Turbine engines, and particularly gas or combustion turbine engines, are rotary engines that extract energy from a flow of combusted gases passing through the engine in a series of compressor stages, which include pairs of rotating blades and stationary vanes, through a combustor, and then onto a multitude of turbine blades. In the compressor stages, the blades are supported by posts protruding from the rotor while the vanes are mounted to stator disks. Gas turbine engines have been used for land and nautical locomotion and power generation, but are most commonly used for aeronautical applications such as for airplanes, including helicopters. In airplanes, gas turbine engines are used for propulsion of the aircraft.
Gas turbine engines for aircraft are designed to operate at high temperatures to maximize engine thrust, so cooling of certain engine components is necessary during operation. Reducing cooling air leakage between adjacent flow path segments in gas turbine engines is desirable to maximize efficiency and lower specific fuel consumption. In adjacent compressor and turbine stages, axial and radial segment gaps create flow paths allowing leakage. Spline seals are used to decrease the leakage in these areas.
In one aspect, embodiments of the invention relate to a turbine assembly for a gas turbine engine defining an axial centerline, the turbine assembly comprising a shroud assembly having a plurality of circumferentially arranged shroud segments, which have confronting radial sides and collectively define at least one circumferential axial end. Included is a nozzle assembly having a plurality of circumferentially arranged nozzle segments, which have confronting radial sides and collectively define at least one circumferential axial end. There is also a spline connector having a circumferential portion and an axial portion, wherein the shroud assembly and nozzle assembly are axially adjacent such that the axial ends are confronting and the circumferential portion of the spline connector extends across the axial ends and the axial portion of the spline connector extends across the confronting radial sides of at least one of the shroud segments or the nozzle segments.
In another aspect, embodiments of the invention relate to a turbine assembly for a gas turbine engine defining an axial centerline, the turbine assembly comprising a shroud segment having opposing radial sides and opposing axial ends, a nozzle segment having opposing radial sides and opposing axial ends, and a spline connector having a circumferential portion and an axial portion. The shroud segment and nozzle segment are axially adjacent to form a pair of confronting axial ends and the circumferential portion of the spline connector extends across the axial ends and the axial portion of the spline connector extends along one of the radial sides of at least one of the shroud segment or the nozzle segment.
In the drawings:
The described embodiments of the present invention are directed to systems, methods, and other devices related to routing air flow in a turbine engine. For purposes of illustration, the present invention will be described with respect to an aircraft gas turbine engine. It will be understood, however, that the invention is not so limited and may have general applicability in non-aircraft applications, such as other mobile applications and non-mobile industrial, commercial, and residential applications.
The fan section 18 includes a fan casing 40 surrounding the fan 20. The fan 20 includes a plurality of fan blades 42 disposed radially about the centerline 12. The HP compressor 26, the combustor 30, and the HP turbine 34 form a core 44 of the engine 10, which generates combustion gases. The core 44 is surrounded by core casing 46, which can be coupled with the fan casing 40.
A HP shaft or spool 48 disposed coaxially about the centerline 12 of the engine 10 drivingly connects the HP turbine 34 to the HP compressor 26. A LP shaft or spool 50, which is disposed coaxially about the centerline 12 of the engine 10 within the larger diameter annular HP spool 48, drivingly connects the LP turbine 36 to the LP compressor 24 and fan 20. The portions of the engine 10 mounted to and rotating with either or both of the spools 48, 50 are also referred to individually or collectively as a rotor 51.
