1. Field of the Invention
Embodiments of the invention relate to electro-deionization methods and apparatus.
2. Background of the Related Art
An Electro-Deionization apparatus (EDI) is a device that removes the dissolved impurities of reverse osmosis (“RO”) permeate water with the help of resin media, ion exchange membrane and DC current. The EDI process is a continuous process as it does not need chemicals such as acid and caustic for regeneration of resin media and membranes. The resin media is regenerated during the purification of water due to continuous water splitting occurring inside the EDI apparatus. Splitting of H+ and OH− ions happens due to the electric potential generated within the dilute compartment from the H2O molecules which regenerates the corresponding resin ions continuously.
An EDI apparatus is generally used for the purification of reverse osmosis permeate water up to a level of 0.055 μS/cm conductivity and makes it suitable for various industrial applications including but not limited to boiler feed/steam generation, microelectronics/semiconductor makeup or rinse water, and purified USP grade water.
An EDI apparatus is typically made up of ion exchange resin, ion exchange membranes, electrodes for DC supply and hardware components for water flow distribution. The arrangement of ion exchange membranes, anion exchange membranes and cation exchange membrane, are very important in an EDI apparatus. They are generally arranged in alternate manner with respect to anode and cathode electrodes. The ion exchange resin media are filled in the chambers/compartments which are formed due the arrangement of anion and cation exchange membranes. This leads to the formation of dilute chambers and concentrate chambers.
The dilute chambers are those in which the feed water (RO permeate) gets purified and become ultra pure water whereas the concentrate chambers are adjacent alternate positioned to dilute in which the removed ions from the dilute chambers are collected and flushed out from the apparatus with the help of separate water stream. A small portion of the water is also used for flushing and cooling the cathode and anode electrodes, called Electrode Rinse stream and the chamber is called the Electrode Rinse Chamber.
The efficiency and commercial utilization of any EDI apparatus depends upon the quantity of product water produced per unit area of membrane, per unit volume of ion exchange media or per cell pair of membranes. There are many commercial EDI apparatus are available in market which can be easily divided into three categories—
1) Low Flow Rate EDI Apparatus:
This type of EDI apparatus are generally thin cell plate and frame EDI having product flow rate range of 1.5 m3/hr and 2.0 m3/hr with 30 or more cell pair. The output product flow of each dilute chamber is generally in the range of 50 to 60 LPH or less.
2) Medium Flow Rate EDI Apparatus:
The second category EDI apparatus are generally thick cell plate and frame EDI having product flow rate of 2.5 m3/hr-5.0 m3/hr with 30 cell pair or more. The output product flow of each dilute chamber is generally in the range of 80 to 170 LPH or less.
In both the first and the second category the pressure drop across dilute chamber (feed to product) is typically around 20 to 30 psi for nominal flow rate. For maximum flow rate it typically increases up to 40-60 psi. The effective length of dilute chambers of such EDI apparatus vary from 350 mm to 450 mm and width vary from 100 mm to 200 mm. The resin volume inside the dilute chambers of these EDI apparatus does not allow increase in the flow rate due to high pressure drops, mechanical leaks or mechanical strength of the apparatus.
The typical flow configuration of both category EDI apparatus is shown in
3) High Flow EDI Apparatus:
To achieve high product flow rate, more than 5.0 m3/hr, a third category of EDI apparatus is also used, which is generally the combination of multiple EDI apparatus, connected together in parallel with 40 to 60 number of cell pairs per unit, for producing high product flow rate from the stacks. The product flow rate per dilute chamber of this type EDI apparatus is similar to medium flow rate EDI apparatus. The high product flow through these EDI apparatus is only due to the increased area of dilute chambers.
For the production of ultra pure water, an EDI apparatus generally is used to purify either permeate water of single pass RO, where the feed ion load is high with challenging scaling ions, or permeate water of second pass RO permeate, where the feed ions load are very less with negligible amount of scaling ions.
The scaling ions (like Ca2+, Mg2+, CO3, SiO2, etc) have big role to play in any EDI operation and have been the cause for limiting conditions requiring additional pretreatment that may be uneconomical in many cases. Some solutions to this problem have been proposed. For example, the fractional deionization process reported in U.S. Pat. No. 6,896,814, incorporated by reference herein, uses a dual voltage process for the removal of higher load of scaling ions without scaling in EDI apparatus.
EDI design for certain flow depends upon the feed condition and the product quality requirement. For harsher feed condition such as single pass RO permeate water with challenging scaling ions, the product flow is typically reduced. This makes the system costly and therefore unattractive for use.
The typical product flow rate of an EDI apparatus at different feed hardness (as CaCO3) and feed conductivity equivalent (FCE) loads are summarized as,
When the feed hardness (as CaCO3) is less than 0.1 ppm like in second pass RO permeate water, the EDI behavior is quite different. Scaling is not a major concern, and the rate of effective in-situ media regeneration is the main criterion to govern the process and higher product quality can be easily achievable even with high flow rate but the main limitation is the higher pressure drop across the dilute chamber in regular flow mode.
