Split phase inverters for CCFL backlight system

Information

  • Patent Grant
  • 7525255
  • Patent Number
    7,525,255
  • Date Filed
    Monday, March 5, 2007
    18 years ago
  • Date Issued
    Tuesday, April 28, 2009
    16 years ago
Abstract
An apparatus and method for driving a lamp are provided. In one embodiment, an inverter having four switching elements is split into two inverter arms that are deployed at separate terminals of a floating lamp structure to achieve even light output. A controller drives both inverter arms such that power switching lines do not cross the floating lamp structure. In one embodiment, the controller adjusts the brightness of the lamp structure by adjusting the phase difference between outputs of a first inverter arm relative to a second inverter arm. In one embodiment, the controller adjusts the brightness by symmetrically pulse width modulating the outputs of the first inverter arm and the second inverter arm.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to power inverter circuits for driving fluorescent lamps such as cold cathode fluorescent lamps (CCFLs) or the like. More specifically, the present invention relates to a split phase topology for power inverter circuits.


2. Description of the Related Art


Fluorescent lamps are used in a number of applications including, for example, backlighting for display screens, or the like. One particular type of fluorescent lamp is a cold cathode fluorescent lamp (CCFL). Such lamps require a high starting voltage (typically on the order of 700 to 1,600 volts) for a short period of time to ionize the gas contained within the lamp tubes and fire or ignite the lamp. This starting voltage may be referred to herein as a strike voltage or striking voltage. After the gas in a CCFL is ionized and the lamp is fired, less voltage is needed to keep the lamp on.


In liquid crystal display (LCD) applications, backlight is needed to illuminate the screen to make a visible display. Backlight systems in LCD or other applications typically include one or more lamps and an inverter system to provide DC to AC power conversion and to control the brightness of the lamps. Even brightness across the lamps and clean operation of inverters with low switching stresses, low EMI, and low switching losses are desirable. However, increases in lamp length, wire length and operating voltage associated with large backlighting systems make even luminance difficult to achieve. Even luminance across non-floating lamp structures is even more difficult. Thus, some backlight inverter systems are configured to support floating lamp structures.


The size of LCD display panels are increasing with the increasing size of large screen displays such as those associated with large screen TVs, desktop monitors, or the like. As the size of LCD display panels increase, the size of their backlighting systems also increase. The associated increase in power level of the backlight inverter systems exacerbates problems typically found in conventional half-bridge and push-pull inverter topologies. These problems may include, for example, switching spikes, high voltage/current stresses, switching losses, electromagnetic interference, combinations of the forgoing, or the like.


A number of conventional inverter topologies facilitate zero-voltage or zero current switching to reduce switching stresses and losses. These inverter topologies include, for example, an active clamping forward topology, a phase shifted full-bridge topology, a resonant full-bridge topology, an asymmetric half-bridge topology.


A factor in achieving even brightness over a lamp is the ability to symmetrically power the lamp at both ends. This is more difficult to achieve as the length of the lamp increases. Among the conventional inverter topologies, the phase shifted full-bridge topology and the resonant full-bridge topology are acceptable for CCFL inverter applications because of their ability to produce symmetric lamp current waveforms. However, there are some disadvantages associated with resonant type inverters including, for example, high amplitude of voltage or current excursion, variable operating frequency, or the like. These disadvantages are not desirable in many lamp applications.



FIG. 1 illustrates a conventional backlight system 100 for powering a lamp 102. The lamp 102 is coupled between the secondary winding of a first transformer 104 and the secondary winding of a second transformer 106. The primary winding of the first transformer 104 and the primary winding of the second transformer 106 are coupled to an switching network 110 through two switching power lines 112, 114. The switching network 110 comprises four power MOSFETS (metal oxide semiconductor field effect transistors) 120, 122, 124, 126 connected in a full-bridge topology to provide DC to AC conversion. The four power MOSFETS 120, 122, 124, 126 are coupled to DC power lines V+, V−. The disadvantage of the configuration shown in FIG. 1 is that high current or high voltage switching lines 112, 114 typically have to cross a display panel.


When the length of the lamp 102 increases with the panel size, the configuration shown in FIG. 2 may be used to avoid running long switching power lines across the length of the panel. The configuration shown in FIG. 2 powers a lamp 202 by using separate inverters 204, 206 at respective ends of the lamp 202. Both inverters 204, 206 use a full-bridge switching topology. Thus, as compared to the inverter shown in FIG. 1, the power devices and associated component count, including controllers 240, 242, is doubled. Increasing the number of components increases the cost and surface area of a printed circuit board using the product. Thus, the total size of the product is increased.


SUMMARY OF THE INVENTION

The present invention proposes a split phase inverter to drive floating lamps symmetrically with zero-voltage switching operation and reduced device count. For example, a floating lamp structure can be driven by two power stages near the respective lamp terminals. In one embodiment, the split phase inverter enables zero-voltage switching with two-transistor power stages and uses phase shift modulation or pulse width modulation (PWM) to control the lamp current. Voltage/current stresses, electromagnetic interference, switching losses and component count are thereby minimized.


In one embodiment, a four-switch element inverter splits into two two-switch inverter arms to form a split phase inverter (or split inverter). The inverter arms (or split switching arms) are deployed separately at two respective separate terminals of a floating CCFL to achieve even light output. Each of the split switching arms is dedicated to driving a separate terminal of the CCFL. Both split switching arms are controlled by a common controller. Thus, the advantages of a full-bridge inverter circuit are achieved with half the number of components, including the inverter controller.


A novel regulation method facilitates full lamp current regulation for wide input range conditions. For example, the lamp current regulation can be achieved with fixed-frequency, zero-voltage switching operations by controlling the switching pattern of each dedicated two-switch network and the waveform relations between them (e.g., by utilizing a complementary switching strategy with an optimized dead time insertion). In one embodiment, an optimized dead time is inserted at switch over transitions between the two switches of a two-switch inverter arm to avoid shoot through conditions.


In one embodiment, a novel split inverter is used for backlight systems in large LCD display panel applications (e.g., 46″ LCD televisions, desktop monitor or the like). The split inverter includes two-transistor switching networks respectively dedicated to providing AC signals at separate lamp terminals. The novel split inverter provides very clean switching waveforms and high efficiency (e.g., approximately 91%). The novel split inverter advantageously uses half the number of MOSFET devices, has a smaller packaging size, and runs cooler than competitive inverters for the same application.


In one embodiment, the split inverter is configured to drive more than one floating lamp. For example, multiple lamps can be driven in parallel. The two-transistor switching networks (or split inverter arms) can be in a half bridge configuration, a push-pull configuration, a push-pull forward configuration, or the like.


In one embodiment, the switching operations of the split inverter arms are synchronized. The output connections of the two-switch inverter arms are arranged such that voltages applied to the two opposite terminals of the lamps are in an anti-phase relationship. The respective outputs of the split inverter arms add up differentially to drive the lamps. Lamp current regulation is achieved by controlling either the phase relationship or the pulse pattern between the outputs of the split inverter arms.


In one embodiment, the split inverter arms operate in a complementary switching pattern, and the regulation of the lamp current is fulfilled by adjusting the phase angle or the symmetric pulse width between the respective outputs of the split inverter arms. Since the transformers are substantially similar, and the split inverter arms share substantially the same input voltage, the output voltages of the split inverter arms cancel each other when their switching states are in phase. Similarly, the two output voltages stack up to drive the lamps when the switching states are out of phase (or anti-phase).


