portions against each other. A suitable adhesive, such as a layer of double-sided tape or a liquid adhesive, can be provided to adhesively secure the body portions together in the closed position.
In still another embodiment, the first and second body portions are pivotally coupled to each other by a pivot pin extending through the body portions, rather than being foldably coupled to each other. The body portions can be pivoted relative to each other in mutually parallel planes between a closed and open position.
In yet another embodiment, the second splicing element comprises a wire-like, elongated piece of material formed so as to have a closed geometric shape having overlapping end portions. The splicing element can be placed around the running tape by moving the leg portions away from each other and inserting the running tape through the opening between the leg portions.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used herein, the singular forms “a,” “an,” and “the” refer to one or more than one, unless the context clearly dictates otherwise.
As used herein, the term “includes” means “comprises.”
The present disclosure concerns embodiments of a splicing technique, such as can be used to splice the trailing end of an unwinding roll of tape being dispensed to the leading end of a stationary or standby roll of tape. The splicing technique can be implemented in any tape dispenser operable to dispense tape from a first, running spool of tape and then a second, standby spool of tape.
The tension-control mechanism 24 is movable in two directions (upwardly and downwardly, as indicated by double-headed arrow B, in the illustrated embodiment) along an upright rail 25 to vary the path length of the tape in response to changes in tension in the tape. The tension-control mechanism 24 is pulled downwardly by an elongated biasing member 28 (which can be a piece of elastic material, such as surgical tubing) and upwardly by the tension in the tape. Thus, when tape tension is high (i.e., when the current spool is providing tape slower than is required by downstream equipment, such as at the beginning of a spool), the tension-control mechanism moves upwardly. The upward movement of the tension-control mechanism 24 shortens the tape path so that tape can be fed to downstream equipment without requiring the spool to dispense a corresponding length contemporaneously. Conversely, when tape tension is low (i.e., when the current spool is providing tape faster than is required by downstream equipment), the biasing member 28 causes the tension-control mechanism 24 to assume a lower position (as shown in
The biasing member 28 is reeved around a pulley 32 of a pivoted lever 34, and has a first end 30 connected to the tension-control member 24 and a second end 36 secured to an extension 54 of frame 11. Lever 34 is mounted for pivoting movement about a pivot pin 56, as indicated by double-headed arrow C.
A brake assembly 38 applies a controlled braking force to the first and second spindles 12, 14, respectively. The brake assembly 38 includes a brake band 40 that extends about portions of spindles 12, 14 and serves to retard their rotation. An upper end portion 42 of the band 40 is affixed to frame, as at 42a, and therefore is stationary. A lower end portion 44 of the band 40 is coupled to extension 54 of frame 11 by a coil spring 46. Spring 46 pulls upwardly on the lower end portion 44 of band 40, causing the band to automatically apply a quiescent braking force to the spindles 12, 14. As used herein, the term “quiescent braking force” refers to a braking force applied to a spindle when the spindle is at rest. Other brake assembly configurations can be implemented in the dispensing apparatus.
As shown in
When the first spool 16 becomes depleted of tape, splicing the trailing end of the tape from the first spool 16 to the leading end of the tape from the second spool 18 will automatically bring the second spool 18 into action. The feedback mechanism serves to control the braking force in response to tension spikes that can occur during and immediately following splicing. For example, since the second spool 18 cannot immediately supply tape at the rate required by downstream equipment (due to the inertia of the second spool 18), the tension in the tape suddenly increases. The increased tension causes the tension-control mechanism 24 to move upwardly, which in turn causes the brake assembly 38 to reduce the braking force to allow rotation of the second spool 18. Also, the upward movement of the tension-control mechanism 24 shortens the tape path, thereby providing tape to the downstream equipment without requiring the second spool 18 to dispense a corresponding length contemporaneously.
As the second spool 18 accelerates to the required speed, the tension in the tape decreases, thereby allowing the tension-control mechanism 24 to be pulled downwardly by the biasing member 28. This movement activates the brake band 40, which applies a gradually increasing braking force on the second spindle 14 in response to the decrease in tape tension until equilibrium is established.