The previously mentioned fractional deionization process of U.S. Pat. No. 6,896,814 B2 is a two stage process that deals with hardness and silica removal in separate zones because of their different current requirement. The design of an apparatus for this reason has two stages and is able to produce product flow rate up to 5.0 m3/hr with its regular flow mode. This process/apparatus when used for double pass RO grade water with novel split flow design is able to treat as high as 8 to 10 m3/hr of product water against normally product flow rate which is 3 to 5 m3/hr. Single stack with 8 to 10 m3/hr reduces the line connections, minimize pressure drop across dilute chamber, reduce power consumption per unit volume of water and makes a economical and viable proposition for the user.
To attempt to overcome the limitation of high pressure drop, more cell pair or increased unit area for high flow rate and mechanical leaks through EDI apparatus, we provide the unique EDI apparatus design reported herein. Embodiments of the invention may overcome one or more of the limitations, and may be capable of producing high product flow rate in the ranges of 5.0 m3/hr to 10.0 m3/hr for treating 2nd pass RO permeate water to produced ultra pure level, more than 1.0 MOhms/cm product (generally 10 to 16 MOhms·cm product water) with only 30-35 cell pairs. The output product flow rate through each dilute camber of embodiments of this new EDI apparatus is 150 to 280 LPH which is almost double of the conventional EDI apparatus. The design of the new EDI apparatus has the flexibility to operate in conventional mode if single pass RO permeate water is provided as feedwater.
An EDI apparatus provided by an embodiment of the invention generally comprises the following main components—
In most of the cases the single pass RO permeate used as feed water contains Feed conductivity equivalent (FCE) ranges between 10 and 40 μS/cm with high scaling ions like Calcium, Magnesium, bicarbonates, silica and CO2, whereas the 2nd pass RO feed water generally contains less than 10 μS/cm FCE, with negligible amounts of CO2 and silica. For treating such 2nd pass RO permeate water a minimum resin bed length is sufficient for producing more than 10 Megaohms/cm ultra pure water.
Based on this finding a new split flow EDI apparatus has been designed which has two sections (sections 1 & 2, as shown in
This allows a stack design embodying a novel split flow EDI concept, wherein one can maximize the flow through the EDI stack by splitting the flow through the stack into two parts.
During operation of a typical embodiment, the feed water is fed through the center port and is diverted into each section of dilute chamber with equal flow rate and produced two products (Product-1 & Product-2, as shown in
One unique feature of this concept is flow patterns within the stack. The flow patterns have a combination of up-flow and down flow. The lower part of the stack operates in a down flow mode and the upper part of the stack operates in an up-flow mode. The dilute and concentrate chambers follow similar flow patterns and remain co-flow with each other. Since the water flows happen through half of the stack length, water volume processed can be increased for the same pressure drop, and a similar quantity of water can be processed through the other half.
The split flow design reduces resin bed depth required for processing of second pass RO permeate water. This results in higher flow rate through the stack and reduces power consumption per unit volume of water compared to typical EDI.
For treating 2nd pass RO permeate water, the RO permeate water may be fed through the port N2 (1-inch), shown in
Concentrate Chamber:
The concentrate spacer of new EDI apparatus (
A typical view of a concentrate chamber flow configuration used in an embodiment of our EDI apparatus is shown in
Another special feature of embodiments of our EDI apparatus is a middle solid supporting rib included in the components/spacers. An example of a rib is shown as Part A of
An embodiment of the new EDI apparatus may be assembled in the following manner, with a typical assembly shown in
The cathode chamber is formed by placing anion membranes in each section of Electrode housing plate (EHP) which contains two cathodes and cation resin media in each section. The cathodes may be, for example, SS-316 cathodes.
Then a concentrate chamber is formed by placing concentrate spacer (CS) over anion membranes of cathode chamber. The concentrate spacer contains conducting mesh in each section.
The dilute chambers is formed by placing cation membranes on each section of new design dilute spacer facing towards cathode and by placing anion membranes on each section of dilute spacer facing towards anode. The resin media is accommodated in each section of dilute spacer between two membranes.
The another adjacent concentrate chambers are formed placing concentrate spacer in which the anion membrane of each section faces towards the cathode side and the cation membrane faces towards the anode side.
One dilute chamber and one concentrate chamber forms one cell pair. Typically 30-35 cell pair of dilute and concentrate chambers are assembled.
An anode chamber is formed after last concentrate chamber by placing an electrode housing plate (EHP) which contains two titanium anodes and cation resin media in each section.
Finally the whole 30-35 cell pair of dilute and concentrate chambers and two electrode chambers are tighten by two end plate (EP), one at each end, with the help of stainless steel (SS) studs.
Spacers may be separated by rings, preferably EPDM (ethylene propylene diene monomer) to prevent leakage of water during operation.