One inverter controller (i.e., a common controller) can generate the control signals for both split inverter arms because a symmetric pair of switching waveforms is used. In an exemplary embodiment, a phase shift modulation scheme is used in which the split inverter arms switch at near 50% duty cycle (e.g., at substantially 50% duty cycle with dead time insertions), and the effective voltage across the lamps varies substantially with the phase difference of the respective output voltages generated by the split inverter arms. By adjusting the phase difference between the split inverter arms, the voltage across the lamps and the corresponding lamp current can be regulated.


In an exemplary embodiment, a pulse width modulation scheme is used in which switching patterns for the split inverter arms have symmetric pulse widths but not necessarily at near 50% duty cycle. The effective lamp voltage varies with the pulse widths of the respective output voltages generated by the split inverter arms. The lamp current can be regulated by symmetrically adjusting the pulse widths.


For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described below in connection with the accompanying drawings in which:



FIG. 1 is a schematic of a conventional backlight system for powering a lamp using a full-bridge inverter;



FIG. 2 is a schematic of a conventional backlight system for powering a lamp using two full-bridge inverters;



FIG. 3 is a block diagram illustrating a split inverter system according to an embodiment of the invention;



FIG. 4A illustrates one embodiment of a split inverter using half-bridge inverter arms;



FIG. 4B illustrates another embodiment of a split inverter using half-bridge inverter arms;



FIG. 5A illustrates one embodiment of a split inverter using push-pull inverter arms;



FIG. 5B illustrates another embodiment of a split inverter using push-pull inverter arms;



FIG. 6A illustrates one embodiment of a split inverter using push-pull forward inverter arms;



FIG. 6B illustrates another embodiment of a split inverter using push-pull forward inverter arms;



FIG. 7 illustrates waveforms of various voltages of a split inverter using a phase shifted control scheme;



FIG. 8 illustrates waveforms of various voltages of a split inverter using a symmetric pulse width modulation scheme; and



FIG. 9 is a block diagram of a backlighting system according to an embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides a technique for driving floating lamps symmetrically with reduced device count. In one embodiment, a floating lamp structure is driven by two dedicated power stages disposed proximate the respective lamp terminals. In one embodiment, the dedicated power stages are two-transistor switching networks. A novel pulse width modulation (PWM) scheme or phase shift modulation may be used to control the lamp current. The technique reduces voltage stresses, current stresses, electromagnetic interference, switching losses and component count.


In one embodiment, a four-switching element inverter is split into two inverter arms, which are deployed separately at two respective terminals of a floating cold cathode fluorescent lamp (CCFL) structure to achieve even light output. The advantages of a full-bridge inverter circuit are achieved with half the number of components, including the inverter controller. A novel regulation method facilitates full lamp current regulation for wide input range conditions. The lamp current regulation can be achieved with fixed frequency, zero-voltage switching operations by controlling the switching pattern of each arm and the waveform relations between the arms. As discussed in greater detail below, this is achieved by utilizing a complementary switching strategy with an optimized dead-time insertion.


In one embodiment, a split inverter is used in backlight systems for large display panels such as those associated with large screen televisions (e.g., having approximately a 46 inch LCD display or greater), desktop monitors or the like. The split inverter provides very clean switching waveforms and high efficiency (e.g., 91% efficiency or greater). The split inverter advantageously uses half the number of switching devices (e.g., MOSFETs), has a smaller packaging size and runs cooler than conventional inverters for the same applications.


In the following description, reference is made to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific embodiments or processes in which the invention may be practiced. Where possible, the same reference numbers are used throughout the drawings to refer to the same or like components. In some instances, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention, however, may be practiced without the specific details or with certain alternative equivalent components and methods to those described herein. In other instances, well-known components and methods have not been described in detail so as not to unnecessarily obscure aspects of the present invention.



FIG. 3 is a block diagram illustrating a split inverter system 300 according to an embodiment of the invention. The split inverter system 300 includes a lamp structure 301 coupled between a first inverter arm 302 and a second inverter arm 304. In an exemplary embodiment, the lamp structure 301 includes one or more CCFLs (not shown) in a floating configuration. As used herein, “floating” refers to its normal and customary meaning and includes electrically isolating the lamp structure 301 from ground or any direct connection to the driving circuitry (i.e., the first inverter arm 302 and the second inverter arm 304). For example, the first inverter arm 302 and the second inverter arm 304 may include respective transformers used to isolate and inductively couple power to the lamp structure 301.


In one embodiment, the first inverter arm 302 and the second inverter arm 304 each comprise a two-switch network configured to convert a direct current (DC) voltage (represented by V+ and V−) to an alternating current (AC) signal. The first inverter arm 302 is configured to provide a first AC signal to a first terminal 312 of the lamp structure 301 and the second inverter arm 304 is configured to provide a second AC signal to a second terminal 314 of the lamp structure 301. The first AC signal and the second AC signal add up differentially to drive the lamp structure 301. Thus, the first inverter arm 302 and the second inverter arm 304 operate as complementary power stages at both ends of the lamp structure 301. As discussed in more detail below, the characteristics of the AC lamp voltage (Vlmp) are adjusted by synchronously modulating the first AC signal and the second AC signal.


The first inverter arm 302 is dedicated to and placed proximate the first terminal 312. Similarly, the second inverter arm 304 is dedicated to and placed proximate the second terminal 314. Thus, power switching lines do not cross the length of the lamp structure 301 or a substantial portion thereof When the split inverter system 300 is used to provide backlighting for a display panel, for example, there are no power switching lines associated with the backlighting system crossing the display panel and causing high EMI, high switching stresses and high switching losses. Thus, the performance of the backlighting system and display panel is improved.


The split inverter system 300 also includes a common controller 306 coupled to the first inverter arm 302 and the second inverter arm 306 through respective signal lines 308, 310. Preferably, the signal lines 308, 310 have relatively low voltage, low EMI, and low losses as compared to the first terminal 312 and the second terminal 314 of the lamp structure 301. Although two separate controllers can be used to drive the first inverter arm 302 and the second inverter arm 304, in a preferred embodiment the common controller 306 is configured to drive both the first inverter arm 302 and the second inverter arm 304. Since a separate controller is not required for each inverter arm 302, 304, the total number of components and the cost of the split inverter system are reduced as compared, for example, to the conventional backlighting system 200 shown in FIG. 2.


The controller 306 comprises, by way of example, one or more processors, ASICs or other substrate configurations, hardware, program logic, or software capable of representing data and instructions which operate as described herein or similar thereto. The controller 306 may also comprise controller circuitry, processor circuitry, general purpose single-chip or multiple-chip microprocessors, digital signal processors, embedded microprocessors, microcontrollers, combinations of the foregoing, or the like. In operation, the controller 306 controls the first inverter arm 302 and the second inverter arm 304 such that the lamp structure 301 is driven with symmetrical AC signals at both ends. The controller 306 controls the brightness of the lamp structure 301 by modulating or adjusting the symmetrical AC signals relative to one another.


