1. Field of the Invention
The present invention relates to a splinter shield for a vacuum pump and a vacuum pump having the splinter shield. More particularly, the present invention relates to a splinter shield for a vacuum pump, which has a sufficiently enhanced fastening strength to a fixing groove and is capable of sufficiently preventing the splinter shield itself from bending toward the inside of a vacuum pump when air rushes into the pump through an inlet port, and further relates to a vacuum pump having such splinter shield.
2. Description of the Related Art
In a conventional high speed rotary vacuum pump such as a turbomolecular pump, a splinter shield for preventing the entry of foreign matters is mounted on an inlet port provided inside a flange part of a casing upper end part in order to prevent the entry of foreign matters to a rotator inside pump equipment through the inlet port. When the flange part is of ISO standards, the splinter shield cannot be screwed and fixed to the inlet port due to a space-related problem. In addition, without a predetermined strength, the splinter shield might bend toward the inside of the pump upon rush of air into the pump through the inlet port and come into contact with the equipment inside the pump, such as a rotary vane, causing damage to the pump. Therefore, the splinter shield needs to have a predetermined strength.
Under such circumstances, there exists a first conventional technology, shown in
Further,
When air rushes into the pump through the inlet port 4, the inclined brim part 11a tends to deform in a manner shown by a virtual line in
For example, the following vacuum pump is known as a conventional technology relating to the vacuum pump described above. In this conventional technology, a casing base part is screwed and fixed to a lower flange part of a base configuring a substrate of a vacuum pump of turbomolecular pump type. A rotor is attached to an upper end of a rotating shaft of a casing central part. The rotor is provided with rotary vanes in a radially spread manner at certain intervals, the rotary vanes being directed toward an inner circumference of a casing. On the other hand, multiple steps of ring-shaped spacers are disposed in a stacked manner on the inner circumference side of the casing, and a stationary vane having its base part held between the spacers is provided in a manner as to extend toward the rotor. A turbo mechanism is configured by alternately superposing the rotary vanes and the stationary vanes from the inside and the outside. The splinter shield has an annular plate (ring) around the rim thereof so as to be mounted on an inlet port. This annular ring part is held between a step part of a casing upper part and the top spacer and then held by the inlet port (see Japanese Patent Application Publication No. H11-247790, for example).
The first conventional technology generates high costs because the splinter shield is formed with the composite part obtained by superposing the wire net and the reinforcing plate formed separately. In the structure for fixing the splinter shield to the inlet port, a flat section in which the circumferential edge rim of the wire net and the circumferential edge plate part of the reinforcing plate are superposed is inserted into the fixing groove, and then the retaining ring is pushed into the fixing groove. This easily results in inadequacy of fastening strength of the splinter shield to the fixing groove, and the splinter shield might bend more toward the inside of the pump, depending on the force of air rushing into the pump through the inlet port. Consequently, the splinter shield might come into contact with the equipment inside the pump, and the inserted part might be released from the fixing groove, dropping the splinter shield.
In the second conventional technology, the height h of the inclined brim part corresponds to the insertion width of the fixing groove, and pushing the inclined brim part into the fixing groove can tightly couple the inclined brim part and the fixing groove to each other and fix the splinter shield to the inlet port. Thus, it is difficult to manage the inclination angle and the height h of the inclined brim part, and it is extremely difficult to press the inclined brim part into the fixing groove to tightly couple the inclined brim part and the fixing groove to each other. In this regard, the second conventional technology generates high costs.
In the conventional technology described in Japanese Patent Application Publication No. H11-247790, multiple steps of ring-shaped spacers are disposed in a stacked manner on the inner circumference side of the casing, and the splinter shield is fixed to the inlet port by having the annular ring part between the top spacer and the step part of the casing upper part. Therefore, removing the splinter shield in order to replace the splinter shield requires a troublesome work of removing the screws fixing the casing based part to the lower flange part of the base.
A technical problem to be solved, therefore, is to reduce costs of a splinter shield by obtaining a single sheet of splinter shield having a required strength and enhanced fastening strength to a fixing groove, to prevent the splinter shield from bending toward the inside of a pump and coming into contact with equipment inside the pump when air rushes into the pump through an inlet port, so that the splinter shield does not fall, and to facilitate attachment and removal of the splinter shield with respect to the inlet port. An object of the present invention is to solve this problem.
The present invention was contrived in order to achieve the object described above, and an invention described in claim 1 provides a splinter shield for a vacuum pump in which a rim formed in a circumferential edge portion of the splinter shield is inserted into a fixing groove that is provided in a concave manner in an inner circumferential portion of an inlet port of the vacuum pump, and the splinter shield is provided in a tensioned manner to the inlet port by pushing a retaining ring into the fixing groove, wherein locking parts that are locked into the retaining ring at a plurality of sections in the rim are provided in a standing manner at substantially right angles to the rim.