As a spool is dispensing tape, the diameter of the tape on the spool decreases. The feedback mechanism provided by the brake assembly 38, lever 34, tension-control mechanism 24, and biasing mechanism 28 compensates for the diametrical change of the spool by gradually decreasing the braking force to ensure substantially uniform tension throughout an entire roll. Without such a feedback system, the tension in the tape would increase in proportion to the change in radius of the spool from which the tape is dispensed.
If, following a splicing operation, the second spool 18 accelerates beyond the rate at which tape is being pulled by the downstream equipment, slack can form in the second spool 18. The slack can become stuck to the spool, entangled with the tape path, and/or cause tape breakage, which then requires a stoppage in production to fix the problem. This phenomenon is known as “overrun.” Thus, to prevent such overrun of the second spool following a splice, the brake band must provide a braking torque sufficient to prevent the second spool 18 from accelerating beyond the rate at which tape is being pulled by the downstream equipment. It can be appreciated that increasing the rate at which tape is dispensed requires a corresponding increase in available braking torque to prevent over-acceleration of a spool following a splicing operation.
However, if the braking torque on a spindle is too high, the upward pulling force of the tension-control mechanism 24 (caused by an increase in tension) may not be sufficient to overcome the spring 46 to permit the spindle to accelerate to the required speed. Hence, the braking torque desirably should be great enough to prevent over-acceleration at a desired dispensing rate without adversely affecting the ability of the system to overcome the biasing mechanism (e.g., spring 46) that retards rotation of the spindles.
In
The apparatus shown in
Instead of the brake band 40 (
The dispenser 1004 includes an elongated tension member 1068, which is reeved around a pulley 1070 connected to end portion 48 of a lever 34 and is coupled at its opposite end portions to calipers 1066 of the first and second spindles 12, 14. Tension member 1068 can be, for example, a conventional brake cable, such as used in a brake assembly of a bicycle. The calipers 1066 are normally biased to exert a quiescent braking force to rotors 1064. Movement of tension member 1068 causes the calipers 1066 to reduce the braking force applied to the rotors.
The dispenser 1004′ similarly includes a tension member 1068′ connected at opposite ends to corresponding calipers of the upper and lower spindles of the dispenser 1004′. In the illustrated embodiment, the brake assemblies of the dispenser 1004′ are mounted in an “upside down” position to permit mounting in close proximity to the brake assemblies of the dispenser 1004. Because of this mounting arrangement, the end portions of the tension member 1068′ are reeved around pulleys 1090 before being routed down to a pulley mounted on a respective lever (not shown) at the base of the dispenser 1004′.
The dispenser 1004 can also include a stop 1054 which limits upward pivoting of end portion 52 of the lever 34 to protect the brake assembly from excessive forces when there is an increase in tape tension.
Referring now to
The tape from the first spool (also referred to as the “first tape”) 16 has at its trailing end portion 60 a first splicing element 62. The tape from the second spool (also referred to as the “second tape”) 18 is provided at its leading end portion 64 with a second splicing element 66. When the first splicing element 62 engages the second splicing element 66, the tapes become linked, causing the trailing end portion 60 of the first tape 16 to pull the leading end portion 64 of the second tape 18 into the downstream equipment.
Typically, the first tape spool 16 is provided with respective first and second splicing elements 62, 66 on its trailing and leading end portions, respectively, and the second tape spool 18 is provided with respective first and second splicing elements 62, 66 on its trailing and leading end portions, respectively. In this way, any number of tape spools can be successively spliced together to provide a continuous feed of tape.
The first and second tapes can be any of various tapes known in the art (e.g., adhesive tapes, such as hot melt tapes, used in packaging). For example, the tapes can be those sold under the Sesame brand by Adalis Corporation, an H.B. Fuller Company, of Vancouver, Wash.