In one embodiment, the controller 306 is configured to synchronize the switching operations of the first inverter arm 302 and the second inverter arm 304. The output connections of the two inverter arms 302, 304 are arranged such that voltages applied to the two opposite terminals 312, 314 of the lamp structure 301 are in an anti-phase relationship. The lamp structure 310 is powered symmetrically at both terminals 312, 314 to obtain even brightness over substantially the whole lamp structure 310. Lamp current regulation is achieved by controlling either the phase relationship or the pulse pattern between the two outputs as explained in more detail below.



FIGS. 4A-6B are partial schematic diagrams illustrating components of exemplary split inverter systems, usable by the split inverter system 300 shown in FIG. 3, according to embodiments of the invention. FIGS. 4A and 4B illustrate a split inverter system 400 comprising a first half-bridge inverter arm 402 and a second half-bridge inverter arm 404 disposed at opposite ends of a corresponding lamp structure 406 (FIG. 4A) or 408 (FIG. 4B). The first half-bridge inverter arm 402 comprises a first output transformer 412 having a primary winding 410 and a secondary winding 414. The first half-bridge inverter arm 402 is configured to generate a first AC signal V21 across the secondary winding 414 of the first output transformer 412. The second half-bridge inverter arm 404 comprises a second output transformer 418 having a primary winding 416 and a secondary winding 420. The second half-bridge inverter arm 404 is configured to generate a second AC signal V22 across the secondary winding 420 of the second output transformer 418.


In one embodiment, the first half-bridge inverter arm 402 comprises a first N-channel MOSFET 422 and a second N-channel MOSFET 424 coupled in series across a supply voltage (i.e., V+ and V−). The first N-channel MOSFET 422 has a drain coupled to a first DC voltage signal V+ (or positive supply) and a source coupled to a first switching node S1. The second N-channel MOSFET 424 has a drain coupled to the first switching node S1 and a source coupled to a second DC voltage signal V− (or negative supply). In some embodiments, the second DC voltage signal V− is a ground or common signal. The first switching node S1 is AC coupled to a first terminal of the primary winding 410 of the first output transformer 412 through a capacitor C1. A second terminal of the primary winding 410 is coupled to the second DC voltage signal V−.


The second half-bridge inverter arm 404 comprises a third N-channel MOSFET 426 and a fourth N-channel MOSFET 428 coupled in series across the supply voltage. The third N-channel MOSFET 426 has a drain coupled to the first DC voltage signal V+ and a source coupled to a second switching node S2. The fourth N-channel MOSFET 428 has a drain coupled to the second switching node S2 and a source coupled to the second DC voltage signal V−. The second switching node S2 is AC coupled to a first terminal of the primary winding 416 of the second output transformer 418 through a capacitor C2. A second terminal of the primary winding 416 is coupled to the second DC voltage signal V−.


The gates of the first MOSFET 422 and the second MOSFET 424 receive control signals VA, VB from a common controller (not shown) configured to drive the first half-bridge inverter arm 402 so as to generate the first AC signal V21. Similarly, the gates of the third MOSFET 426 and the fourth MOSFET 428 receive control signals VC, VD from the common controller configured to drive the second half-bridge inverter arm 404 so as to generate the second AC signal V22. While separate controllers can be used to drive the first half-bridge inverter arm 402 and the second half-bridge inverter arm 404, in a preferred embodiment the common controller drives both arms 402, 404. Thus, the size and cost of the split inverter system 400 are reduced and the characteristics of the first AC signal V21 and the second AC signal V22 can be symmetrically adjusted relative to each other.



FIG. 4A illustrates the lamp structure 406 according to an embodiment of the invention coupled between the secondary winding 414 of the first output transformer 412 and the secondary winding 420 of the second output transformer 418. The lamp structure 406 comprises a first CCFL 430 and a second CCFL 432 coupled between respective terminals of the secondary windings 414, 420 in a floating configuration wherein the terminals of the secondary windings 414, 420 are not grounded. The first AC signal V21 and the second AC signal V22 combine to generate a lamp voltage (Vlmp=Vlmp1+Vlmp2) across the first CCFL 430 and the second CCFL 432.



FIG. 4B illustrates the lamp structure 408 according to an embodiment of the invention coupled between the secondary winding 414 of the first output transformer 412 and the secondary winding 420 of the second output transformer 418. The lamp structure 408 comprises three CCFLs 434, 436, 438 coupled in parallel between respective first terminals of the secondary windings 414, 420. An artisan will recognize from the disclosure herein that the lamp structure 408 is not limited to the three CCFLs 434, 436, 438 and that any number of lamps can be used including, for example, a single CCFL 434. Respective second terminals of the secondary windings 414, 420 are coupled together. As shown in FIG. 4B, the second terminals of the secondary windings 414, 420 may be connected to ground 440. In alternative embodiments, the second terminals of the secondary windings 414, 420 are not connected to ground 440 and are left floating. The first AC signal V21 and the second AC signal V22 combine to generate a lamp voltage (Vlmp) across the one or more CCFLs 434, 436, 438.



FIGS. 5A and 5B illustrate a split inverter system 500 comprising a first push-pull inverter arm 502 and a second push-pull inverter arm 504 disposed at opposite ends of a corresponding lamp structure 406 (FIG. 5A) or 408 (FIG. 5B). The lamp structure 406 shown in FIG. 5A is described above with respect to FIG. 4A. The lamp structure 408 shown in FIG. 5B is described above with respect to FIG. 4B.


The first push-pull inverter arm 502 comprises a first output transformer 512 having a primary winding 510 and a secondary winding 514. The first push-pull inverter arm 502 is configured to generate a first AC signal V21 across the secondary winding 514 of the first output transformer 512. The primary winding 510 includes a center tap 515 coupled to a first DC voltage signal V+. The second push-pull inverter arm 504 comprises a second output transformer 518 having a primary winding 516 and a secondary winding 520. The second push-pull inverter arm 504 is configured to generate a second AC signal V22 across the secondary winding 520 of the second output transformer 518. The primary winding 516 includes a center tap 521 coupled to the first DC voltage signal V+.


The first push-pull inverter arm 502 comprises a first semiconductor switch (e.g., N-channel MOSFET) 522 and a second semiconductor switch (e.g., N-channel MOSFET) 524 with respective drains coupled to opposite terminals of the primary winding 510 of the first output transformer 512 and sources coupled to a second DC voltage signal V−. In some embodiments, the second DC voltage signal V− is a ground or common signal. The second push-pull inverter arm 504 comprises a third semiconductor switch (e.g., N-channel MOSFET) 526 and a fourth semiconductor switch (e.g., N-channel MOSFET) 528 with respective drains coupled to opposite terminals of the primary winding 516 of the second output transformer 518 and sources coupled to the second DC voltage signal V−.


The gates of the first MOSFET 522 and the second MOSFET 524 receive control signals VA, VB from a controller (not shown) configured to drive the first push-pull inverter arm 502 so as to generate the first AC signal V21. Similarly, the gates of the third MOSFET 526 and the fourth MOSFET 528 receive control signals VC, VD from the controller configured to drive the second push-pull inverter arm 504 so as to generate the second AC signal V22. While separate controllers can be used to drive the first push-pull inverter arm 502 and the second push-pull inverter arm 504, in a preferred embodiment a common controller drives both arms 502, 504. Thus, the size and cost of the split inverter system 500 are reduced and the characteristics of the first AC signal V21 and the second AC signal V22 can be adjusted relative to each other.



