Split ends closure device and methods of use

Information

  • Patent Grant
  • 8828049
  • Patent Number
    8,828,049
  • Date Filed
    Thursday, January 21, 2010
    14 years ago
  • Date Issued
    Tuesday, September 9, 2014
    10 years ago
Abstract
Devices for and methods of closing a patent foramen ovale (PFO), thus reducing or eliminating blood flow through the defect The device is formed from a tubular structure having split ends, such that, after insertion, struts defined by the split ends pivot in a radial direction away from the tube, thereby securing the device within the septal defect. Methods include inserting the device as a tubular structure into the PFO and causing the struts to extend radially away from the central axis of the device.
Description
BACKGROUND OF THE INVENTION

The invention relates to devices and methods for closing defects such as a patent foramen ovale (PFO).


A PFO is a persistent, one-way, usually flap-like opening in the wall between the right atrium and left atrium of the heart. Since left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap typically stays closed. Under certain conditions, however, RA pressure can exceed LA pressure, creating the possibility for right to left shunting that can allow blood clots to enter the systemic circulation.


In utero, the foramen ovale serves as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale. This closure is typically followed by anatomical closure of the two over-lapping layers of tissue, septum primum and septum secundum. However, a PFO has been shown to persist in a significant minority of adults.


The presence of a PFO has no therapeutic consequence in otherwise healthy adults, however, patients suffering a stroke or TIA in the presence of a PFO and without another cause of ischemic stroke are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event. These patients can be treated with oral anticoagulants, but such drugs have the potential for adverse side effects such as hemorrhaging, hematoma, and interactions with other drugs. In certain cases, such as when the use of anticoagulation drugs is contraindicated, surgery may be used to suture a PFO closed. Suturing a PFO requires attachment of septum secundum to septum primum with a stitch (continuous or interrupted), which is the common way a surgeon shuts the PFO under direct visualization.


Non-surgical closure of PFOs has become possible with umbrella devices and a variety of other similar mechanical closure designs developed initially for percutaneous closure of atrial septal defects (ASD). These devices allow patients to avoid the potential side effects often associated with anticoagulation therapies.


SUMMARY OF THE INVENTION

Embodiments of the invention include devices and methods for closing a septal defect, including a PFO. In one embodiment, the device includes a tubular structure having dimensions suitable for insertion into a catheter, and slits extending from one or both ends that define struts that can pivot away from the rest of the tube to provide desirable anchoring of the device within a septal defect. The slits can be spaced at regular or irregular intervals along the tube circumference, and can have different lengths. A slit extending from one end of the tube can be aligned or offset with respect to a corresponding slit extending from the other end. The configuration of slits can be designed to optimize the distribution of clamping forces provided by the struts defined by the slits. In some embodiments, prior to insertion into the body, struts defined by slits from one end can overlap or touch corresponding struts defined by slits from the other end. The device can further include a recovery wire attached to one or more struts, such that tension applied to the recovery wire can enable the device to be retracted into the catheter.


The device is preferably made from a polymer with shape memory properties, and can also include a means for causing the struts to extend radially when released from the catheter into the body. The means can include a tissue scaffold attached to at least one of the struts, and/or a tensioner, such as an elastic band or string. The tissue scaffold can be made of a bioresorbable material, a flexible biocompatible material capable of promoting tissue growth, a polyester fabric, a Teflon-based material, a polyurethane, a metallic mesh, polyvinyl alcohol, an extracellular matrix, a synthetic bioabsorbable polymeric scaffold, collagen, and combinations thereof. At an axially central portion, the device can further include whiskers to provoke an inflammatory response, a collar including a sponge-like material, a drug coating, or an anticoagulant.


Benefits of certain embodiments can include atraumatic shape, good conformity to the anatomy (especially when used for a PFO), small diameter delivery sheath, no permanent foreign material, ease of manufacturing, cost effectiveness, and overall simplicity. Other features and advantages will become apparent from the following detailed description and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a tube with slits used to form a closure device.



FIG. 2 is a perspective view of the tube of FIG. 1 with the ends shown split extending outwardly.



FIGS. 3 and 4 are a perspective view and front elevational view, respectively, of an embodiment with three struts and whiskers and/or sponge material.



FIGS. 5 and 6 are side and front (through line 6-6 of FIG. 5) views of the device of FIGS. 3 and 4, shown positioned in the PFO.



FIG. 7 is a perspective view of an alternative embodiment to FIG. 3 with a tissue scaffold.



FIGS. 8 and 9 are further embodiments of a closure device, and FIGS. 10 and 11 are perspective views of the device of FIG. 8 with the addition of a connector and shown in vivo.



FIGS. 12-16 are views of another embodiment of the present invention.



FIGS. 17-23 are views of another embodiment shown with and without a tissue scaffold.





DETAILED DESCRIPTION

The present invention includes embodiments of a closure device for a PFO, atrial septal defect (ASD), or other suitable defect, preferably formed from a single tube with cuts made to produce the final device shape. The device can have struts that extend radially outwardly from a central portion, or loops that extend from the central portion and back to the central portion, preferably in a plane that is parallel to the defect (such as the PFO tunnel).