The LP compressor 24 and the HP compressor 26 respectively include a plurality of compressor stages 52, 54, in which a set of compressor blades 58 rotate relative to a corresponding set of static compressor vanes 60, 62 (also called a nozzle) to compress or pressurize the stream of fluid passing through the stage. In a single compressor stage 52, 54, multiple compressor blades 56, 58 can be provided in a ring and can extend radially outwardly relative to the centerline 12, from a blade platform to a blade tip, while the corresponding static compressor vanes 60, 62 are positioned downstream of and adjacent to the rotating blades 56, 58. It is noted that the number of blades, vanes, and compressor stages shown in
The HP turbine 34 and the LP turbine 36 respectively include a plurality of turbine assemblies 100 comprising stages 64, 66, in which a set of turbine blades 68, 70 are rotated relative to a corresponding set of static turbine vanes 72, 74 (also called a nozzle) to extract energy from the stream of fluid passing through the stage. In a single turbine stage 64, 66, multiple turbine blades 68, 70 can be provided in a ring and can extend radially outwardly relative to the centerline 12, from a blade platform to a blade tip, while the corresponding static turbine vanes 72, 74 are positioned upstream of and adjacent to the rotating blades 68, 70. It is noted that the number of blades, vanes, and turbine stages shown in
In operation, the rotating fan 20 supplies ambient air to the LP compressor 24, which then supplies pressurized ambient air to the HP compressor 26, which further pressurizes the ambient air. The pressurized air from the HP compressor 26 is mixed with fuel in the combustor 30 and ignited, thereby generating combustion gases. Some work is extracted from these gases by the HP turbine 34, which drives the HP compressor 26. The combustion gases are discharged into the LP turbine 36, which extracts additional work to drive the LP compressor 24, and the exhaust gas is ultimately discharged from the engine 10 via the exhaust section 38. The driving of the LP turbine 36 drives the LP spool 50 to rotate the fan 20 and the LP compressor 24.
Some of the ambient air supplied by the fan 20 can bypass the engine core 44 and be used for cooling of portions, especially hot portions, of the engine 10, and/or used to cool or power other aspects of the aircraft. In the context of a turbine engine, the hot portions of the engine are normally downstream of the combustor 30, especially the turbine section 32, with the HP turbine 34 being the hottest portion as it is directly downstream of the combustion section 28. Other sources of cooling fluid can be, but is not limited to, fluid discharged from the LP compress 24 or the HP compressor 26.
A spline connector 116 includes an axial portion 114 which extends along the top portion covering the confronting radial sides 112 of the shroud segment 104. In an exemplary embodiment, the axial portion 114 of the spline connector 116 also extends along the top portion of confronting radial sides 112 of the nozzle segment 108. When placed the spline connector 116 can leave an axial space 118 proximate the downstream edge 119 of the nozzle segment 108 to reduce chute leakage aft.
In an exemplary embodiment the spline connector 116 has a T-shape as seen in
The shroud assembly 102 and nozzle assembly 106 are axially adjacent as seen in
At least one of the gaps 120 can be oriented at an angle relative to the axial centerline 12 forming an angled confronting radial side 113. Two examples of spline connectors 116 are depicted in the illustrated embodiment of
In a second embodiment illustrated in
A further embodiment can include an I shape with angled axial portions extending across the angled radial sides 213 of
The spline connector addresses concerns for local ingestion or possible over-temperature failure modes with the circumferential space near the bow-wave while including another seal in series in regions typically not sealed between axial components. Sealing these additional regions lowers specific fuel consumption and therefore increases efficiency.
In the case of an axial curvature or slope in the arrangement of the shroud and nozzle assemblies, embodiments of the spline connector can include an axial break to facilitate curvature or the spline connector can be pre-bent to match a flow path curvature or step stack up. The axial portion of the spline connector can be locked in place when assembled and local thinning or keyholes on the spline connectors can be formed to provide flexibility if needed.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3801220 | Beckershoff | Apr 1974 | A |
5154577 | Kellock et al. | Oct 1992 | A |
5655876 | Rock et al. | Aug 1997 | A |
5957658 | Kasprow et al. | Sep 1999 | A |
6162014 | Bagepalli et al. | Dec 2000 | A |
6503051 | Predmore | Jan 2003 | B2 |
7090224 | Iguchi et al. | Aug 2006 | B2 |
7575415 | Drerup et al. | Aug 2009 | B2 |
7625174 | Drerup et al. | Dec 2009 | B2 |
Number | Date | Country |
---|---|---|
1 275 819 | Jan 2003 | EP |
2 039 886 | Mar 2009 | EP |
2 799 667 | Nov 2014 | EP |
2799667 | Nov 2014 | EP |
Entry |
---|
Extended European Search Report and Written Opinion issued in connection with corresponding EP Application No. 17153876.2 dated Dec. 15, 2017. |
Number | Date | Country | |
---|---|---|---|
20170218784 A1 | Aug 2017 | US |