FIGS. 6A and 6B illustrate a split inverter system 600 comprising a first push-pull forward inverter arm 602 and a second push-pull forward inverter arm 604 disposed at opposite ends of a corresponding lamp structure 406 (FIG. 6A) or 408 (FIG. 6B). The lamp structure 406 shown in FIG. 6A is described above with respect to FIG. 4A. The lamp structure 408 shown in FIG. 6B is described above with respect to FIG. 4B.


The first push-pull forward inverter arm 602 comprises a first output transformer 612 having a first primary winding 608, a second primary winding 610 and a secondary winding 614. The first push-pull forward inverter arm 602 is configured to generate a first AC signal V21 across the secondary winding 614 of the first output transformer 612. The second push-pull forward inverter arm 604 comprises a second output transformer 618 having a first primary winding 615, a second primary winding 616, and a secondary winding 620. The second push-pull forward inverter arm 604 is configured to generate a second AC signal V22 across the secondary winding 620 of the second output transformer 618.


The push-pull forward inverter arms 602, 604 use separate primary windings for each switching path. The first push-pull inverter arm 602 comprises a first semiconductor switch (e.g., N-channel MOSFET) 622 coupled between a positive supply voltage V+ and a first terminal of the first primary winding 608 at switching node 623. A second terminal of the first primary winding 608 is coupled to a negative supply voltage V−. Thus, when the first semiconductor switch 622 is conducting, current flows through the first primary winding 608. The first push-pull inverter arm 602 further comprises a second semiconductor switch (e.g., N-channel MOSFET) 624 coupled between the negative supply voltage V− and a first terminal of the second primary winding 610 at switching node 625. A second terminal of the second primary winding 610 is coupled to the positive supply voltage V+. Thus, when the second semiconductor switch 624 is conducting, current flows through the second primary winding 610. A floating capacitor (C1) is coupled between the switching nodes 623, 625 to absorb voltage spikes due to parasitic inductance in the power supply lines V+, V−.


The second push-pull inverter arm 604 comprises a third semiconductor switch (e.g., N-channel MOSFET) 626 coupled between the positive supply voltage V+ and a first terminal of the first primary winding 615 at switching node 627. A second terminal of the first primary winding 615 is coupled to the negative supply voltage V−. Thus, when the third semiconductor switch 622 is conducting, current flows through the first primary winding 615. The second push-pull inverter arm 604 further comprises a fourth semiconductor switch (e.g., N-channel MOSFET) 628 coupled between the negative supply voltage V− and a first terminal of the second primary winding 616 at switching node 629. A second terminal of the second primary winding 616 is coupled to the positive supply voltage V+. Thus, when the fourth semiconductor switch 628 is conducting, current flows through the second primary winding 616. A floating capacitor (C2) is coupled between the switching nodes 627, 629 to absorb voltage spikes due to parasitic inductance in the power supply lines V+, V−.


The gates of the first MOSFET 622 and the second MOSFET 624 receive control signals VA, VB from a controller (not shown) configured to drive the first push-pull forward inverter arm 602 so as to generate the first AC signal V21. Similarly, the gates of the third MOSFET 626 and the fourth MOSFET 628 receive control signals VC, VD from the same controller configured to drive the second push-pull forward inverter arm 604 so as to generate the second AC signal V22. While separate controllers can be used to drive the first push-pull forward inverter arm 602 and the second push-pull forward inverter arm 604, in a preferred embodiment a common controller drives both arms 602, 604. Thus, the size and cost of the split inverter system 600 are reduced and the characteristics of the first AC signal V21 and the second AC signal V22 can be adjusted relative to each other.


Although N-channel MOSFET devices are depicted in FIGS. 4A-6B, other switching devices (e.g., P-channel MOSFETs, n-type bipolar junction transistors (BJTs), p-type BJTs, etc.) are applicable with the same principle. By way of example and not by limitation, an artisan will recognize from the disclosure herein that the high side N-channel MOSFETs in FIGS. 4A-6B (i.e., MOSFETs 422, 426, 522, 526, 622 and 626) can be replaced by P-channel devices to simplify the gate drive circuit design.


In certain embodiments, the inverter arms 402, 404, 502, 504, 602, 604 shown in FIGS. 4A-6B operate in a complementary switching pattern. Regulation of the lamp current is achieved by adjusting the phase angle between the outputs of the inverter arms or by symmetrically varying the pulse widths of the respective outputs of the inverter arms. Referring to FIG. 4A, for example, if the transformers 412, 418 are substantially similar and the two inverter arms 402, 404 share substantially the same input voltage, the first AC signal V21 and the second AC signal V22 cancel each other when their switching states are in phase. Similarly, the first AC signal V21 and the second AC signal V22 stack up to drive the lamps 430, 432 to the extent the switching states are out of phase (or anti-phase).



FIG. 7 illustrates various voltages in a phase shifted control scheme according to an embodiment of the invention usable by a split inverter system such as the split inverter systems 400, 500, 600 shown in FIGS. 4A-6B. The output voltages (V21, V22) 712, 714 of the split inverter arms combine to generate a lamp voltage 716 (Vlmp) across a lamp structure. Referring to FIG. 4A, for example, the first output voltage 712 is generated across the secondary winding 414 of the first transformer 412 as the first AC voltage V21. Similarly, the second output voltage 714 is generated across the secondary winding 420 of the second transformer 418 as the second AC voltage V22.


The first output voltage 712 and the second output voltage 714 add differentially to generate the lamp output voltage (Vlmp=Vlmp1+Vlmp2) 716 across the first CCFL 430 and the second CCFL 432. If the lamp structure 408 shown in FIG. 4B is used, for example, then the lamp voltage (Vlmp) corresponding to the lamp output voltage 716 is generated across the parallel lamps 434, 436, 438.


The first AC voltage V21 is generated across the secondary winding 414 of the first transformer 412 by applying the control signal VA to the gate of the first MOSFET 422 and the control signal VB to the gate of the second MOSFET 424. The control signal VA has substantially the same shape as the first output voltage 712. The control signal VB is substantially an inversion of the control signal VA with appropriate dead time inserted to facilitate zero-voltage switching. The second AC voltage V22 is generated across the secondary winding 420 of the second transformer 418 by applying the control signal VC to the gate of the fourth MOSFET 428 and the control signal VD to the gate of the third MOSFET 426. The control signal VD has substantially the same shape as the second output voltage 714. The control signal VC is substantially an inversion of the control signal VD with appropriate dead time inserted to facilitate zero-voltage switching.


A common controller advantageously generates the control signals VA, VB, VC, VD for both inverter arms 402, 404. In some embodiments of the phase shift modulation scheme, the two inverter arms 402, 404 are switched at approximately a 50% duty cycle. The effective lamp voltage (Vlmp) across the lamps 430, 432 varies with the phase difference between the first output voltage 712 and the second output voltage 714. By adjusting the phase difference between the two inverter arms 402, 404, the positive pulse widths T1 and the negative pulse widths T2 of the lamp voltage 716 and the corresponding lamp current through the lamps 430, 432 are regulated.