When the trailing end portion 60 of the first tape 16 comes off spindle 12 (or the core of the tape roll supported on the spindle 12), it would normally be free to twist or turn. In certain applications, such movement, however, may result in the tape being introduced into the downstream equipment wrong side down. The second tape 18 would likewise be misoriented. To avoid this problem, the trailing end portion 60 of the first tape 16 desirably is provided with a tail segment 68 affixed to the core (not shown) of the tape roll. The tail segment 68 has a length sufficient so that the second tape 18 becomes linked to the first tape 16, in the proper orientation, before the end of the tail segment is reached. In other applications, the tail segment 68 may not be needed or required.
In the illustrated embodiment, the tail segment 68 is detachably connected to the tailing end portion 60 of the first tape 16 with, for example, a piece of tape 70 (e.g., masking tape). The other end of the tail segment 68 is securely affixed to the core of the tape roll. When the first tape 16 draws the tail segment 68 tight, the masking tape 70 is pulled free from the trailing end portion 60, leaving the tail segment 68 dangling from the core and leaving the first and second tapes 16, 18 free to travel into the downstream equipment.
In other embodiments, the tail segment 68 need not be detachable as shown. Instead, it can be securely affixed to the trailing end portion 60 and not secured to the core. Thus, when the end of the tail segment comes free of the core, it is introduced into the downstream equipment and applied with the first and second tapes 16, 18.
The first splicing element 62 can be attached to the trailing end portion 60 of the first tape in a variety of ways.
The first splicing element 62 in the illustrated configuration has a generally flat, rectangular cross-sectional profile. In other embodiments, however, the first splicing element 62 can have other shapes. For example, the first splicing element 62 can be elongated rod or pin shaped member. The first splicing element 62 has a length that is greater than the opening in the second splicing element 66 to prevent the first splicing element 62 from passing through the opening, as further described below.
The splicing element 66 is made of a flexible, self-supporting material, which exhibits sufficient strength and rigidity to maintain a splice at the desired dispensing speed. As used herein the term “self-supporting” refers to a material that can retain its shape under its own weight. If the dispensing apparatus is dispensing tape into a corrugator (a device for making corrugated cardboard blanks) or similar devices, the first and second splicing elements 62, 66 preferably are made of a material that can be applied to the cardboard blanks by the corrugator. Examples of suitable materials for splicing elements 62, 66 include plastic, cardboard, paperboard, wood, composites, resin impregnated fiber (e.g., carbon or glass fiber), metal, metal alloys, or combinations thereof.
The first and second body portions 72, 74 are formed with respective first elongated slots, or openings, 78, 80 dimensioned to receive the leading end portion 64 of the second tape 18. The slots 78, 80 are positioned such that they become aligned with each other when the body portions 72, 74 are folded closed. The leading end portion 64 of the second tape 18 can be secured to the second splicing element 66 by inserting the tape through the slots 78, 80 and folding back and adhering the tape to itself as shown in
The first and second body portions 72, 74 also are formed with respective second elongated slots, or openings, 82, 84 spaced from their respective first slots 78, 80. The second slots 82, 84 are dimensioned to receive the first tape 16 and are positioned such that they become aligned with each other when the body portions 72, 74 are folded closed. The first body portion 72 is formed with a slit 86 extending from an inner peripheral edge bounding the slot 82 to an outer peripheral edge of the first body portion 72. A tab portion 90 partially bounds the slot 82 and forms a bendable portion that can be bent or folded away from the first body portion to create a gap or opening between the opposing edges of the slit 86. The second body portion 74 likewise is formed with a slit 88 extending from an inner peripheral edge bounding the slot 84 to an outer peripheral edge of the second body portion 74. A tab portion 92 partially bounds the slot 84 and forms a bendable portion that can be bent or folded away from the second body portion to create a gap or opening between the opposing edges of the slit 88.
With the second splicing element 66 secured to the leading end portion 64 of the second tape 18 (
In lieu of or in addition to the tape 94, other techniques or mechanisms can be used to retain the body portions 72, 74 in the closed position. For example, the first body portion 72 can have a locking member or locking surface that forms a “snap fit” connection with a mating surface on the second body portion 74.
