The present invention relates to a curtain which is suitable as shatter protection and has optical and thermal functionality.
Curtains of this type are required in particular in order for example to protect buildings during terrorist attacks. They are required in all sorts of buildings but in particular in office buildings with large areas of glass.
Buildings with large areas of glass, in particular office buildings, are subject to particular dangers during terrorist attacks or also basically during explosion occurrences. The reason is that normal sun protection systems are not stable enough, in particular non-buckling, in order to protect the areas of glass from the pressure of the explosion wave. In the state of the art, there is no building curtain known, neither on the inside nor the outside of the building, which could effectively protect the areas of glass here.
It is therefore the object of the present invention to produce a building curtain which combines inter alia protection against high pressures or the consequences associated therewith, in particular shatter protection, with optical and thermal functionality at the same time.
This object is achieved by the curtain according to claim 1. Advantageous developments of the curtain are indicated in the respective dependent claims.
In contrast to the state of the art in which efforts are made to make the glass façades so stable that they survive explosions/terrorist attacks or similar without damage, the present invention offers a completely different route. It has recognised that it is in fact achievable if, instead of making the glass façades stable, specific components absorb the enormous amount of energy in that damage, even irreversible, is accepted for them. It is therefore allowed here that the—often large-area—glazing is damaged. However this is where the present invention intervenes in that it makes available a curtain which prevents fragments, which are possibly produced, from being able to be thrown into the room and injuring persons there.
According to the invention these can be internally situated curtains, ones situated between the panes or externally situated, said curtains enabling in addition, in the form of a blind or a shutter, sun protection, dazzle protection, a view and daylight provision. These curtains can thereby be able to be folded, folded away, moved away, rolled up and the like. However it is also possible to provide stationary curtains which always remain in the protective position.
Thus it would then be possible either for the curtain constantly to be “simply left down as sun protection” or also to deploy the curtain, for example to uncouple it, shift it, unroll it and the like, only if the security situation demands it, for example in embassies.
If it is movable and weather-resistant, such a curtain can also be used as an externally situated, stable, in particular wind-stable, curtain. This makes it possible then for the first time, even in multi-story buildings over 100 metres in height, to deploy an externally situated sun protection, which has not been possible to date because of the wind loading. Such an externally situated sun protection in high office buildings would offer a large energy saving potential in the trend of the moment for whole glass façades. The curtain according to the invention is thus already financially viable as a result of savings in operating costs and a smaller air-conditioning plant. Also less ventilation and air-conditioning technology has an effect on the profitability of the curtain according to the invention via a smaller spatial requirement for shafts and channels and a correspondingly greater rentable area. In combination with energy saving regulations, for example of the European Union, the curtain according to the invention makes possible a small revolution in multi-storey construction with complete glass façades.
The curtain according to the invention achieves in addition high acceptance since at the very least it does not impair the thermal and visual comfort of the users. For the users it also serves for the purpose of increasing the thermal and visual comfort in the room and is configured to be aesthetically appealing. Furthermore, it is possible to assume functions, with the curtain according to the invention, which are normally assumed by another component so that investment costs in the other component are then saved.
According to the invention, the curtain can be configured either as a slatted curtain/shutter or as a roller blind.
If a roller blind is used, then this can be produced advantageously from a two-dimensional woven fabric, knitted fabric and/or hosiery fabric, the latter having as fibre components glass fibres, carbon fibres, aramide fibres or combinations hereof. The fibre component can thereby be metallised, covered with plastic material, for example also vapour coated with aluminium. Such a roller blind can be configured to be able to be rolled and/or wound up, but this is not necessary. In certain circumstances, also variants are advantageous in which the blind is static and remains permanently in its position.
If the woven fabric is metallised, then in particular the aesthetic demands of the users can be met since the optical appearance is thus improved. In the case of a surface configuration which has a light colour, for example white, sun protection is improved because of the high reflectivity of the material. Such a blind can then absorb a load three-dimensionally, for example due to pressure, and serve also as shatter protection since it can intercept fragments of the glass façade. In the last case, an internally situated mounting should be implemented, i.e. on the building side relative to the glass façade. Furthermore, fibres which can be stretched with energy absorption can be used so that they absorb energy very well.
As an alternative, the curtain can also advantageously be configured in the form of a slatted curtain/shutter, i.e. have a large number of bars which are disposed in parallel and adjacent and are connected to each other for example via strips or cables such that the individual bars hang horizontally in front or behind the façade. There is generally intended here and subsequently by bars any structure which has an elongated extension, as for example shutter slats have. Perpendicular to this longitudinal direction, a bar of this type can have a two-dimensional or even a three-dimensional structure/profile.
The bars can thereby be configured as static structures or also rotatable structures similarly to a shutter.
If the shutter-like systems need not be able to be gathered up, it is not necessary that the slats are stackable. As a result, greater freedom exists in the shaping of the profiles of the individual bars. Also for roller blind-like, fabric-like systems, greater freedom exists in the formation of the fabric (for example resistance to wear or thickness of the fabric) if these do not require to be able to be rolled up or wound up.
For the shutter-like or slat-like curtains, there are now various advantageous development options in order to make these insensitive to high pressures or to ensure shatter protection.