FIG. 8 illustrates various voltages in a pulse width modulation scheme according to an embodiment of the invention usable by a split inverter system such as the split inverter system 400 shown in FIGS. 4A and 4B. The output voltages 812, 814 (V21, V22) of the split inverter arms combine to generate a lamp voltage (Vlmp) 816 across a lamp structure. The effective lamp voltage (Vlmp) varies with the pulse widths TA, TB of the output voltages 812, 814. Thus, the lamp current can be regulated by symmetrically adjusting the pulse widths TA, TB of the output voltages 812, 814.


Referring to FIG. 4A, for example, the first output voltage 812 is generated across the secondary winding 414 of the first transformer 412 as the first AC voltage V21. Similarly, the second output voltage 814 is generated across the secondary winding 420 of the second transformer 418 as the second AC voltage V22. The first output voltage 812 and the second output voltage 814 add differentially to generate the lamp voltage (Vlmp=Vlmp1+Vlmp2) 816 across the first CCFL 430 and the second CCFL 432. If the lamp structure 408 shown in FIG. 4B is used, for example, then the lamp voltage (Vlmp) corresponding to the lamp voltage 816 is generated across the parallel lamps 434, 436, 438.


The first AC voltage V21 is generated across the secondary winding 414 of the first transformer 412 by applying the control signal VA to the gate of the first MOSFET 422 and the control signal VB to the gate of the second MOSFET 424. The control signal VA has substantially the same shape as the first output voltage 812. The control signal VB is substantially an inversion of the control signal VA with appropriate dead time inserted to facilitate zero-voltage switching. The second AC voltage V22 is generated across the secondary winding 420 of the second transformer 418 by applying the control signal VC to the gate of the fourth MOSFET 428 and the control signal VD to the gate of the third MOSFET 426. The control signal VD has substantially the same shape as the second output voltage 814. The control signal VC is substantially an inversion of the control signal VD with appropriate dead time inserted to facilitate zero-voltage switching.


In one embodiment, an optimized dead time is inserted at the switch over transition to avoid shoot through conditions. Referring to FIG. 4A, for example, when the first MOSFET 422 is conducting, the switching node S1 is clamped to the first DC voltage signal V+. When the first MOSFET 422 is turned off (i.e., not conducting), the stored inductive energy maintains the original inductive current flowing direction, thereby charging and discharging the source-drain capacitance of the first MOSFET 422 and the second MOSFET 424 in addition to other parasitic capacitance.


In CCFL inverter applications, the transformer leakage inductance is normally large enough to yield sufficient stored energy at normal operating conditions to fully charge and discharge the parasitic capacitance, thereby swinging the potential of the switching node S1 to the opposite or negative DC rail (i.e., the value of the second DC voltage signal V−). During this period, the voltage across the second MOSFET 424 reduces from full DC input towards zero and is clamped at zero until the inductive energy is exhausted. If the second MOSFET 424 is turned on at the moment the switching node S1 reaches the negative DC rail potential, zero-voltage switching is accomplished.


In one embodiment, a dead time is inserted to delay the turn on of the second MOSFET 424 for a short while after the first MOSFET 422 is turned off and until the switching node S1 reaches the negative DC rail potential, and vice versa. Correspondingly, the second half-bridge inverter arm 404 with MOSFETS 426, 428 operates in a similar manner to MOSFETs 422, 424. Similar principles to achieve zero-voltage switching apply to circuit configurations shown in FIGS. 4B-6B.



FIG. 9 is a block diagram of a backlighting system according to an embodiment of the invention. The backlighting system comprises n lamp structures, shown as 902(1)-902(n) (collectively the lamp structures 902). The lamp structures 902 have respective first terminals, shown as 910(1)-910(n) (collectively the first terminals 910), and respective second terminals, shown as 912(1)-912(n) (collectively the second terminals 912). For illustrative purposes, a plurality of CCFLs 913 (four shown) are shown for the first lamp structure 902(1). It should be understood, however, that each of the lamp structures 902 comprise one or more fluorescent lamps.


The backlighting system further comprises n primary circuit boards, shown as 914(1)-914(n) (collectively the primary circuit boards 914). The primary circuit boards 914 comprise respective primary inverter arms which are co-located with controllers, shown as 936(1)-936(n) (collectively the controllers 936). The primary circuit boards 914 are respectively coupled to the first terminals 910 and thus, the primary inverter arms are respectively located proximate to the first terminals 910. The backlighting system also comprises n secondary inverter arms on respective secondary circuit boards, shown as 922(1)-922(n) (collectively the secondary circuit boards 922). The secondary circuit boards 922 are respectively coupled to the second terminals 912 and thus, the secondary inverter arms are respectively located proximate to the second terminals. The secondary circuit boards 922 are located distal to the controllers 936.


The primary inverter arms and the secondary inverter arms are configured to convert a DC voltage signal to an AC voltage signal that is then provided to the respective first terminals 910 and the respective second terminals 912. The controllers 936 are configured to symmetrically drive the first terminals 910 and the second terminals 912 of the respective lamp structures 902 in a split inverter configuration as described above. For example, the first controller 936(1) is configured to symmetrically control the power conversion of the first primary inverter arm on the first primary circuit board 914(1) and the first secondary inverter arm on the first secondary circuit board 922(1) to drive the first lamp structure 902(1).


The controllers 936 are configured to communicate control signals (not shown) to their respective primary inverter arms on the primary circuit boards 914 and secondary inverter arms on the secondary circuit boards 922. The controllers 936 communicate with the secondary circuit boards 922 via a connection (not shown) from a first bus 932 to a second bus 934. Since the controllers 936 drive both of the primary inverter arms and secondary inverter arms, the number of components, size and cost of the backlighting system are reduced. Further, the split inverter arms allow high current or high voltage switching signals to be provided to the respective first terminals 910 and second terminals 912 without crossing the lamp structures 902 or substantial portions thereof.


In one embodiment, one of the controllers 936 is configured as a master controller and the remaining n−1 controllers 936 are configured as slave controllers. The master controller communicates with the slave controllers through the first bus 932 and synchronizes the lamp current and frequency regulated by each of the controllers 936.