According to this configuration, the locking parts are provided in a plurality of sections in the rim in such a manner as to stand in a standing manner at substantially right angles to the rim and locked into the retaining ring so that the fastening strength of the splinter shield to the fixing groove becomes sufficiently strong. Therefore, the splinter shield can be prevented from bending toward the inside of the pump and falling when air rushes into the pump through the inlet port.
An invention described in claim 2 provides, in the invention described in claim 1, a splinter shield for a vacuum pump, having a wire netting portion and a rib portion for reinforcement disposed as a crosspiece within the rim, wherein the wire netting portion and the rib portion are integrally formed with a single sheet member.
According to this configuration, the strength of the splinter shield itself can be enhanced by integrally forming the wire netting portion and the rib portion for reinforcement. Therefore, the splinter shield can be prevented, more certainly, from bending toward the inside of the pump when air rushes into the pump through the inlet port.
An invention described in claim 3 provides a vacuum pump having the splinter shield for a vacuum pump according to claim 1 or 2.
According to this configuration, the splinter shield providing sufficiently strong fastening strength with respect to the fixing groove and having a reinforced strength is provided in a tensioned manner to the inlet port. Thus, the splinter shield can certainly be prevented from bending toward the inside of the pump when air rushes into the pump through the inlet port.
The invention described in claim 1 can sufficiently enhance the fastening strength of the splinter shield with respect to the fixing groove. As a result, the splinter shield can be prevented from bending toward the inside of the pump, coming into contact with the equipment inside the pump and falling when air rushes into the pump through the inlet port. In addition, because this invention is not configured to push the locking parts into the fixing groove to tightly couple the locking parts and the fixing groove to each other, the locking parts being provided in a standing manner at substantially right angles to the rim, the invention has an advantage of easy attachment and removal of the splinter shield with respect to the inlet port.
In addition to the effect of the invention described in claim 1, an advantage of the invention described in claim 2 is that the splinter shield alone can be provided with a required strength without a composite part obtained by superposing a wire net and a reinforcing plate which are formed separately, accomplishing a reduction of the costs.
An advantage of the invention described in claim 3 is that the splinter shield can certainly be prevented from bending toward the inside of the pump and coming into contact with the equipment inside the pump such as rotary vanes when air rushes into the pump through the inlet port, because the strong splinter shield having a sufficiently enhanced fastening strength with respect to the fixing groove is provided in a tensioned manner to the inlet port.
In order to accomplish the object of reducing costs of a splinter shield by obtaining a single sheet of splinter shield having a required strength and enhanced fastening strength to a fixing groove, preventing the splinter shield from bending toward the inside of a pump and coming into contact with equipment inside the pump when air rushes into the pump through an inlet port, so that the splinter shield does not fall, and facilitating attachment and removal of the splinter shield with respect to the inlet port, the present invention realizes a splinter shield for a vacuum pump in which a rim formed in a circumferential edge portion of the splinter shield is inserted into a fixing groove that is provided in a concave manner in an inner circumferential portion of an inlet port of the vacuum pump, and the splinter shield is provided in a tensioned manner to the inlet port by pushing a retaining ring into the fixing groove, wherein locking parts that are locked into the retaining ring at a plurality of sections in the rim are provided in a standing manner at substantially right angles to the rim.
A preferred embodiment of the present invention is described hereinafter with reference to
In
More specifically, the exhaust path 240 alternately connects the gap between an outer circumferential surface of an after-mentioned rotor 170 of the turbomolecular pump part 140 and an inner circumferential surface of the housing 130 that face each other and the gap between an outer circumferential surface of an after-mentioned cylinder rotor 210 of the thread groove pump part 150 and an inner circumferential surface of a stator 230, connects a gap upper end on the turbomolecular pump part 140 side to the inlet port 110, and connects a gap lower end on the thread groove pump part 150 side to the exhaust port 120.
The turbomolecular pump 140 is configured by combining a plurality of rotary vanes 180, which are provided in a protruding manner on the outer circumferential surface of the aluminum alloy rotor 170 fixedly provided to a rotating shaft 160, and a plurality of stationary vanes 190, which are provided in a protruding manner on the inner circumferential surface of the housing 130.