Description of New Design EDI Apparatus for Treating Single Pass RO Permeate Water:
Embodiments of the new EDI apparatus design have the flexibility to operate for higher conducting (more than 10 μS/cm) RO permeate water (single pass RO) in the alternative to second-pass RO permeate water. In case of single pass RO, the permeate water is fed from the port N1 (typically a 1-inch port) and the section-1 product (D1) entered in section-2 from port N3 as Port N2 and N3 has interconnectivity and finally the purified product comes out from port N4. Two separate concentrate streams also flow in adjacent concentrate chambers as co-current as shown in
A series of trials were conducted on new design EDI apparatus with 30-35 cell pair configuration.
A 30-cell pair stack was assembled and tested with regular flow mode with feed at the bottom and product at the top. The stack tested for 71 hrs with product flow of 3.5 m3/hr to 5.0 m3/hr flow with feed FCE of 10 μS/cm. The stack configuration was: —
The product quality of stack was more than 16 MegaOhms·cm with higher pressure dilute drop. At 3.5 m3/hr product flow, dilute pressure drop was 27 psi, at 4.0 m3/hr it was 34 psi, at 4.5 psi it was increased to 43 psi and at maximum 5.0 m3/hr it reached up to 50 psi. The feed temperature was around 25° C. The summarized data of comparative stack are in table-1:
One new split flow design EDI apparatus with 30-cell pair was assembled with the following components:
The EDI apparatus has been tested for following product flow rate and feed FCE load
The stack product quality in above three flow conditions is always more than 10 MOhms·cm. The applied current is maintained in between 2.0 amps and 3.0 amps in each section (section-1 & 2). The product silica quality is always around 10 ppb from feed silica of 50 ppb to 100 ppb.
The stack data of above conditions are summarized in table-2 to table-4.
Product Quality Performance:
The new Split Flow EDI apparatus of example-2 was operated for 742 hours with product flow rate of 5.0 m3/hr to 7.0 m3/hr with 2nd pass RO permeate water having feed FCE load from 1.0 μS/cm to 10.0 μS/cm. The product resistivity of the apparatus remains above 10 MOhms/c·cm (between 11 MOhms·cm to 17.5 Mohsm·cm) which represent graph 1 (
Another New Split Flow EDI apparatus with new design components was assembled first with 30-cell pairs and tested for 587 hours in 5.0 m3/hr to 7.0 m3/hr product flow rate and then 5 more cell pair added to the apparatus to make it 35-cell pair apparatus and continue the testing up to 857 hours with product flow rate of 6.0 m3/hr to 10.0 m3/hr with 2nd pass RO permeate water having less than 10 μS/cm FCE load.
The EDI apparatus configuration of example-3 is
The EDI apparatus has been tested for following product flow rate
The EDI apparatus product quality in above product flow conditions is always more than 10 MOhms·cm (generally 10 MOhms/cm to 17.5 MOhms·cm). The applied current is maintained in between 2.0 amps and 3.0 amps in each section (section-1 & 2). The product silica quality is always less 10 ppb from feed silica of 20 ppb to 50 ppb.
The EDI apparatus data of above conditions are summarized in table-5 and table-6.
One trial was conducted to check the Flexibility of new EDI apparatus for treating 1st pass RO permeate water with FCE load greater than 10 μS/cm. For this one 30-cell pair stack was assembled similar to example-2 EDI apparatus and tested with 1st pass RO permeate water for 1010 Hours. The feed RO permeate water specification are as follows
The product flow rate was maintained 3.0 m3/hr (3000 LPH) throughout the experiment with pressure drop of 24-26 psi. The Resistivity of product water was achieved between 15 Mohms·cm and 17 Mohms·cm with product silica level of less than 15 ppb. The data of the experiment are summarized in table-7
The stack with conventional design given in example 1 does not deliver higher flows at lower differential pressures whereas the examples given above with split flow method are able to deliver much higher flows at same differential pressure while maintaining the quality parameters required for product. The same stack design can also produce quality product when operated with water produced by single pass RO in a conventional mode as detailed in data through example 4. This proves the flexibility of the stack design for both single and double pass RO waters.
Number | Date | Country | Kind |
---|---|---|---|
2384/DEL/2010 | Oct 2010 | IN | national |
This application claims priority to U.S. Provisional Patent Application No. 61/428,413, filed on Dec. 30, 2010, and to Indian Patent Application No. 2384/DEL/2010, filed on Oct. 4, 2010. Both of those applications are incorporated by reference as if fully rewritten herein.
Number | Name | Date | Kind |
---|---|---|---|
7138045 | Sferrazza | Nov 2006 | B2 |
7763157 | Bejtlich et al. | Jul 2010 | B2 |
20040206627 | Bejtlich, III et al. | Oct 2004 | A1 |
20070056847 | Akahori et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
2124756 | Dec 1992 | CN |
2402668 | Oct 2000 | CN |
Entry |
---|
International Search Report for PCT/US11/54585 dated Feb. 21, 2012 (Form PCT/ISA/210). |
Written Opinion of the International Searching Authority dated Feb. 21, 2012 (Form PCT/ISA/237). |
Chinese Office Action for Application No. 201180054658.5 dated Oct. 28, 2014. |
Number | Date | Country | |
---|---|---|---|
20120080314 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61428413 | Dec 2010 | US |