Referring to FIG. 1, in one embodiment a closure device is made from a single polymer tube 10 by providing slits 12, 14 at both ends and setting a desired shape, such as by thermo-mechanical treatment, to produce a design as shown in FIG. 2. This treatment can include heating or other thermal steps, and mechanical steps, such as folding back the struts.


This device has a first set of struts 16a, 16b and a second set of struts 18a, 18b at the opposite end. A center portion 20 is between the ends and typically has no cuts. As shown in FIG. 2, a recovery wire 22 and lug 24 can optionally be provided at a proximal end (right atrium in case of use for a PFO) and coupled to struts 16a, 16b. The device can be collapsed and loaded into a delivery sheath by grabbing the lug and bringing the split ends on a proximal side back together.


The device is formed back into a tube for deployment via a catheter. Upon deployment, the occluder reverts to its designed shape due to elastic recovery of the polymer, shape memory recovery, or/and the use of strings, springs, or elastic sheet (tensile elements). Even though tensile elements may be thinner than the frame, they can produce much higher forces than the frame itself, thus assisting the frame in its recovery. This is possible because the primary mode of deformation is in tension, while the frame deformation mode is in bending and torsion. Tensile elements also provide a way for centering so the occluder can be positioned properly in a wide defect.


Without a wire and a lug or other method to grab the struts at the proximal end, if the proximal end needed to be withdrawn back into a catheter, the struts would fold over the outside of the central portion, thereby increasing the cross-sectional profile. This may be acceptable, but a smaller profile would be obtained by pulling the ends of the struts back into the tubular shape. At the distal end where struts 18a, 18b are (the left atrial end in case of use in a PFO), a pulling action of the device back into a catheter would naturally urge the struts back into the tubular configuration.


The number of radially extending parts (struts) formed from each end of a tube could be greater than two, such as any number from 3 to 10. Using many more struts, such as more than 10, may be possible but could be impractical because there could be a considerable decrease in their stiffness due to the decrease in thickness. More struts at each end may be possible with appropriate materials.



FIGS. 3 and 4 show a closure device 30 with 3 slits made at each end of a tube to form three struts 32a-32c, 34a-34c at each end of the tube. Small strips, referred to here as whiskers 36, made of the same material as the tube or some other materials can be attached to the central portion 38, or material can be partially shaved from the center region 38 of the tube. These whiskers can produce an inflammatory response and speed up the healing process. The whiskers can have a drug coating, such as with an anti-coagulant, or can be made of a drug that is slowly dissolved. Rather than the whiskers as shown, a collar with a foam or sponge-like material, such as polyvinyl alcohol, can be used, and can include an anti-coagulant.



FIGS. 5 and 6 show the embodiment of FIGS. 3 and 4 as deployed in a PFO tunnel. As indicated here, struts 32a and 34a have ends that contact septum primum 50, and struts 32b and 34b have ends that contact septum secundum 52. Struts 32c and 34c are not shown in FIG. 5, but as indicated in FIG. 6, they could be positioned against septum primum or septum secundum. These struts cooperate to provide a compressive clamping force to the PFO.


Center portion 38 can extend through the PFO tunnel and can be at an acute angle A relative to a downward vertical direction. This is an example of how the configuration can conform well to the anatomy.


As shown in top view FIG. 4, the struts can be formed so that they are evenly distributed circumferentially. Generally, the struts can be equally spaced by 360°/n in the circumferential direction, where n is the number of struts; for 3 struts, each strut is at 120° relative to adjacent struts. The struts at one end can be offset by (360°/n)/2 from the struts at the other end.


Such an even distribution at each end and equal offset of the two ends relative to each other can be used, but such relationships are not required. The slits at each end of the tube can be formed in one of a number of different ways, and can produce struts that have different widths. In addition, while the slits may be rather narrow as shown, such that the sum of the widths of the struts is just a little less than the circumference of the tube, the slits can be made wider so that the struts are narrower, although it is generally preferable to have wider struts to provide good support.



FIG. 7 is a perspective view of a device similar to that of FIGS. 3 and 4, but with the addition of a tissue scaffold. While preferably bioresorbable, the tissue scaffold may be formed of any flexible, biocompatible material capable of promoting tissue growth, including but not limited to polyester fabrics, Teflon-based materials such as ePTFE, polyurethanes, metallic meshes, polyvinyl alcohol (PVA), extracellular matrix (ECM), or other bioengineered material, synthetic bioabsorbable polymeric scaffolds, other natural materials (e.g. collagen), or combinations of the foregoing materials. Also, a tissue scaffold may be formed of a thin metallic film or foil. The scaffold may be attached to one or both sides of the device. The tissue scaffold or the frame can have drugs or biological agents to accelerate the defect healing process and/or decrease thrombosis.


Referring to FIG. 8, in another embodiment, the tube has four slits at each end to produce four struts at each end of the tube. As indicated above, whiskers and/or sponge material and tissue scaffolds could be added, as could a recovery wire and lug.


