The inventions relate to waste heat recovery systems, and more particularly, to a system and method that cools an internal combustion engine and a condenser of a Rankine cycle used with the internal combustion engine using a split core radiator.
A Rankine cycle (RC) can capture a portion of heat energy that normally would be wasted (“waste heat”) and convert a portion of that captured heat energy into energy that can perform useful work or into some other form of energy. Systems utilizing an RC are sometimes called waste heat recovery (WHR) systems. For example, heat from an internal combustion engine system such as exhaust gas heat energy and other engine heat sources (e.g., engine oil, exhaust gas, charge gas, water jackets) can be captured and converted to useful energy (e.g., electrical or mechanical energy). In this way, a portion of the waste heat energy can be recovered to increase the efficiency of a system including one or more waste heat sources.
An RC system includes a condenser element to decrease the temperature of the working fluid such that working fluid discharged from the condenser is in a low temperature, low pressure liquid state. To cool the working fluid of the RC, heat from the working fluid is transferred to a low temperature source (e.g., glycol, water etc.) coupled to condenser, and the heated low temperature source is cooled, for example, in a radiator.
The disclosure provides a cooling system that can provide improved heat recovery in a waste heat recovery (WHR) system by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC).
In an embodiment, a cooling system for an internal combustion engine and WHR system utilizing an RC includes a radiator having a first cooling core portion and a second cooling core portion positioned in a downstream direction of forced cooling air from the first cooling core portion, and an engine cooling loop including an engine coolant return line fluidly connected to an inlet of the second cooling core portion, and an engine coolant feed line connected to an outlet of the second cooling core portion. A condenser of the RC of the WHR system is fluidly coupled to a condenser cooling loop including a condenser coolant return line fluidly connected to an inlet of the first cooling core portion and a condenser coolant feed line fluidly connected an outlet of the first cooling core portion.
A valve is connected between the engine cooling loop and the condenser cooling loop and is configured to adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop.
The cooling system includes a controller communicatively coupled to the valve. The controller is adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.
Various aspects are described hereafter in connection with exemplary embodiments to facilitate an understanding of the invention. However, the invention should not be construed as being limited to these embodiments. Rather, these embodiments are provided so that the disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Descriptions of well-known functions and constructions are omitted for clarity and conciseness.
Interest is increasing in use of an RC, such as an organic Rankine cycle (ORC), to increase the thermal efficiency of a diesel engine. As will be described in greater detail below, an RC utilizes a condenser, which is cooled to condense hot vapor of the RC working fluid and maintain a desired amount of heat rejection from a waste heat source passed through the boiler of the RC.
The condenser heat load for an RC waste heat recovery system must be rejected to the ambient air. At the same time, increased cooling capacity in the condenser cooler is required for more efficient operation of the cycle. However, heat rejection space claim is currently limited on vehicles, which can prohibit making adding additional heat rejection capability.
As described herein, embodiments can utilize a vehicle's current radiator space claim more effectively across the engine's entire operating map. Currently, the engine's radiator is designed for the peak heat rejection requirement of the engine and vehicle at the rated condition. When the engine operates at off-peak conditions, the radiator is significantly oversized for the required engine and vehicle cooling; and the engine spends a large fraction of time at off-peak conditions. A split radiator design, as described later in detail, allows the waste heat recovery cycle to exploit the “oversized” radiator for additional condenser cooling when the engine is at off-peak conditions. The radiator can accomplish this by employing a split design in conjunction with a mixing valve where coolant for the engine flows through only a portion of the radiator, and that portion size can depend on engine cooling requirements. This allows the rest of the radiator to be used for cooling an RC condenser, especially in off peak operating conditions. The fluid returning to the condenser cooler is able to reach much lower temperatures by using the unneeded space claim at part load operation. At rated condition, the system can adjust to allow the engine coolant to utilize the the entire radiator. The efficiency of the waste heat recovery system would then decrease accordingly, but time spent at this condition is limited.
Thus, embodiments consistent with the invention allow the radiator to be utilized for both engine cooling and condenser cooling for a Rankine cycle by using a split core design with flow controlled by a valve. The Rankine cycle efficiency can benefit significantly by using the oversized portion of the radiator at part load, where the engine operates the majority of the time.
The concepts described herein can be applied to any engine employing a Rankine cycle waste heat recovery (WHR) system to increase the efficiency of the power conversion. The system also can compliment a hybrid power system by producing additional electrical power for consumption.