The thread groove pump part 150 is configured by the cylinder rotor 210 and the stator 230. The cylinder rotor 210 is located at a lower end part of the rotor 170 in the turbomolecular pump part 140. The stator 230 faces the outer circumference of the cylinder rotor 210, with a small gap therebetween, and is installed with a thread groove 220 that forms a part of the exhaust path 240 along with the small gap. The thread groove 220 is formed so as to become gradually shallower toward the bottom. The stator 230 is fixed to an inner surface of the housing 130. A lower end of the thread groove 220 is connected to the exhaust port 120 on the lowermost stream side of the exhaust path 240.
A motor rotor 260a of a high-frequency motor 260, such as an induction motor, provided inside a motor housing 250, is fixed to a middle part of the rotating shaft 160. The rotating shaft 160 is supported by a magnetic bearing and provided with upper and lower protective bearings 270.
Operations of the vacuum pump shown in
The gas that moves while being compressed is guided by the rotating cylinder rotor 210 and the thread groove 220 in the thread groove pump part 150, the thread groove 220 forming the small gap together with the stator 230 and becoming gradually shallow toward a downstream of the stator 230. The gas then flows through the exhaust path 240 while being compressed into a viscous flow state, and is then discharged from the exhaust port 120.
A configuration of a splinter shield for a vacuum pump according to the present embodiment is described next. In
Locking parts 12d that are locked into an after-mentioned retaining ring are provided in a plurality of sections in the rim 12a so as to stand in a standing manner at substantially right angles to the rim 12a, as shown in
Fixing the splinter shield for a vacuum pump having the above-described configuration to the inlet port and operations of the splinter shield are described next with reference to
In so doing, the retaining ring 8 is pushed into the fixing groove 7 such that the gap formed in the notch 8a becomes narrow, resulting in an opening tendency. This opening tendency acts to further push the locking parts 12d, whereby the rim 12a with the locking parts 12d is strongly fastened to the fixing groove 7. The splinter shield 12 is fixed to the inlet port 4 by this aspect of fastening the rim 12a having the locking parts 12d to the fixing groove 7.
Furthermore, the strength of the splinter shield 12 itself is enhanced by integrally forming the wire netting portion 12b and the rib portion 12c for reinforcement in the splinter shield 12. Consequently, the splinter shield 12 can sufficiently be prevented from bending toward the inside of the pump and falling when air rushes into the pump through the inlet port 4.
As described above, four pairs of the locking parts 12d are formed at equal intervals in the circumferential edge portion of the splinter shield 12. These four pairs of locking parts 12d are pushed into and fastened to the fixing groove 7 by the retaining ring 8. In addition, the locking parts 12d are pushed into and fastened to the fixing groove 7 by the retaining ring 8, instead of pushing the locking parts 12d into the fixing groove 7 and the tightly coupling and fastening the locking parts 12d to the fixing groove 7. Therefore, the splinter shield 12 can easily be attached to or removed from the inlet port 4 by simple attachment or removal of the retaining ring 8.
As described above, in the splinter shield for a vacuum pump according to the present embodiment and the vacuum pump having such splinter shield, the splinter shield 12 is obtained as a single piece of sheet by integrally forming the wire netting portion 12b and the cross-shaped rib portion 12c for reinforcement, instead of obtaining a composite part in which a wire net and reinforcing plate are formed separately and superposed on each other. Thus, the splinter shield 12 has a required strength, and the costs thereof can be reduced.
The fastening strength of the splinter shield 12 to the fixing groove 7 can be enhanced sufficiently. As a result, the splinter shield 12 can be prevented from bending toward the inside of the pump and coming into contact with the equipment inside the pump such as the rotary vanes when air rushes into the pump through the inlet port 4. As a result, damage to the pump can be prevented, and the splinter shield 12 can be prevented from falling.
Because the present invention is not configured to push the locking parts 12d into the fixing groove 7 to tightly couple the locking parts 12d and the fixing groove 7 to each other, the locking parts 12d being provided in a standing manner at substantially right angles to the rim 12a, the splinter shield 12 can easily be attached to and removed from the inlet port 4.
Note that various modifications can be made to the present invention without departing from the spirit of the present invention, and it should be clearly understood that the present invention is intended to encompass such modifications.
The present invention can be applied widely to all types of gas intake mechanisms that need to be able to reduce costs of a splinter shield by obtaining a single sheet of splinter shield having a required strength and enhanced fastening strength to a fixing groove, to prevent the splinter shield from bending toward the inside of a gas intake mechanism and coming into contact with equipment inside the gas intake mechanism when air rushes into the gas intake mechanism through an inlet port, so that the splinter shield does not fall, and to facilitate attachment and removal of the splinter shield with respect to the inlet port.
Number | Date | Country | Kind |
---|---|---|---|
2010-261624 | Nov 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/067317 | 7/28/2011 | WO | 00 | 5/10/2013 |