On the one hand, the slats can be made more stable by means of additional folds, edges, bends and/or hollow chambers or similar structures. The starting point here is profiles, such as for example the C-slat, the Z-slat, the Genius slat and the Ganzmetallstore or even the slat systems marketed under the trade name s_enn.
There are suitable here as metals, metals such as aluminium sheet or stainless steel sheet from which the slats can be produced by roller-shaping. In this case, care should be taken that the corresponding structures are disposed and configured such that the roller-shaping of the slats is not consequently prevented. However other materials, such as plastic materials, composite materials and the like, are also possible.
A further possibility for improving the shatter protection or pressure resistance resides in reinforcing the profiles at corresponding places or completely. This can be effected for example by gluing with a foil, the gluing being intended to take place preferably at those places which can be glued before the roller-shaping process or also thereafter. This means that places which are flat before the roller-shaping and after the roller-shaping or are subjected to pressure merely during roller-shaping, such as for example the inside of curved surfaces or ones to be curved, can advantageously be glued.
In addition to gluing with foil for reinforcing the profiles, it is also possible to glue these profiles before or after the roller-shaping entirely or partially with a fabric, such as for example Kevlar, in order that fragments if necessary cannot pierce the slats. In order to enable both sun protection and explosion protection, the foil or the fabric is applied only on the inner side of the slats, i.e. on the building-side surface of the slats, and a reflective or highly-reflective surface is advantageously provided externally in addition. There are suitable as such for example a diffuse white-painted or even a metallic high-reflective coated surface or even a retrostructure. Also asymmetrically scattering surfaces can be used advantageously.
A few advantageous developments provide producing the slats from stainless steel sheets by roller-shaping and gluing these partially before the roller-shaping with Kevlar strips. The bent points must thereby be recessed and only the surfaces which are still flat after the roller-shaping are glued. This is possible for example for the profile known under the name s_enn, as described also in DE 101 39 583 A1.
It is also possible to glue the slats for example of a Ganzmetallstore, after roller-shaping, with a fabric such as Kevlar, not only in order to prevent fragments piercing the metal but also to increase the bending stability. Such a variant is suitable for use as externally situated or internally situated protective curtain which optionally can be activated.
A further possibility for stabilising the slats or bars resides in configuring these as a hollow profile which is filled at least on one part of its length or at least in regions. It is possible as a result to distribute a high initial impulse to a large surface via the viscosity of the filling. There are suitable for this purpose in particular fillings with liquids or with a gel.
However it is also possible according to the invention to fill the high profiles with sand or the like in order to increase the inertia and bending stability of the bars.
The profiles can also be foamed, for example using a lance. There is also suitable as material for bars of this type a metal, for example aluminium, steel or stainless steel, or also plastic material. These can then be combined to form a curtain comprising a plurality of stacked units, the respectively individual stability of which is increased by this measure.
A further possibility for increasing the stability, the pressure insensitivity or shatter protection of the bars resides in providing specific regions of the bars with predetermined bending points. When a pressure occurrence takes place, for example an explosion, the predetermined bending points are activated and the curtain is closed completely or partially. By folding down a part of the bars at the predetermined bending point, a part of the energy from the pressure wave is absorbed in addition. The predetermined bending point can thereby have an elastic configuration, but advantageously also a non-elastic one so that the curtain is subsequently closed irreversibly.
As a result of bending the bars or the curtain, energy is consequently absorbed in total by the deformation and the openings present in the curtain are reduced in size so that the region situated behind is better protected.
The mounting of the curtain according to the invention can also be developed according to the invention. The reason is that normally curtains of this type are not guided such that the entire curtain offers sufficient resistance to bending of the curtain. However, the individual elements of the curtain are fixed, such as for example in the case of the Ganzmetallstore of the company Hüppebaumann. The development of the present invention begins here, in which the movability is completely dispensed with and the curtain is braced at the top and bottom in addition to being fixed in a lateral guide. This has the great advantage that deformation of the individual elements (bars, slats, fabric) of the curtain can be allowed without there being a risk that the curtain bends away in its entirety. With a fixing mechanism of this type, the energy is absorbed by deformation of the entire curtain and thus the force which the pressure wave exerts on the curtain as a whole and the mounting is reduced. This means that the curtain is no longer torn in its entirety from its anchor.
The bracings in particular can be elastic or deformable in order that energy is also absorbed by the bracing if an explosion occurrence or a pressure wave occurs.
Thus a part of the energy of the pressure wave is absorbed both by the deformation of the individual elements of the curtain and also of the bracing.
A further possibility resides in bracing the curtain in a relatively rigid frame or in a rigid frame which is configured to be so stable that it does not deform. As a result, it is possible to prevent the occurrence of slits in the deformed state at the sides. In this case, the rigid frame can itself be mounted again elastically or deformably.
Insofar as the bracing changes in the length thereof under the effect of pressure, such deflection of the curtain must be compensated for by a higher curtain. The lateral fixing of the curtain can be effected in the case of non-movable curtains with a clamping strip or a nail strip.