Referring to FIG. 9, an embodiment similar to that of FIG. 8 is shown with the addition of elastic bands or strings 90, 92 extending from ends of struts at one end to ends of struts at another end. These bands can be provided for some or all of the opposing struts. As shown here, the struts can be located at the same circumferential position at each end (and not offset, unlike in FIG. 4). The strings help to bend back the struts, and can also help to orient and center the device as shown below.


In the embodiments of FIGS. 10 and 11, device 100 has four struts at each end. From each of two of the struts, an elastic band 102, 104 extends from one strut to a corresponding strut at the opposite end of the device. The bands can provide centering and/or be inflammatory.



FIGS. 12-15 show another embodiment. Referring specifically to FIG. 12, the tube has several different slits, including two longer slits, 180° apart, at each end to form bases 120 and 122 for struts, and two shorter slits are made, offset by 90° from the longer slits, to form struts 124, 126, 128, and 130 at one end. As also shown in FIGS. 13 and 14, struts 124-130 can be formed at one end to be offset at a circumferential angle of 90° with respect to struts at the other end, identified here as struts 132, 134, 136, and 138.


Referring to FIG. 15, in this side view, it is shown that the struts can be formed during manufacture such that the ends of the struts at opposite ends overlap when treated and before deployment. In other words, a distal end strut 126 and a proximal end strut 136 cross such that the end of strut 126 is closer to the proximal end than the end of proximal strut 136.


This configuration may be more suitable for a polymer embodiment or for another type of material that may not have full recovery force. Nitinol, for example, has rather high recovery force and is better able to reassume its original shape after being folded into a catheter and then deployed. A polymer may not have quite as much recovery force, and therefore it can be useful to compensate partially for this by allowing struts at one end to cross the struts at the other end in the manufactured configuration. The struts will be contacting tissue that separates them, and therefore in the deployed position, the struts will be spaced part and not overlap.


Referring to FIG. 16, the tube in this case is shown with slits that are somewhat similar to that in FIG. 12, except that rather than the long slits being offset as in FIG. 12, the long slits in FIG. 16 at opposite ends are circumferentially aligned. In this embodiment, struts 162, 164, 166 and 168 are produced at one end, with similar struts at the other end. Unlike the embodiment as shown in FIG. 13, in which struts 124 and 128 extend substantially parallel, struts 162 and 166 are curved to come together at an end 170. Other struts are matched up pairwise in a similar manner, forming in effect four loops.


Each of these loops is preferably parallel to the defect. This allows most of the loop to be in contact with the tissue, such as one of the septa in the case of a PFO. The loop can be perpendicular to the defect, which is more like a strut that doubles back to the central portion. This configuration is possible but less desirable.


As shown in FIG. 19, the ends 170, 172 of these loops can be formed to be very close together or even touch when manufactured. As described above, a material with a recovery that does not fully come back into place may be compensated by bringing the ends together or overlapping as described above.



FIG. 20 shows still another embodiment. As shown here, shorter and longer axial slits are not that much different, thereby producing larger loops when ends of the struts are brought together as shown in FIGS. 21 and 22 to create loops in a manner similar to that shown in FIG. 17. In this case, a tissue scaffold can also be provided in advance and during manufacture to the loops to result in the scaffold on the device as shown in FIGS. 21 and 22.


As indicated, the slits can have different widths, different numbers, and different slits can be formed with different lengths. In the case of struts, the ends of the struts contact the tissue, while in the case of the loops, as shown in FIGS. 17 and 21, for example, the loop may contact the tissue over a larger area, thereby producing less trauma to the patient. To reduce trauma with struts, ends of the struts can be modified, such as rounded to reduce trauma that may be provided to septum primum and septum secundum when implanted.


The proximal and distal end loops in FIG. 17 are aligned, but they could be rotationally offset, preferably by 90 degrees so the ends are perpendicular to each other. This can be accomplished by changing the pattern of slits in a tube.


As indicated before, the device can be deployed through a catheter using generally conventionally known processes. This description relates to the use for a PFO, where the proximal side is the right atrium and the distal side is the left atrium, but the process could be used for other types of defects or treatments.


The occluder in its manufactured form is essentially folded back into the tubular form and inserted into a catheter. The distal end of the catheter is inserted into the left atrium where the catheter and the occluder are moved relative to each other so that the struts, loops, or other radial pieces can fan out to contact septum primum and septum secundum. This movement can be accomplished by pushing the occluder out of the catheter or retracting the catheter so that the occluder is not constrained and can fan out. At this stage, it should not be difficult to pull the device back into the catheter if necessary to remove or reposition, as the radial pieces will tend to go back into the catheter.


When positioning at the distal end is satisfactory, the catheter is retracted through the PFO tunnel between septum primum and septum secundum to expose the central portion, and is then moved further in the proximal direction to the device so that the catheter ceases to constrain the radial pieces from fanning out in the right atrium. As indicated above in FIG. 2, a recovery lug can be provided so that if the device is positioned and it is desirable to retrieve it, hooks or arms can be used to grab the lug to pull the proximal end in the right atrium back into a tubular configuration. Further distal direction movement of the catheter relative to the device will cause the distal (left atrium) end to be drawn back into the catheter.