In the illustrated embodiment, the opposing edges of the slits 86, 88 contact each other when the tab portions 90, 92 are in their normal, non-bent or closed positions shown in
In certain embodiments, the splicing element 66 can be made from a flexible, resilient material that has shape memory, such as plastic, such that the tab portions 90, 92 return to their original, closed positions after the body portions 72, 74 are placed around the running tape 16. In alternative embodiments, the splicing element 66 can be made form a material that has little or no shape memory. In such embodiments, after the splicing element 66 is placed around the running tape 16, the tab portions 90, 92 are bent back to their original positions by an operator.
The slots 82, 84 are dimensioned to permit the first tape 16 to freely pass through the second splicing element 66 while the first tape is being dispensed. The first splicing element 62 (
When the first splicing element 62 engages the second splicing element 66, the first splicing element exerts a pulling force on the second splicing element. As shown, the slits 86 and 88 desirably are formed on opposite sides of the splicing element 66. This configuration better resists against flexure or deformation of the tab portions 90, 92 caused by the pulling force of the first splicing element 62 to retain the first tape 16 within the slots 82, 84 and maintain the splice. The adhesive tape 94, by adhesively securing the tab portions 90, 92 against opposing surfaces of body portions 74, 72, respectively (
In particular embodiments, the splicing element 66 is made of plastic and has an overall thickness (when the body portions 72, 74 are folded closed) in the range of about 10 to 125 thousandths of an inch (about 0.01 to 0.125 inch), and more desirably in the range of about 50 to 100 thousandths of an inch (about 0.05 to 0.10 inch). Of course, these specific dimensions (as well as other dimensions provided in the present specification) are given to illustrate the invention and not to limit it. The dimensions provided herein can be modified as needed in different applications or situations.
The first and second body portions 102, 104 are formed with respective first elongated slots, or openings, 108, 110 dimensioned to receive the leading end portion of a standby tape (e.g., tape 18 in
The splicing element 100 is used in a manner similar to that described above in connection with the splicing element 66. For example, the leading end portion of a standby tape is secured to the splicing element 100, such as by pivoting the body portions 102, 104 closed (
The first splicing element 200 in this embodiment has a generally U-shaped configuration, rather than the rectangular shape of splicing element 62 (
Splicing element 202 is formed with an opening 204 dimensioned large enough to permit passage of the first tape 16 but not splicing element 200. The leading end portion 64 of the second tape 18 is secured to the second splicing element 202 by inserting the end of the tape through the opening 204 and folding back and adhering the tape to itself as shown. A gap 206 between leg portions 208, 210 extends from an inner peripheral edge bounding the opening 204 to an outer peripheral edge of the splicing element 202. The gap 206 desirably is wide enough to allow the first tape 16 to be inserted through the gap 206 and into the opening. Instead of the illustrated gap 206, splicing element 202 can be formed with a slit between leg portions 208, 210 with the adjacent surfaces of the leg portions contacting each other. A gap between leg portions 208, 210 for inserting the first tape 16 into opening 204 can be created by bending or flexing one or both leg portions 208, 210, for example, by pulling the leg portions 208, 210 in opposite directions from each other.
In another embodiment, splicing element 202 can be formed with a separate slot or opening for securing the leading end portion 64 of the second tape 18.
In use, splicing element 202 (which is secured to the leading end portion 64 of the second tape 18) is placed around the first tape 16 while it is being dispensed by inserting the first tape 16 into the opening 204 via the gap 206. When splicing element 200 engages the second splicing element 202, the first and second tapes become linked, causing the first tape to pull the second tape into the downstream equipment. The second splicing element 202 should exhibit sufficient strength and rigidity at the desired dispensing speed to resist against deformation of leg portions 208, 210 caused by the pulling force of the splicing element 200 to maintain the splice. Because splicing element 202 nests between leg portions 220 of splicing element 200, leg portions 220 can engage the opposite sides of splicing element 202 and prevent separation of leg portions 208, 210 to assist in maintaining the splice.
The leading end portion 64 of the second tape 18 is secured to the splicing element 300 by inserting the end of the tape through the opening 302 and folding back and adhering the tape to itself as shown. To place splicing element 300 on a running tape (tape 16 in the illustrated embodiment), the end portions 304, 306 are separated from each other, such as by pulling or moving the end portions away from each, so as to form a gap between the end portions through which the running tape can be inserted.