For reasons of dazzle protection, care should be taken advantageously with all embodiments of the curtain according to the invention that respectively a sharp or cut, preferably sharp-edged cut edge is present externally at the bottom and no round or bent structure (with a significant radius).
However also variants without these properties are conceivable but which then have poorer properties with respect to dazzle protection.
As a further technical measure for increasing the stability of the slats in the case of a shutter slat, such as e.g. the C-slat, the Z-slat, slats which are known under the name Hüppelux Genius, Retroflex, Retrolux-O, Retrolux-U or Ganzmetallstore (of the company Hüppebaumann), these are glued entirely or partially with Kevlar or similar and are not guided with guide cords but with looped cords. These distort less easily. Looped cords of this type should be stable (e.g. metal threads, Kevlar, a fibre composite and the like). The lower rail here should then also be fixed in order that the curtain is securely tensioned.
In order to meet the aesthetic demands of the users, the foils used for gluing can be applied externally, i.e. not in a hollow chamber. A surface with a wood appearance is suitable here in a particularly advantageous manner. The foil can advantageously be provided as outermost layer with a real wood veneer.
For suitability of the curtain according to the invention and user-friendliness, it is basically preferred if, in the case of the innermost surface of the bars, the upper end is not situated further inwards than the lower end in order that the inside cannot be impinged upon by reflected light which is reflected upwards from the element situated thereunder (slat or bar). It is particularly preferred if the inner surface is vertical.
This requirement is particularly important if the bars have two surfaces, for example a first and second surface, which are connected to each other at their upper end. The profile of the bar in this case is an inverted V-shape. This is likewise important if for example a triangular profile is produced with a further third surface which abuts against the lower end of the first surface. If a further surface is provided which abuts against the lower end of the second profile, then square surfaces are possible and, when using further abutting surfaces, pentagonal and other profiles. The fourth surface can however protrude beyond a triangle formed by the first to third surface. In this case, the third surface can abut with its free end on the lower end of the second surface or else on the lower end of the fourth surface or anywhere between the upper end of the second surface and the lower end of the fourth surface.
In the case of such an arrangement, requirements arise, as are described in detail in claims 10 to 22, for the arrangement of the individual surfaces in the assembled state of the curtain.
This applies also when these surfaces are merely imaginary surfaces which surround the bar structures as an envelope.
A few examples of curtains according to the invention are now given subsequently. There are thereby shown
In Figures A to E,
As represented in
The surface 14 terminates externally on the right at the bottom in a sharp edge 17 so that no reflection occurs there which could dazzle the user inside the room (on the left of the slat 2 in
The spacing of the slat bars depends upon the position of use and purpose of use. For example, in areas near the equator the sun is higher than in temperate latitudes so that the slat bars there can have a larger spacing. Alternatively, the surface 14 can also be shorter or longer.
A surface of this type is shown for example in
In
The bars represented in
Here as in the following, the same or similar reference numbers are used for the same or similar elements by all the Figure descriptions and in all the Figures.
In
In
In
The profiles represented in
In
In
The reinforcing foil in
In both cases, during the mechanical effect, the curtain closes because of bending of the predetermined bending point 19. As can be detected in
In the case of the two profiles represented in
In
In the interior of the hollow space 16a, a further surface 15b extends upwards, starting from the free end of the third surface 13 until it almost abuts against the fourth surface 14. There it bends downwards towards the connection point to the first surface 11 and the third surface 13. The third surface 13, the surfaces 15b and 15c thus form a hollow space 16b.
In
This shape is further modified in
In all these embodiments in
These profiles are built upon the profile known with the description s_enn and can be rolled up for internally and externally situated applications. Basically, the cavities produced with these profiles do not require a mechanical connection. It is however conceivable that the profiles are connected to each other with mechanical connections, such as gluing, soldering or welding.
In
In
In
In
These profiles which are shown in
In
If the surface 14 also extends downwards and if it is connected to the surface 13 or the free end thereof instead of to the surface 12, then a transition region 19 can be produced here which is rounded in the other direction.
Upwardly open recesses 19, as in
In this case, the profiles comprise a Z-shaped or accordion-shaped successive arrangement of a large number of individual surfaces 22a to 22g (
The surface 22a situated in the room interior is vertical, whilst surfaces which are inclined alternately slightly to the right or to the left abut against it. The adjacent surfaces are thereby connected to each other alternately at their upper or lower end so that in total an accordion-like absorber structure is produced.
In
Whilst, in
Furthermore, the envelope 9b and the envelope 9c are illustrated in
In
Whilst in
The material of these energy-absorbing structures must be so ductile with elastic deformation that it does not break or it must be elastic. In particular painted aluminium, stainless steel, other metals, plastic materials or also composite materials are suitable for this purpose. All these profiles can be produced preferably by roller-shaping.
In
Number | Date | Country | Kind |
---|---|---|---|
102006005509.8 | Feb 2006 | DE | national |
The present application is a continuation of PCT Application No. PCT/EP2007/001045 filed on Feb. 7, 2007 that claims priority to German Application No. DE 102006005509.8, filed on Feb. 7, 2006. Both applications are incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2007/001045 | Feb 2007 | US |
Child | 12185326 | US |