While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims
  • 1. An inverter comprising: a first transformer;a second transformer, wherein a lamp structure is coupled in a floating configuration between a secondary winding of the first transformer and a secondary winding of the second transformer;a first two-switch network configured to generate a first alternating current signal across a secondary winding of the first transformer using a first control signal to control a first switch and a substantially inverted version of the first control signal to control a second switch, wherein first dead times are inserted between the first control signal and the substantially inverted version of the first control signal at respective first switch-over transitions;a second two-switch network configured to generate a second alternating current signal across a secondary winding of the second transformer using a second control signal to control a third switch and a substantially inverted version of the second control signal to control a fourth switch, wherein the first and the second alternating current signals have substantially constant duty cycles, and second dead times are inserted between the second control signal and the substantially inverted version of the second control signal at respective second switch-over transitions; anda controller configured to generate the first control signal and the second control signal, wherein power to the lamp structure is adjusted by varying a phase difference between the first control signal and the second control signal.
  • 2. The inverter of claim 1, wherein the first two-switch network and the second two-switch network have respective topologies selected from the group comprising a half-bridge configuration, a push-pull configuration, and a push-pull forward configuration.
  • 3. The inverter of claim 1, wherein the first control signal and the second control signal have a substantially constant duty cycle of approximately 50%.
  • 4. The inverter of claim 1, wherein the lamp structure comprises a first fluorescent lamp coupled between a first terminal of the secondary winding of the first transformer and a first terminal of the secondary winding of the second transformer.
  • 5. The inverter of claim 4, further comprising a second fluorescent lamp coupled between a second terminal of the secondary winding of the first transformer and a second terminal of the secondary winding of the second transformer.
  • 6. The inverter of claim 4, further comprising at least a second fluorescent lamp coupled in parallel with the first fluorescent lamp.
  • 7. The inverter of claim 6, wherein a second terminal of the secondary winding of the first transformer is coupled to a second terminal of the secondary winding of the second transformer.
  • 8. The inverter of claim 7, wherein the second terminal of the secondary winding of the first transformer is grounded.
  • 9. An inverter comprising: a controller;a first power transformer;a second power transformer, wherein at least one lamp is coupled between the first power transformer and the second power transformer; andsplit switching arms, wherein each of the split switching arms comprises a two-switch network, one of the split switching arms is dedicated to the first power transformer to generate a first output voltage by driving a first switch with a first control signal responsive to said controller and driving a second switch with a substantially inverted version of the first control signal responsive to said controller, wherein first dead times are inserted between the first control signal and the substantially inverted version of the first control signal at respective first switch-over transitions by said controller, another of the split switching arms is dedicated to the second power transformer to generate a second output voltage by driving a third switch with a second control signal responsive to said controller and driving a fourth switch with a substantially inverted version of the second control signal responsive to said controller, wherein second dead times are inserted between the second control signal and the substantially inverted version of the second control signal at respective second switch-over transitions by said controller, the the first output voltage and the second output voltage combine to generate a voltage across the lamp, and power to the lamp is adjusted by symmetrically adjusting the pulse widths of the first and the second control signals.
  • 10. The inverter of claim 9, wherein the first and second power transformers each comprise a primary winding, and wherein the two-switch network is a half-bridge network comprising: two transistors coupled in series across a supply voltage, wherein the two transistors are interconnected at a switching node; anda capacitor coupled to the switching node, wherein the capacitor is configured to AC couple the switching node to the primary winding.
  • 11. The inverter of claim 9, wherein at least one of the first and second power transformers comprise a primary winding having a center tap coupled to a first direct-current (DC) voltage signal, and wherein the two-switch network is a push-pull network comprising: a first transistor coupled between a second DC voltage signal and a first terminal of the primary winding; anda second transistor coupled between the second DC voltage signal and a second terminal of the primary winding.
  • 12. The inverter of claim 9, wherein at least one of the first and second power transformers comprise a first primary winding and a second primary winding, and wherein the two-switch network is a push-pull forward network comprising: a first semiconductor switch coupled between a first direct-current (DC) voltage signal and a first terminal of the first primary winding, wherein a second terminal of the first primary winding is coupled to a second DC voltage signal; anda second semiconductor switch coupled between the second DC voltage signal and a first terminal of the second primary winding, wherein a second terminal of the second primary winding is coupled to the first DC voltage signal.
  • 13. The inverter of claim 12, wherein the push-pull forward network further comprises a capacitor coupled between the first terminal of the first primary winding and the first terminal of the second primary winding.
  • 14. A method for driving a lamp, the method comprising: driving a first terminal of a lamp with a first dedicated two-switch network comprising a first switch and a second switch, wherein the first switch is controlled by a first control signal and the second switch is controlled by a substantially inverted version of the first control signal;driving a second terminal of the lamp with a second dedicated two-switch network comprising a third switch and a fourth switch, wherein the third switch is controlled by a second control signal and the fourth switch is controlled by a substantially inverted version of the second control signal;varying power to the lamp by either symmetrically adjusting the pulse widths of the first control signal and the second control signal or adjusting a phase difference between the first control signal and the second control signal; andinserting dead times between the controls signals and their respective inverted versions.
  • 15. The method of claim 14, wherein the lamp is a cold cathode fluorscent lamp.
CLAIM FOR PRIORITY

This is a continuation application based on U.S. application Ser. No. 10/903,636, filed Jul. 30, 2004, now U.S. Pat. No. 7,187,139, which claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 60/501,502 filed on Sep. 9, 2003 and entitled “SPLIT PHASE INVERTERS FOR CCFL BACKLIGHT SYSTEM,” the entirety of which is incorporated herein by reference.

