The present invention relates to a hinge, and more particularly to a split barrel structure of a hinge. The split barrel structure has two partial barrels separately extended from two mating leaf portions. When the two leaf portions are aligned with and connected to each other, defining a hollow space for retaining a shaft of a pintle.
Hinges are quite often used in various electric and electronic apparatus to connect two members of the apparatus, so that the two members are pivotally turnable about the hinges relative to one another. For example, a notebook computer uses hinges to pivotally connect a liquid crystal display (LCD) to a computer case, so that a user may pivotally lift and close the LCD from and onto the computer case. There are still many other devices, such as mobile phones, personal digital assistants (PDAs), global positioning systems (GPSs), and many testing instruments, that use hinges thereon.
A conventional hinge mainly includes one or two leaves, each of which is formed at one lateral edge with a barrel, through which a pintle is extended. When the pintle is turned, an outer wall surface of the pintle is in frictional contact with an inner wall surface of the barrels, so as to provide a fixed moment of force required by the apparatus using the hinge. To enable the device using the hinge to always have constant friction moment when being lifted or closed, a forward-extending barrel and a reversely-extending barrel are normally provided at one lateral edge of the leaf, so that the two barrels enclose the pintle in two opposite directions.
There are various types of hinges of prior art developed to meet different demands for hinges. For example, U.S. Pat. No. 6,671,929 discloses a hinge for a notebook computer composed of a pintle, a resilient sleeve, and two barrels. Each of the two barrels is formed at one side of a leaf, and the pintle is extended through the two barrels to thereby connect to the two leaves. U.S. Pat. No. 6,820,307 discloses an elastic hinge for a notebook computer compose of a pintle and two barrels. Each of the two barrels is formed at one side of a leaf, and the pintle is extended through the two barrels to thereby connect to the two leaves. U.S. Pat. No. 6,470,532 discloses a hinge for notebook computer including a band portion having a cylinder portion formed at one edge thereof, a lid portion having an opening formed thereon, and a hinge pin extended through the cylinder portion on the band portion and the opening on the lid portion. U.S. Pat. No. 6,711,782 discloses a duplex opposite friction hinge. U.S. Pat. No. 6,321,416 discloses a hinge for a notebook computer composed of a leaf having a C-shaped sleeve formed at an edge thereof and a pintle pivotally received in the C-shaped sleeve of the leaf.
There are some problems existed in the hinges of prior art. For example, most of the conventional hinge structures include at least one leaf, one side of which is curved approximately by 360 degrees to form at least one barrel. It requires highly accurate technique and accordingly, highly precision machines to mechanically form the barrel. Once the barrel is formed, it is impossible to adjust a compression force applied by the barrel against the pintle. When the hinge has been used over a long time, the compression force applied by the barrel against the pintle would become reduced due to wearing off of material under frequent frictional contact of the barrel with the pintle.
There is also problem in the association of the pintle with the barrel. Since the formed barrel has a considerably high mechanical deformation resistance, the pintle is conventionally fitted in the barrel by aligning the pintle with the barrel and then driving the pintle into the barrel with a suitable tool. By doing this, a lot of time and labors are required while there is a high defect rate of the final products. In case of any minor error in the assembling operation, both the pintle and the leaf are subjected to damage, and the inaccurately assembled hinge has to be wasted.
A primary object of the present invention is to provide a hinge formed from two mating leaf portions which are complementarily paired to form a barrel structure for clamping a pintle therein. The split barrel structure includes two partial barrels mated with a complementary curved part each, and can therefore be more easily fabricated without the need of highly accurate mechanical forming technique.
Another object of the present invention is to provide a split barrel structure for hinge, which may include partial barrels correspondingly formed on two mating leaf portions of a hinge, so that the split barrel structure not only has good mechanical deformation resistance, but also allows easy assembling of a pintle thereto.
A further object of the present invention is to provide a split hinge barrel structure that includes two partial barrels extended from two mating leaf portions, and a pintle can be easily clamped in the partial barrels when the two mating leaf portions are aligned and bound together.
A still further object of the present invention is to provide a hinge structure that includes parts that could be separately manufactured and then easily assembled, enabling the hinge to be produced at high yield rate.
To fulfill the above objects, the present invention provides a split barrel structure for a hinge. The split barrel structure includes a first partial barrel and an adjoining first complementary curved part extended from a first leaf portion in a first circular direction, and a second partial barrel and an adjoining second complementary curved part extended from a second leaf portion in a second circular direction. When the first leaf portion is aligned with the second leaf portion face to face, the first partial barrel and the first complementary curved part mate with the second complementary curved part and the second partial barrel, respectively, to form a split barrel for clamping a shaft of a pintle of the hinge therein. The aligned first and second leaf portions are then bound together using binding elements. Alternatively, the first and the second leaf portion are integrally connected at an edge via a bending section.
Since the present invention provides a split hinge barrel structure formed from two mating parts that could be separately manufactured, a hinge can be more easily formed at high yield rate simply by assembling these mating parts together. Moreover, the split hinge barrel structure may be differently designed to meet the requirements in different usages. And, since the pintle of the hinge could be easily clamped in the split barrel structure, it is not necessary to drive the pintle into the hinge barrel with a tool, and the hinge could be assembled at high efficiency with high yield rate. In the event any one of the two mating parts of the split hinge barrel structure is inaccurately manufactured or incorrectly assembled to cause damage thereof, a user needs only to replace the damaged mating part with a good one, and it is not necessary to discard the whole hinge.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
Please refer to
Please also refer to
A first complementary curved part 16 having a free end 161 is extended from the complement-forming section 112 of the first leaf portion 1 in the same circular direction II as the first partial barrel 13.