As indicated before, the device can be made of nitinol or some other metal with good recovery or shape memory properties, or it can be made of a polymer. In the case of a polymer, the polymer is preferably treated to make it make it radiopaque so that it can be seen on x-ray or other imaging equipment.


The shape and construction of such devices can have some advantages over other PFO closure devices. It has atraumatic shape, good embolization resistance in some embodiments, and the ability to conform to the anatomy, especially in a defect tunnel due to the angled joint between the proximal and distal side. The device can be repositioned or/and removed during delivery. It has a small profile after deployment. It can be made of bioresorbable components. Certain embodiments can be used to close symmetric defects (e.g., atrial septal defects) or asymmetric defects (e.g., PFO) using two versions of the device, i.e., one with a straight center tube and one with an angled center tube.


Occluders as described herein can be used with anti-thrombogenic compounds, including but not limited to heparin and peptides, to reduce thrombogenicity of the occluder and/or to enhance the healing response of the septal tissue following deployment of the occluder in vivo. Similarly, the occluders described herein may be used to deliver other drugs or pharmaceutical agents (e.g., growth factors, peptides, or cells). The anti-thrombogenic compounds, drugs, and/or pharmaceutical agents may be included in the occluders of the present invention in several ways, including by incorporation into the tissue scaffold, as previously described, or as a coating, e.g. a polymeric coating, on the tube(s) forming the distal side and proximal side of the occluder. Furthermore, the occluders described herein may include cells that have been seeded within the tissue scaffold or coated upon the tube(s) forming the distal side and proximal side of the occluder.


In some of the embodiments, such as that of FIG. 1, the occluder can be unitary or even monolithic (except for coatings or other surface treatments).


Having described preferred embodiments of the invention, it should be apparent that various modifications may be made without departing from the spirit and scope of the invention. While the device can be made from an extruded tube, pieces of polymer or other material can also be used to make the device by applying different joining methods such as welding, gluing, etc. The strands may have circular or polygonal cross-sections. The device can also be molded. The tube cross-section may be circular or polygonal (including square and rectangular). While in most cases, each end has the same number of slits or loops, either aligned or offset, each end can be formed differently; e.g., one end could have a different number or configuration of struts.

Claims
  • 1. A method for closing a PFO, the method comprising: inserting a tubular structure into the PFO via a catheter, the tubular structure having a central axis, a proximal end, and a distal end, wherein both of the ends has a first plurality of slits having a first length that extend in an axial direction from the proximal and distal end of the tubular structure to form bases for struts, and a second plurality of slits having a second length shorter than the first length that extend in an axial direction from the bases of the tubular structure and are offset from the first plurality of slits to form struts, said struts having a free end, wherein the tubular structure is a polymer, a metal with shape memory properties, or a metal with elastic recovery properties, such that radial extension of the struts is caused by at least one of a temperature change associated with insertion into the PFO and elastic recovery upon removal of the tubular structure from the catheter;causing the struts to extend radially away from the central axis such that the free ends of the struts on both the proximal and distal ends curve toward one another to form a plurality of opposing parallel open loops on both the proximal and distal ends, so the struts secure a central portion of the tubular structure within a tunnel of the PFO; andclosing the PFO.
  • 2. The method of claim 1, wherein the radial extension of the struts is assisted by at least one tensioner comprising at least one of an elastic band and a string, the tensioner attached at one end to a strut extending from the distal end of the tubular structure and at the other end to an opposing strut extending from the proximal end of the tubular structure.
  • 3. The method of claim 1, wherein a tissue scaffold is attached to at least one of the struts.
  • 4. The method of claim 1, wherein the tubular structure includes a central structure that assists a healing of a tissue adjacent to the PFO following insertion of the tubular structure, the central structure comprising at least one of whiskers attached to the exterior of the tubular structure and a collar including a drug-dispensing sponge-like material.
  • 5. The method of claim 1, wherein the first plurality of slits comprises two slits that are 180° apart, and the second plurality of slits comprises two slits that are radially offset by 90° from the first plurality of slits.
  • 6. The method of claim 1, wherein the first plurality of slits on the proximal end are aligned with the first plurality of slits on the distal end.
  • 7. The method of claim 1, wherein the first plurality of slits on the proximal end are circumferentially offset from the first plurality of slits on the distal end.
  • 8. The method of claim 1, wherein ends of the struts are rounded to reduce trauma when the device is implanted.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 11/102,884 filed Apr. 8, 2005, now abandoned which claims priority to U.S. Provisional Application 60/561,544, filed Apr. 9, 2004, the entire contents of both application are incorporated herein by reference.