US Referenced Citations (364)
Number Name Date Kind
2429162 Russell et al. Oct 1947 A
2440984 Summers May 1948 A
2572258 Goldfield et al. Oct 1951 A
2965799 Brooks et al. Dec 1960 A
2968028 Eilichi et al. Jan 1961 A
3141112 Eppert Jul 1964 A
3449629 Wigert et al. Jun 1969 A
3565806 Ross Feb 1971 A
3597656 Douglas Aug 1971 A
3611021 Wallace Oct 1971 A
3683923 Anderson Aug 1972 A
3737755 Calkin et al. Jun 1973 A
3742330 Hodges et al. Jun 1973 A
3916283 Burrows Oct 1975 A
3936696 Gray Feb 1976 A
3944888 Clark Mar 1976 A
4053813 Komrumpf et al. Oct 1977 A
4060751 Anderson Nov 1977 A
4204141 Nuver May 1980 A
4277728 Stevens Jul 1981 A
4307441 Bello Dec 1981 A
4353009 Knoll Oct 1982 A
4388562 Josephson Jun 1983 A
4392087 Zansky Jul 1983 A
4437042 Morais et al. Mar 1984 A
4441054 Bay Apr 1984 A
4463287 Pitel Jul 1984 A
4469988 Cronin Sep 1984 A
4480201 Jaeschke Oct 1984 A
4523130 Pitel Jun 1985 A
4543522 Moreau Sep 1985 A
4544863 Hashimoto Oct 1985 A
4555673 Huijsing et al. Nov 1985 A
4562338 Okami Dec 1985 A
4567379 Corey et al. Jan 1986 A
4572992 Masaki Feb 1986 A
4574222 Anderson Mar 1986 A
4585974 Stupp et al. Apr 1986 A
4622496 Dattilo et al. Nov 1986 A
4626770 Price, Jr. Dec 1986 A
4630005 Clegg et al. Dec 1986 A
4663566 Nagano May 1987 A
4663570 Luchaco et al. May 1987 A
4672300 Harper Jun 1987 A
4675574 Delflache Jun 1987 A
4682080 Ogawa et al. Jul 1987 A
4686615 Ferguson Aug 1987 A
4689802 McCambridge Aug 1987 A
4698554 Stupp et al. Oct 1987 A
4700113 Stupp et al. Oct 1987 A
4717863 Zeiler Jan 1988 A
4745339 Izawa et al. May 1988 A
4761722 Pruitt Aug 1988 A
4766353 Burgess Aug 1988 A
4779037 LoCascio Oct 1988 A
4780696 Jirka Oct 1988 A
4792747 Schroeder Dec 1988 A
4812781 Regnier Mar 1989 A
4847745 Shekhawat Jul 1989 A
4862059 Tominaga et al. Aug 1989 A
4885486 Shekhawat et al. Dec 1989 A
4893069 Harada et al. Jan 1990 A
4902942 El-Hamamsy et al. Feb 1990 A
4939381 Shibata Jul 1990 A
4998046 Lester Mar 1991 A
5023519 Jensen Jun 1991 A
5030887 Guisinger Jul 1991 A
5036255 McKnight et al. Jul 1991 A
5049790 Herfurth et al. Sep 1991 A
5057808 Dhyanchand Oct 1991 A
5083065 Sakata et al. Jan 1992 A
5089748 Ihms Feb 1992 A
5105127 Lavaud et al. Apr 1992 A
5130565 Girmay Jul 1992 A
5130635 Kase Jul 1992 A
5173643 Sullivan et al. Dec 1992 A
5220272 Nelson Jun 1993 A
5235254 Ho Aug 1993 A
5289051 Zitta Feb 1994 A
5317401 Dupont et al. May 1994 A
5327028 Yum et al. Jul 1994 A
5349272 Rector Sep 1994 A
5410221 Mattas et al. Apr 1995 A
5420779 Payne May 1995 A
5430641 Kates Jul 1995 A
5434477 Crouse et al. Jul 1995 A
5440208 Uskaly et al. Aug 1995 A
5463287 Kurihara et al. Oct 1995 A
5471130 Agiman Nov 1995 A
5475284 Lester et al. Dec 1995 A
5475285 Konopka Dec 1995 A
5479337 Voigt Dec 1995 A
5485057 Smallwood et al. Jan 1996 A
5485059 Yamashita et al. Jan 1996 A
5485487 Orbach et al. Jan 1996 A
5493183 Kimball Feb 1996 A
5495405 Fujimura et al. Feb 1996 A
5510974 Gu et al. Apr 1996 A
5514947 Berg May 1996 A
5519289 Katyl et al. May 1996 A
5528192 Agiman Jun 1996 A
5539281 Shackle et al. Jul 1996 A
5548189 Williams Aug 1996 A
5552697 Chan Sep 1996 A
5557249 Reynal Sep 1996 A
5563473 Mattas et al. Oct 1996 A
5563501 Chan Oct 1996 A
5574335 Sun Nov 1996 A
5574356 Parker Nov 1996 A
5608312 Wallace Mar 1997 A
5612594 Maheshwari Mar 1997 A
5612595 Maheshwari Mar 1997 A
5615093 Nalbant Mar 1997 A
5619104 Eunghwa Apr 1997 A
5619402 Lin Apr 1997 A
5621281 Kawabata et al. Apr 1997 A
5629588 Oda et al. May 1997 A
5635799 Hesterman Jun 1997 A
5652479 LoCascio Jul 1997 A
5663613 Yamashita et al. Sep 1997 A
5705877 Shimada Jan 1998 A
5710489 Nilssen Jan 1998 A
5712533 Corti Jan 1998 A
5712776 Palara et al. Jan 1998 A
5719474 Vitello Feb 1998 A
5744915 Nilssen Apr 1998 A
5748460 Ishihawa May 1998 A
5751115 Jayaraman et al. May 1998 A
5751120 Zeitler et al. May 1998 A
5751560 Yokoyama May 1998 A
5754012 LoCascio May 1998 A
5754013 Praiswater May 1998 A
5760760 Helms Jun 1998 A
5770925 Konopka et al. Jun 1998 A
5777439 Hua Jul 1998 A
5786801 Ichise Jul 1998 A
5796213 Kawasaki Aug 1998 A
5808422 Venkitasubrahmanian et al. Sep 1998 A
5818172 Lee Oct 1998 A
5822201 Kijima Oct 1998 A
5825133 Conway Oct 1998 A
5828156 Roberts Oct 1998 A
5844540 Terasaki Dec 1998 A
5854617 Lee et al. Dec 1998 A
5859489 Shimada Jan 1999 A
5872429 Xia et al. Feb 1999 A
5880946 Biegel Mar 1999 A
5883473 Li et al. Mar 1999 A
5886477 Honbo et al. Mar 1999 A
5892336 Lin et al. Apr 1999 A
5901176 Lewison May 1999 A
5910709 Stevanovic et al. Jun 1999 A
5910713 Nishi et al. Jun 1999 A
5912812 Moriarty, Jr. Jun 1999 A
5914842 Sievers Jun 1999 A
5923129 Henry Jul 1999 A
5923546 Shimada et al. Jul 1999 A
5925988 Grave et al. Jul 1999 A
5930121 Henry Jul 1999 A
5930126 Griffin et al. Jul 1999 A
5936360 Kaneko Aug 1999 A
5939830 Praiswater Aug 1999 A
6002210 Nilssen Dec 1999 A
6011360 Gradzki et al. Jan 2000 A
6016245 Ross Jan 2000 A
6020688 Moisin Feb 2000 A
6028400 Pol et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038149 Hiraoka et al. Mar 2000 A
6040661 Bogdan Mar 2000 A
6040662 Asayama Mar 2000 A
6043609 George et al. Mar 2000 A
6049177 Felper Apr 2000 A
6069448 Yeh May 2000 A
6072282 Adamson Jun 2000 A
6091209 Hilgers Jul 2000 A
6104146 Chou et al. Aug 2000 A
6108215 Kates et al. Aug 2000 A
6111370 Parra Aug 2000 A
6114814 Shannon et al. Sep 2000 A
6121733 Nilssen Sep 2000 A
6127785 Williams Oct 2000 A
6127786 Moisin Oct 2000 A
6137240 Bogdan Oct 2000 A
6150772 Crane Nov 2000 A
6157143 Bigio et al. Dec 2000 A
6160362 Shone et al. Dec 2000 A
6169375 Moisin Jan 2001 B1
6172468 Hollander Jan 2001 B1
6181066 Adamson Jan 2001 B1
6181083 Moisin Jan 2001 B1
6181084 Lau Jan 2001 B1
6188183 Greenwood et al. Feb 2001 B1
6188553 Moisin Feb 2001 B1
6194841 Takahasi et al. Feb 2001 B1