Splicing element 300 is made of a flexible material, but yet exhibits sufficient strength and rigidity to maintain a splice at the desired dispensing speed. In one implementation, splicing element 300 can be made from a flexible, resilient material that has shape memory, such as plastic, such that the splicing element returns to its normal, closed shape (shown in
The splicing element 300 can be used in combination with splicing element 62 as shown, or splicing element 200 (
A gap 404 formed between end portions 406, 408 extends from an inner peripheral edge bounding the opening 402 to an outer peripheral edge of the splicing element 400. The gap 404 desirably is wide enough to allow the first tape 16 to be inserted through the gap 404 and into the opening 402. The gap 404 desirably extends diagonally from the inner peripheral edge to the outer peripheral edge of the body as shown. In this manner, it is more difficult for the first tape 16 to pull through the gap 404 after a splice is formed.
In an alternative embodiment, an identical splicing element 400 can be secured to the trailing end portion 60 of the first tape 16, in lieu of splicing element 62. In this way, a manufacturer would only need to supply one type of splicing element which can be used at the trailing and leading end portions of the tape rolls. Also, due to its enclosed shape, splicing element 400 is less likely to be inadvertently removed from the trailing end portion 60 of the first tape 16 than splicing element 62.
In particular embodiments, splicing element 400 is made of plastic and has an overall thickness in the range of about 10 to 125 thousandths of an inch (about 0.01 to 0.125 inch), and more desirably in the range of about 50 to 100 thousandths of an inch (about 0.05 to 0.10 inch).
A gap 504 formed between end, or leg, portions 506, 508 of the splicing element extends from an inner peripheral edge bounding the opening 502 to an outer peripheral edge of the splicing element 500. The gap 504 desirably is wide enough to allow the first tape 16 to be inserted through the gap 504 and into the opening 502. The leg portions 506, 508 have respective, spaced-apart end surfaces 510, 512 defining the gap 504. As shown, the end surfaces 510, 512 extend diagonally (i.e., non-perpendicular) with respect to the opposing major surfaces 514, 516 of the splicing element (the “upper” and “lower” surfaces of the splicing element). End surface 510 forms an acute angle 518 with respect to the upper surface 514 and end surface 512 forms an acute angle 520 with respect to the lower surface 516. In the illustrated configuration, angles 518 and 520 are equal to each other and end surfaces 510, 512 extend in a mutually parallel relationship relative to each other. In other embodiments, angles 518, 520 can be different from each other.
Although the width of the gap 504 and the angles 518, 520 can vary, these dimensions are selected such that the leg portions 506, 508 can be moved against each other in opposite directions until one leg portion slides past the other to cause the leg portions to “snap” in place with one leg portion overlapping and contacting the other leg portion (as shown in
In use, splicing element 500 is placed around the running tape 16 by inserting the tape in the opening 502 via the gap 504 (
In particular embodiments, splicing element 500 is made of plastic and has an overall thickness in the range of about 10 to 125 thousandths of an inch (about 0.010 to 0.125 inch), and more desirably in the range of about 50 to 100 thousandths of an inch (about 0.05 to 0.10 inch). The width of the gap 504 is in the range of about 30 to 45 thousandths of an inch (about 0.030 to 0.045 inch). The end surfaces 510 and 512 are parallel to each other and the angles 518, 520 are in the range of about 30 to 45 degrees.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This application is a continuation-in-part of U.S. application Ser. No. 11/187,343, filed Jul. 21, 2005, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4917327 | Asbury et al. | Apr 1990 | A |
5029768 | Asbury et al. | Jul 1991 | A |
5775629 | Cyr | Jul 1998 | A |
6325324 | Getz et al. | Dec 2001 | B1 |
6596111 | Cyr et al. | Jul 2003 | B2 |
6622959 | Robitaille | Sep 2003 | B2 |
6688363 | Cyr et al. | Feb 2004 | B2 |
6737138 | Cyr et al. | May 2004 | B2 |
6981537 | Cyr et al. | Jan 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20070018030 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11187343 | Jul 2005 | US |
Child | 11202673 | US |