US Referenced Citations (283)
Number Name Date Kind
3824631 Burstein et al. Jul 1974 A
3874388 King et al. Apr 1975 A
3875648 Bone Apr 1975 A
3924631 Mancusi, Jr. Dec 1975 A
4006747 Kronenthal et al. Feb 1977 A
4007743 Blake Feb 1977 A
4149327 Hammer et al. Apr 1979 A
4425908 Simon Jan 1984 A
4610674 Suzuki et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4696300 Anderson Sep 1987 A
4710192 Liotta et al. Dec 1987 A
4836204 Landymore et al. Jun 1989 A
4840623 Quackenbush Jun 1989 A
4902508 Badylak et al. Feb 1990 A
4915107 Rebuffat et al. Apr 1990 A
4917089 Sideris Apr 1990 A
4956178 Badylak et al. Sep 1990 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5078736 Behl Jan 1992 A
5106913 Yamaguchi et al. Apr 1992 A
5108420 Marks Apr 1992 A
5124109 Drossbach Jun 1992 A
5149327 Oshiyama Sep 1992 A
5167363 Adkinson et al. Dec 1992 A
5167637 Okada et al. Dec 1992 A
5171259 Inoue Dec 1992 A
5192301 Kamiya et al. Mar 1993 A
5222974 Kensey et al. Jun 1993 A
5226879 Ensminaer et al. Jul 1993 A
5236440 Hlavacek Aug 1993 A
5245023 Peoples et al. Sep 1993 A
5245080 Aubard et al. Sep 1993 A
5250430 Peoples et al. Oct 1993 A
5257637 El Gazayerli Nov 1993 A
5275826 Badylak et al. Jan 1994 A
5282827 Kensey et al. Feb 1994 A
5284488 Sideris Feb 1994 A
5304184 Hathaway et al. Apr 1994 A
5312341 Turi May 1994 A
5312435 Nash et al. May 1994 A
5316262 Koebler May 1994 A
5334217 Das Aug 1994 A
5350363 Goode et al. Sep 1994 A
5354308 Simon et al. Oct 1994 A
5411481 Allen et al. May 1995 A
5413584 Schuize May 1995 A
5417699 Klein et al. May 1995 A
5425744 Fagan et al. Jun 1995 A
5433727 Sideris Jul 1995 A
5451235 Lock et al. Sep 1995 A
5478353 Yoon Dec 1995 A
5480353 Garza, Jr. Jan 1996 A
5480424 Cox Jan 1996 A
5486193 Bourne et al. Jan 1996 A
5507811 Koike et al. Apr 1996 A
5534432 Peoples et al. Jul 1996 A
5540712 Kleshinski et al. Jul 1996 A
5562632 Davila et al. Oct 1996 A
5577299 Thompson et al. Nov 1996 A
5601571 Moss Feb 1997 A
5618311 Gryskiewicz Apr 1997 A
5620461 Muijs Van De Moer et al. Apr 1997 A
5626599 Bourne et al. May 1997 A
5634936 Linden et al. Jun 1997 A
5649950 Bourne et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5663063 Peoples et al. Sep 1997 A
5683411 Kavteladze et al. Nov 1997 A
5690674 Diaz Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5702421 Schneidt Dec 1997 A
5709707 Lock et al. Jan 1998 A
5717259 Schexnayder Feb 1998 A
5720754 Middleman et al. Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5733294 Forber et al. Mar 1998 A
5733337 Carr, Jr. et al. Mar 1998 A
5741297 Simon Apr 1998 A
5776183 Kanesaka et al. Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5800516 Fine et al. Sep 1998 A
5810884 Kim Sep 1998 A
5823956 Roth et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5853420 Chevillon et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5879366 Shaw et al. Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5902319 Daley May 1999 A
5904703 Gilson May 1999 A
5919200 Stambaugh et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5928250 Koike et al. Jul 1999 A
5944738 Amolatz et al. Aug 1999 A
5955110 Patel et al. Sep 1999 A
5976174 Ruiz Nov 1999 A
5989268 Pugsley, Jr. et al. Nov 1999 A
5993475 Lin et al. Nov 1999 A
5993844 Abraham et al. Nov 1999 A
5997575 Whitson et al. Dec 1999 A
6010517 Baccaro Jan 2000 A
6024756 Huebsch et al. Feb 2000 A
6030007 Bassilv et al. Feb 2000 A
6056760 Koike et al. May 2000 A
6071998 Muller et al. Jun 2000 A
6077291 Das Jun 2000 A
6077880 Castillo et al. Jun 2000 A
6079414 Roth Jun 2000 A
6080182 Shaw et al. Jun 2000 A
6096347 Geddes et al. Aug 2000 A
6106913 Scardino et al. Aug 2000 A
6113609 Adams Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6126686 Badylak et al. Oct 2000 A
6132438 Fleischman et al. Oct 2000 A
6143037 Goldstein et al. Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6171329 Shaw et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6174330 Stinson Jan 2001 B1
6187039 Hiles et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6206895 Levinson Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6214029 Thill et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6221092 Koike et al. Apr 2001 B1
6228097 Levinson et al. May 2001 B1
6231561 Frazier et al. May 2001 B1
6245080 Levinson Jun 2001 B1
6245537 Williams et al. Jun 2001 B1
6261309 Urbanski Jul 2001 B1
6265333 Dzenis et al. Jul 2001 B1