The second leaf portion 2 is a flat sheet member extended in a second leaf horizontal datum plane III, and has a first edge 21 and a second edge 22 opposite to the first edge 21. The first edge 21 is divided into two adjoining sections, namely, a barrel-forming section 211 and a complement-forming section 212. The barrel-forming section 211 of the second leaf portion 2 is located corresponding to the complement-forming section 112 of the first leaf portion 1, and the second complement-forming section 212 of the second leaf portion 2 is located corresponding to the barrel-forming section 111 of the first leaf portion 1.
Please also refer to
A second complementary curved part 26 having a free end 261 is extended from the complement-forming section 212 of the second leaf portion 2 in a circular direction opposite to the circular direction II.
The first and the second leaf portion 1, 2 are correspondingly provided with at least one through hole 14, 24 each. A binding element 3 may be aligned with and then sequentially extended through the through hole 14 on the first leaf portion 1 and the through hole 24 on the second leaf portion 2 to thereby align and fasten the first leaf portion 1 with the second leaf portion 2 to form a complete leaf structure. The binding element 3 may be, for example, a bolt, a rivet, or other functionally equivalent devices, so long as it is able to fix and hold the first and the second leaf portions 1, 2 in place.
To assemble the hinge 100, firstly the first leaf portion 1 is aligned with the second leaf portion 2 face to face. At this point, the free end 161 of the first complementary curved part 16 is located adjacent to the free end 232 of the second partial barrel 23. Similarly, the free end 261 of the second complementary curved part 26 is located adjacent to the free end 132 of the first partial barrel 13. As a result, the first partial barrel 13 and the first complementary curved part 16 are mated with the second complementary curved part 26 and the second partial barrel 23, respectively, to form a split barrel structure with a hollow space therebetween for receiving a shaft 41 of a pintle 4 therein. Finally, the at least one binding element 3 is used to firmly bind the first and the second leaf portions 1, 2 together, so that the shaft 41 of the pintle 4 is compressively clamped in the split barrel structure to complete the hinge 100.
The first and the second leaf portions 1, 2 are also correspondingly provided with a plurality of fastening holes 15, 25 each. A known type of fastening elements (not shown) may be extended through the fastening holes 15, 25 to lock the first and second leaf portions 1, 2 to a desired member, such as a computer case of a notebook computer. The pintle 4 also includes an end plate 42 connected to an end of the shaft 41. The end plate 42 is provided with a plurality of fastening holes 421, via which a known type of fastening elements (not shown) may be extended to lock the end plate 42 of the pintle 4 to a desired member, such as a liquid crystal display (LCD) of a notebook computer.
Preferably, the shaft 41 is formed at a free end opposite to the end plate 42 with an expanded head portion 43, so that the split barrel structure composed of the aligned and joined first and second partial barrels 13, 23 is located between the end plate 42 and the expanded head portion 43 when compressively receiving the shaft 41 therein. In this manner, the pintle 4 is prevented from axially separating from the split barrel structure of the hinge 100.
Please refer to
To assemble the hinge 200, first align the first leaf portion 1 with the second leaf portion 2. As a result, the first partial barrel 13 and the first complementary curved part 16 are mated with the second partial barrel 23 and the second complementary curved part 26, respectively, to form a split barrel structure with a hollow space therebetween for receiving the shaft 41 of the pintle 4 therein. Finally, the at least one binding element 3 is used to bind the first and the second leaf portion 1, 2 together, so that the shaft 41 of the pintle 4 is compressively clamped in the split barrel structure to complete the hinge 200.
Similarly, the second edge 21 of the second leaf portion 2 in the fourth embodiment is divided into at least two spaced barrel-forming sections 211, 211a and at least two spaced complement-forming sections 212, 212a, which are disposed in a staggered arrangement. Two second partial barrels 23, 23a are extended from the two barrel-forming sections 211, 211a, respectively; and two second complementary curved parts 26, 26a are extended from the two complement-forming sections 212, 212a, respectively.
When the first leaf portion 1 and the second leaf portion 2 in the fourth embodiment have been aligned with each other face to face, the first complementary curved parts 16, 16a on the first leaf portion 1 are located correspondingly to and complementarily with the second partial barrels 23, 23a; and the second complementary curved parts 26, 26a on the second leaf portion 2 are located correspondingly to and complementarily with the first partial barrels 13, 13a. As a result, the first partial barrels 13, 13a and the first complementary curved parts 16, 16a are mated with the second complementary curved parts 26, 26a and the second partial barrels 23, 23a, respectively, to form a split barrel structure for compressively receiving the shaft 41 of the pintle 4 therein.
Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
96104233 A | Feb 2007 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
2507759 | Dath | May 1950 | A |
2533590 | Kutik, Jr. | Dec 1950 | A |
3035864 | Davidson | May 1962 | A |
4617699 | Nakamura | Oct 1986 | A |
4788748 | Bizek | Dec 1988 | A |
4930753 | Alvyn | Jun 1990 | A |
5052078 | Hosoi | Oct 1991 | A |
5943738 | Karfiol | Aug 1999 | A |
5967587 | Collet et al. | Oct 1999 | A |
6120084 | Wieczorek | Sep 2000 | A |
6176539 | Westerman | Jan 2001 | B1 |
6249951 | Saida et al. | Jun 2001 | B1 |
6296293 | Peterson et al. | Oct 2001 | B1 |
6711782 | Su | Mar 2004 | B1 |
6748625 | Lu | Jun 2004 | B2 |
6986188 | Lu et al. | Jan 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20080184530 A1 | Aug 2008 | US |