6198234 Henry Mar 2001 B1
6198236 O'Neill Mar 2001 B1
6198238 Edelson Mar 2001 B1
6211625 Nilssen Apr 2001 B1
6215256 Ju Apr 2001 B1
6218788 Chen et al. Apr 2001 B1
6229271 Liu May 2001 B1
6239558 Fujimura et al. May 2001 B1
6252355 Meldrum et al. Jun 2001 B1
6255784 Weindorf Jul 2001 B1
6259215 Roman Jul 2001 B1
6259615 Lin Jul 2001 B1
6281636 Okutsu et al. Aug 2001 B1
6281638 Moisin Aug 2001 B1
6291946 Hinman Sep 2001 B1
6307765 Choi Oct 2001 B1
6310444 Chang Oct 2001 B1
6316881 Shannon et al. Nov 2001 B1
6316887 Ribarich et al. Nov 2001 B1
6317347 Weng Nov 2001 B1
6320329 Wacyk Nov 2001 B1
6323602 De Groot et al. Nov 2001 B1
6331755 Ribarich et al. Dec 2001 B1
6340870 Yamashita et al. Jan 2002 B1
6344699 Rimmer Feb 2002 B1
6351080 Birk et al. Feb 2002 B1
6356035 Weng Mar 2002 B1
6359393 Brown Mar 2002 B1
6362577 Ito et al. Mar 2002 B1
6388388 Weindorf et al. May 2002 B1
6396217 Weindorf May 2002 B1
6396722 Lin May 2002 B2
6417631 Chen et al. Jul 2002 B1
6420839 Chiang et al. Jul 2002 B1
6424100 Kominami et al. Jul 2002 B1
6429839 Sakamoto Aug 2002 B1
6433492 Buonavita Aug 2002 B1
6441943 Roberts et al. Aug 2002 B1
6445141 Kastner et al. Sep 2002 B1
6452344 MacAdam et al. Sep 2002 B1
6459215 Nerone et al. Oct 2002 B1
6459216 Tsai Oct 2002 B1
6469922 Choi Oct 2002 B2
6472827 Nilssen Oct 2002 B1
6472876 Notohamiprodjo et al. Oct 2002 B1
6479810 Weindorf Nov 2002 B1
6483245 Weindorf Nov 2002 B1
6486618 Li Nov 2002 B1
6494587 Shaw et al. Dec 2002 B1
6495972 Okamoto et al. Dec 2002 B1
6501234 Lin et al. Dec 2002 B2
6507286 Weindorf et al. Jan 2003 B2
6509696 Bruning et al. Jan 2003 B2
6515427 Oura et al. Feb 2003 B2
6515881 Ikuhara et al. Feb 2003 B2
6521879 Rand et al. Feb 2003 B1
6522558 Henry Feb 2003 B2
6531831 Chou et al. Mar 2003 B2
6534934 Lin et al. Mar 2003 B1
6559606 Chou et al. May 2003 B1
6563479 Weindorf et al. May 2003 B2
6570344 Lin May 2003 B2
6570347 Kastner May 2003 B2
6583587 Ito et al. Jun 2003 B2
6593703 Sun Jul 2003 B2
6628093 Stevens Sep 2003 B2
6630797 Qian et al. Oct 2003 B2
6633138 Shannon et al. Oct 2003 B2
6642674 Liao et al. Nov 2003 B2
6650514 Schmitt Nov 2003 B2
6654268 Choi Nov 2003 B2
6664744 Dietz Dec 2003 B2
6680834 Williams Jan 2004 B2
6703998 Kabel et al. Mar 2004 B1
6707264 Lin et al. Mar 2004 B2
6710555 Terada et al. Mar 2004 B1
6864867 Biebl Mar 2004 B2
6717371 Lin et al. Apr 2004 B2
6717372 Lin et al. Apr 2004 B2
6717375 Noguchi et al. Apr 2004 B2
6724602 Giannopoulos Apr 2004 B2
6765354 Klien Jul 2004 B2
6781325 Lee Aug 2004 B2
6784627 Suzuki et al. Aug 2004 B2
6803901 Numao Oct 2004 B1
6804129 Lin Oct 2004 B2
6809718 Wei et al. Oct 2004 B2
6809938 Lin et al. Oct 2004 B2
6815906 Aarons et al. Nov 2004 B1
6816142 Oda et al. Nov 2004 B2
6856099 Chen et al. Feb 2005 B2
6856519 Lin et al. Feb 2005 B2
6870330 Choi Mar 2005 B2
6876157 Henry Apr 2005 B2
6897698 Gheorghiu et al. May 2005 B1
6900599 Ribarich May 2005 B2
6900600 Rust et al. May 2005 B2
6900993 Lin et al. May 2005 B2
6922023 Hsu et al. Jul 2005 B2
6930893 Vinciarelli Aug 2005 B2
6936975 Lin et al. Aug 2005 B2
6947024 Lee et al. Sep 2005 B2
6967449 Ishihara Nov 2005 B2
6967657 Lowles et al. Nov 2005 B2
6969958 Henry Nov 2005 B2
6979959 Henry Dec 2005 B2
7026860 Gheorghiu et al. Apr 2006 B1
7057611 Lin et al. Jun 2006 B2
7075245 Liu Jul 2006 B2
7095392 Lin Aug 2006 B2
7120035 Lin et al. Oct 2006 B2
7151394 Gheorghiu et al. Dec 2006 B2
7183724 Ball Feb 2007 B2
7187140 Ball Mar 2007 B2
7190123 Lee Mar 2007 B2
7202458 Park Apr 2007 B2
7233117 Wang et al. Jun 2007 B2
7236020 Virgil Jun 2007 B1
20010036096 Lin Nov 2001 A1
20020030451 Moisin Mar 2002 A1
20020097004 Chiang et al. Jul 2002 A1
20020114114 Schmitt Aug 2002 A1
20020118182 Weindorf Aug 2002 A1
20020130786 Weindorf Sep 2002 A1
20020135319 Bruning et al. Sep 2002 A1
20020140538 Yer Oct 2002 A1
20020145886 Stevens Oct 2002 A1
20020153852 Liao et al. Oct 2002 A1
20020171376 Rust et al. Nov 2002 A1
20020180380 Lin Dec 2002 A1
20020180572 Kakehashi et al. Dec 2002 A1
20020181260 Chou et al. Dec 2002 A1
20020195971 Qian et al. Dec 2002 A1
20030001524 Lin et al. Jan 2003 A1
20030020677 Nakano Jan 2003 A1
20030025462 Weindorf Feb 2003 A1
20030080695 Ohsawa May 2003 A1
20030090913 Che-Chen et al. May 2003 A1
20030117084 Stack Jun 2003 A1
20030141829 Yu Jul 2003 A1
20030161164 Shannon et al. Aug 2003 A1
20030227435 Hsieh Dec 2003 A1
20040000879 Lee Jan 2004 A1
20040012556 Yong et al. Jan 2004 A1
20040017348 Numao Jan 2004 A1
20040032223 Henry Feb 2004 A1
20040051473 Jales et al. Mar 2004 A1
20040145558 Cheng Jul 2004 A1
20040155596 Ushijima Aug 2004 A1
20040155853 Lin Aug 2004 A1
20040189217 Ishihara et al. Sep 2004 A1
20040257003 Hsieh et al. Dec 2004 A1
20040263092 Liu Dec 2004 A1
20050062436 Jin Mar 2005 A1
20050093471 Jin May 2005 A1
20050093472 Jin May 2005 A1
20050093482 Ball May 2005 A1
20050093483 Ball May 2005 A1
20050093484 Ball May 2005 A1
20050094372 Jin May 2005 A1
20050099143 Kohno May 2005 A1
20050156536 Ball Jul 2005 A1
20050156539 Ball Jul 2005 A1
20050156540 Ball Jul 2005 A1
20050162098 Ball Jul 2005 A1
20050218825 Chiou Oct 2005 A1
20050225261 Jin Oct 2005 A1
20060022612 Henry Feb 2006 A1
20060049959 Sanchez Mar 2006 A1
Foreign Referenced Citations (14)
Number Date Country
0326114 Aug 1989 EP
0587923 Mar 1994 EP
0597661 May 1994 EP
0647021 Sep 1994 EP
06168791 Jun 1994 JP
8-204488 Aug 1996 JP
10-2003-0075461 Oct 2003 KR
0554643 Sep 2003 TW
8-204488 Dec 2003 TW
200501829 Jan 2005 TW
WO 9415444 Jul 1994 WO
WO 9809369 Mar 1998 WO
WO 9941953 Aug 1999 WO
WO 0237904 May 2002 WO
Related Publications (1)
Number Date Country
20070145911 A1 Jun 2007 US
Provisional Applications (1)
Number Date Country
60501502 Sep 2003 US
Continuations (1)
Number Date Country
Parent 10903636 Jul 2004 US
Child 11682242 US