6270515 Linden et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6287317 Makower et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6299635 Frantzen Oct 2001 B1
6306150 Levinson Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6312446 Huebsch et al. Nov 2001 B1
6315791 Ginqras et al. Nov 2001 B1
6316262 Huisman et al. Nov 2001 B1
6319263 Levinson Nov 2001 B1
6322548 Payne et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6342064 Koike et al. Jan 2002 B1
6344048 Chin et al. Feb 2002 B1
6344049 Levinson et al. Feb 2002 B1
6345041 Klint Feb 2002 B1
6346074 Roth Feb 2002 B1
6352552 Levinson et al. Mar 2002 B1
6355052 Neuss et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6364853 French et al. Apr 2002 B1
6368338 Konya et al. Apr 2002 B1
6371904 Sirimanne et al. Apr 2002 B1
6375625 French et al. Apr 2002 B1
6375671 Kobavashi et al. Apr 2002 B1
6379342 Levinson Apr 2002 B1
6379368 Corcoran et al. Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6391036 Berg et al. May 2002 B1
6398796 Levinson Jun 2002 B2
6402772 Amplatz et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6426145 Moroni Jul 2002 B1
6436088 Frazier et al. Aug 2002 B2
6440152 Gainor et al. Aug 2002 B1
6460749 Levinson et al. Oct 2002 B1
6482224 Michler et al. Nov 2002 B1
6488706 Solymar Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6508828 Akerfeldt et al. Jan 2003 B1
6514515 Williams Feb 2003 B1
6548569 Williams et al. Apr 2003 B1
6551303 VanTassel et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6585755 Jackson et al. Jul 2003 B2
6596013 Yang et al. Jul 2003 B2
6599448 Ehrhad, Jr. et al. Jul 2003 B1
6610764 Martin et al. Aug 2003 B1
6623508 Shaw et al. Sep 2003 B2
6623518 Thompson et al. Sep 2003 B2
6626936 Stinson Sep 2003 B2
6629901 Huang Oct 2003 B2
6666861 Grabek Dec 2003 B1
6669722 Chen et al. Dec 2003 B2
6689589 Huisman et al. Feb 2004 B2
6712804 Roue et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6726696 Houser et al. Apr 2004 B1
6828357 Martin et al. Dec 2004 B1
6838493 Williams et al. Jan 2005 B2
6867247 Williams et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6867249 Lee et al. Mar 2005 B2
6921410 Porter Jul 2005 B2
7780700 Frazier et al. Aug 2010 B2
20010010481 Blanc et al. Aug 2001 A1
20010014800 Frazier et al. Aug 2001 A1
20010025132 Alferness et al. Sep 2001 A1
20010034537 Shaw et al. Oct 2001 A1
20010034567 Allen et al. Oct 2001 A1
20010037129 Thill Nov 2001 A1
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010044639 Levinson Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020010481 Jayaraman Jan 2002 A1
20020019648 Akerfeldt et al. Feb 2002 A1
20020022860 Borillo et al. Feb 2002 A1
20020026208 Roe et al. Feb 2002 A1
20020029048 Miller Mar 2002 A1
20020032459 Horzewski et al. Mar 2002 A1
20020032462 Houser et al. Mar 2002 A1
20020035374 Borillo et al. Mar 2002 A1
20020043307 Ishida et al. Apr 2002 A1
20020049457 Kaplan et al. Apr 2002 A1
20020052572 Franco et al. May 2002 A1
20020058989 Chen et al. May 2002 A1
20020077555 Schwartz Jun 2002 A1
20020095174 Tsugita et al. Jul 2002 A1
20020096183 Stevens et al. Jul 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020099390 Kaplan et al. Jul 2002 A1
20020103492 Kaplan et al. Aug 2002 A1
20020107531 Schreck et al. Aug 2002 A1
20020111537 Taylor et al. Aug 2002 A1
20020111637 Kaplan et al. Aug 2002 A1
20020111647 Khalrkhahan et al. Aug 2002 A1
20020120323 Thompson et al. Aug 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020129819 Feldman et al. Sep 2002 A1
20020164729 Skralv et al. Nov 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20020183786 Girton Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020183823 Pappu Dec 2002 A1
20020198563 Galnor et al. Dec 2002 A1
20030004533 Dieck et al. Jan 2003 A1
20030023266 Welch et al. Jan 2003 A1
20030028213 Thill et al. Feb 2003 A1
20030045893 Ginn Mar 2003 A1
20030050665 Ginn Mar 2003 A1
20030055455 Yang et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030059640 Marton et al. Mar 2003 A1
20030065379 Babbas et al. Apr 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030139819 Beer et al. Jul 2003 A1
20030171774 Freudenthal et al. Sep 2003 A1
20030191495 Ryan et al. Oct 2003 A1
20030195530 Thill Oct 2003 A1
20030204203 Khalrkhahan et al. Oct 2003 A1
20040044361 Franzier et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040073242 Chanduszko Apr 2004 A1
20040176799 Chanduszko et al. Sep 2004 A1
20040210301 Obermiller Oct 2004 A1
20040234567 Dawson Nov 2004 A1
20050025809 Hasirci et al. Feb 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050113868 Devellian et al. May 2005 A1
20050267523 Devellian et al. Dec 2005 A1
20050267525 Chanduszko Dec 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20050288786 Chanduszko Dec 2005 A1
20060122647 Callaghan et al. Jun 2006 A1
20060265004 Callaghan et al. Nov 2006 A1
20070010851 Chanduszko et al. Jan 2007 A1
20070167981 Opolski et al. Jul 2007 A1
Foreign Referenced Citations (50)
Number Date Country
9413645-U 1 Oct 1994 DE
0 362 113 Apr 1990 EP
0 474 887 Mar 1992 EP
0 839 549 May 1998 EP
0 861 632 Sep 1998 EP
1 013 227 Jun 2000 EP
1 046 375 Oct 2000 EP
1 222 897 Jul 2002 EP
WO 9625179 Aug 1996 WO
WO 9631157 Oct 1996 WO
WO-9807375 Feb 1998 WO
WO-9808462 Mar 1998 WO
WO-9816174 Apr 1998 WO
WO-9851812 Nov 1998 WO
WO-9905977 Feb 1999 WO
WO-9818864 Apr 1999 WO
WO-9918862 Apr 1999 WO
WO-9918864 Apr 1999 WO
WO-9918864 Apr 1999 WO
WO-9918870 Apr 1999 WO
WO-9918871 Apr 1999 WO
WO-9930640 Jun 1999 WO
WO 0027292 May 2000 WO
WO 0044428 Aug 2000 WO
WO-0119256 Mar 2001 WO
WO-0121247 Mar 2001 WO
WO-0128432 Apr 2001 WO
WO-0130268 May 2001 WO
WO-0178596 Oct 2001 WO
WO-0217809 Mar 2002 WO
WO 0224106 Mar 2002 WO
WO-03024337 Mar 2003 WO
WO-03053493 Jul 2003 WO
WO-03059152 Jul 2003 WO
WO 03077733 Sep 2003 WO
WO-03082076 Oct 2003 WO
WO-03103476 Dec 2003 WO
WO-2004032993 Apr 2004 WO
WO-2004043266 May 2004 WO
WO-2004043508 May 2004 WO
WO-2004052213 Jun 2004 WO
WO-2005006990 Jan 2005 WO
WO-2005018728 Mar 2005 WO
WO-2005027752 Mar 2005 WO
WO-2005074813 Aug 2005 WO
WO-2005092203 Oct 2005 WO
WO-2005110240 Nov 2005 WO
WO-2005112779 Dec 2005 WO
WO-2006036837 Apr 2006 WO
WO-2006102213 Sep 2006 WO
Non-Patent Literature Citations (51)
Entry
Athanasion, T., “Coronary Artery Bypass with the Use of a Magnetic Distal Anastomotic Device: Surgical Technique and Preliminary Experience,” The Heart Surgery Forum #20041024, 2004, 4 pgs.
European Examination Report, European Application No. 04781644.2, mailed Aug. 23, 2007 (3 pgs).
International Search Report International Application No. PCT/US03/17390 mailed on Oct. 6, 2003 (4 pgs).
International Search Report, International Application No. PCT/US03/35479, mailed Apr. 14, 2004 (2 pgs).
International Search Report, International Application No. PCT/US03/39253, maiied Apr. 19, 2004, (4 pgs).
International Search Report, International Application No. PCT/US04/022643, mailed Mar. 31, 2005, (2 pgs).
International Search Report, International Application No. PCT/US04/026998, mailed Apr. 22, 2005, (5 pgs).
International Search Report, International Application No. PCT/US04/029978, mailed Jan. 26, 2005, (3 pgs).
International Search Report, International Application No. PCT/US05/006703, mailed Jul. 25, 2005, (3 pgs).
International Search Report, International Application No. PCT/US05/015382, mailed Oct. 6, 2005, (4 pgs).
International Search Report, International Application No. PCT/US05/13705 mailed Aug. 4, 2005 (40 pgs).
International Search Report, International Application No. PCT/US07/065546, mailed Oct. 29, 2007. 4 pgs.
International Search Report, International Application No. PCT/US2007/065526, mailed Aug. 8, 2007 (5pgs).
International Search Report, International Application No. PCT/US2007/065541, mailed Aug. 7, 2007 (4 pgs).
International Search Report, International Application No. PCT/US97/14822, mailed Feb. 20, 1998 (2 pgs).
Ruiz et al. “The Puncture Technique: A New Method for Transcatheter Closure of Patent Foramen Ovale,” Catheterization and Cardiovascular Interventions 53, Wilev-Liss, Inc., 2001, pp. 369-372.
Athanasiou, T., “Coronary Artery Bypass with the Use of a Magnetic Distal Anastomotic Device: Surgical Technique and Preliminary Experience,” The Heart Surgery Forum #2004-1024, 2004, 4 pgs.
European Examination Report, European Application No. 04781644.2, mailed Aug. 23, 2007 (4pgs).
European Search Report, European Application No. 03729663.9, mailed Feb. 20, 2008 (3 pgs).
Falk, V., “Facilitated Endoscopic Beating Heart Coronary Artery Bypass Grafting Using a Magnetic Coupling Device,” Journal of Thoracic and Cardiovascular Surgery, vol. 126 (5), pp. 1575-1579, 2003.
Filsoufi, F., et al., “Automated Distal Coronary Bypass with a Novel Magnetic Coupler (MVP system),” J. Thoracic and Cardiovascular Surgery, vol. 127(1) pp. 185-192, 2004.
International Search Report International Application No. PCT/US03/17390 mailed on Oct. 6, 2003 (2 pgs).
International Search Report, International Application No. PCT/US02/40850 mailed Jun. 19, 2003 (4 pgs).
International Search Report, International Application No. PCT/US03/01050, mailed Jul. 8, 2003 (1 pg).
International Search Report, International Application No. PCT/US03/09051, mailed Sep. 29, 2003 (2 pgs).
International Search Report, International Application No. PCT/US03/35479, mailed Apr. 14, 2004 (3pgs).
International Search Report, International Application No. PCT/US03/35998, mailed Jun. 16, 2004 (5 pgs).
International Search Report, International Application No. PCT/US03/39253, maiied Apr. 19, 2004 (4 pgs).
International Search Report, International Application No. PCT/US04/022643, maiied Mar. 31, 2005 (5 pgs).
International Search Report, International Application No. PCT/US04/026998, mailed Apr. 22, 2005 (5 pgs).
International Search Report, International Application No. PCT/US04/029978, mailed Jan. 26, 2005 (3 pgs).
International Search Report, International Application No. PCT/US05/006703, mailed Jul. 25, 2005 (3 pgs).
International Search Report, International Application No. PCT/US05/015382, mailed Oct. 6, 2005 (4 pgs).
International Search Report, International Application No. PCT/US05/13705 mailed Aug. 4, 2005 (4 pgs).
International Search Report, International Application No. PCT/US07/065546, mailed Oct. 29, 2007 (2 pgs).
International Search Report, International Application No. PCT/US2007/065526, mailed Aug. 8, 2007 (4 pgs).
International Search Report, International Application No. PCT/US2007/065541, mailed Aug. 7, 2007 (3 pgs).
International Search Report, International Application No. PCT/US97/14822, mailed Feb. 20, 1998 (1 pg).
International Search Report, International Application No. PCT/US97/17927, mailed Feb. 10, 1998 (1 pg).
Klima, U., “Magnetic Vascular Port in Minimally Invasive Direct Coronary Artery Bypass Graftina,” Circulation, 2004,II-55-11-60.
Meier, MD, Bernhard, et al., “Contemporary Management of Patent Foramen Ovale,” American Heart Association, Inc., Circulation, 2003, vol. 107, pp. 5-9.
Nat'l Aeronautics and Space Administration, “55-Nitinol—The Alloy with a Memory: Its Physical Metallurgy, Properties, and Applications,” A Report, 1972.
Ramanathan, G., et al., “Experimental and Computational Methods for Shape Memory Alloys,” 15th ASCE Engineering Mechanics Conf., Jun. 2-5, 2003.
Shabalovskaya, S., “Surface, corrosion and biocompatibility aspects of Nitinol as an implant material,” Bio-Medical materials and Engineering, (2002) vol. 12, pp. 69-109.
Bachthaler, M. et al., “Corrosion of Tungsten Coils After Peripheral Vascular Embolization Theraphy: Influence on Outcome and Tungsten Load”, Catherization and Cardiovascular Interventions, vol. 62, pp. 380-384, 2004.
Isotalo, T. et al., “Biocompatibility Testing of a New Bioabsorbable X-Ray Positive SR-PLA 96/4 Urethral Stent”, The Journal of Urology, vol. 163, pp. 1764-1767, Nov. 1999.
Kimura, A., et al., “Effects of Neutron Irradiation on the Transformation Behavior in Ti—Ni Alloys,” Abstract, Proceedings of the Int'l Conf. On Mariensitic Transformations (1992) pp. 935-940.
Parviainen, M. et al., “A New Biodegradable Stent for the Pancreaticojejunal Anastomosis After Pancreaticoduodenal Resection: In Vitro Examination and Pilot Experiences in Humans”, Pancreas, vol. 21, No. 1, pp. 14-21, 2000.
Ruddy, A.C. et al., “Rheological, Mechanical and Thermal Behaviour of Radipaque Filled Polymers”, Polymer Processing Research Centre, School of Chemical Engineering, Queen's University of Belfast, 5 pgs, 2005.
Ruiz et al. “The Puncture Technique: A New Method for Transcatheter Closure of Patent Foramen Ovale,” Catheterization and Cardiovascular Interventions 53, Wiley-Liss, Inc., 2001, pp. 369-372.
Vaajanen, A. et al., “Expansion and Fixation Properties of a New Braided Biodegradable Urethral Stent: An Experimental Study in the Rabbit”, The Journal of Urology, vol. 169, pp. 1771-1174, Mar. 2003.
Related Publications (1)
Number Date Country
20100131006 A1 May 2010 US
Provisional Applications (1)
Number Date Country
60561544 Apr 2004 US
Divisions (1)
Number Date Country
Parent 11102884 Apr 2005 US
Child 12691648 US