As shown in
The expanded gases exiting the outlet of the expander 22 are provided to in a second path through the recuperator heat exchanger 24 before being provided to a condenser 26. In the second path through the recuperator heat exchanger 20, heat is transferred from the working fluid to the recuperator heat exchanger 20 before entering the condenser 26. In the condenser 26, the working fluid is condensed and cooled before being provided to the feed pump 18. The feed pump 18 increases the working fluid pressure again and moves the liquid working fluid in the first path through the recuperator 20 where the fluid again absorbs heat stored while it traversed the second path through the recuperator 20, and so on.
The RC working fluid can be a nonorganic or an organic working fluid, such as Genetron™ R-245fa from Honeywell, Therminol™, Dowtherm J from the Dow Chemical Co., Fluorinol, Toluene, dodecane, isododecane, methylundecane, neopentane, neopentane, octane, water/methanol mixtures, or steam (in a non-organic Rankine cycle embodiment), for example.
The condenser 26 is cooled by a low temperature source, namely, a liquid coolant loop including a coolant feed pump 28, a condenser cooler in the radiator 8 having a split core design where heat is transferred from coolant in the condenser cooling loop (and from coolant for the engine coolant loop), a condenser coolant return line 30 and a condenser coolant feed line 32. The return line 10 of the engine cooling loop is fluidly connected to an inlet of a first core portion of the split core radiator 8, and the feed line 6 of the engine cooling loop is fluidly connected to an outlet of the first core portion of the split core radiator 8. The return line 30 of the condenser cooling loop is fluidly connected to an inlet of a second core portion of the split core radiator 8, and the feed line of the condenser cooling loop is fluidly connected to an outlet of the second core portion of the split core radiator 8. A mixing valve 60 is provided between the engine cooling loop and the condenser cooling loop to control an amount of coolant flow from the condenser cooling loop into the engine cooling loop based on load requirements of the engine and/or condenser. This, in turn, controls an amount of both portions of the radiator utilized by the engine coolant to cool the engine. For example, the valve 60 can close during off peak engine load condition and open during a high engine heat load condition.
Three exemplary variations of a split radiator design will now be described, although those of ordinary skill in the art would readily recognize additional embodiments consistent with the scope of the disclosure.
The split core of the radiator 208 includes a condenser cooler, which is depicted as a low temperature (LT) radiator 240, and an engine cooler, which is depicted as a high temperature (HT) radiator 242 positioned behind the low temperature (LT) radiator 240. In the front-to-back arrangement of the radiators 240/242, the coolest air of the air flow is in contact with the low temperature (LT) radiator 242 first for maximum power potential. The heated air that is discharged from the low temperature (LT) radiator 240 travels through the second cooler, i.e., the high temperature (HT) radiator 242, which cools the engine coolant. This positioning yields a “counter-flow like” arrangement for better heat transfer. When the engine requires additional cooling, for example, as a result of the engine ECM determining that a high load condition exists, the mixing valve 236 will open to allow the lower temperature coolant to flow in line 244 from the condenser coolant loop and to be used for engine coolant.
In the vertically split radiator embodiment of
The condenser 326 uses a coolant feed pump 328 that operates independent from the engine coolant (water) pump (not shown in
The horizontally split layout shown in
The mixing valve 236, 336 and 436, as well as the thermostats 234, 334, and 434 can be controlled thermally and/or mechanically, or by way of using sensors, such as sensors 252, 352, 452, to monitor engine and/or condenser coolant conditions and controlling actuators that can open and close these devices based on the sensed conditions. For example, a vehicle 254, 354, 454 utilizing a system in accordance with embodiments consistent with the claimed invention can include a controller 201, 301, 401, which can be, for example, an electronic control unit (ECU) or electronic control module (ECM) that monitors the performance of the engine 202, 302, and 402 and other elements of the vehicle 254, 354, 454. The controller 201, 301, 401 can be a single unit or plural control units that collectively perform these monitoring and control functions of the engine and condenser coolant system. A controller 201, 301, 401 can be provided separate from the coolant systems and communicate electrically with systems via one or more data and/or power paths. The controller 201, 301, 401 can also utilize sensors (e.g., sensors 252, 352, 452), such as pressure, temperature sensors to monitor the system components and determine whether these systems are functioning properly. The controller 201, 301, 401 can generate control signals based on information provided by sensors (e.g., sensors 252, 352, 452) described herein and perhaps other information, for example, stored in a database or memory integral to or separate from the controller 201, 301, 401.
The controller 201, 301, 401 can include a processor and modules in the form of software or routines that are stored on computer readable media such as memory, which is executable by the processor of the controller 201, 301, 401. In alternative embodiments, modules of controller 201, 301, 401 can include electronic circuits for performing some or all or part of the processing, including analog and/or digital circuitry. The modules can comprise a combination of software, electronic circuits and microprocessor based components. The controller 201, 301, 401 can receive data indicative of engine performance and exhaust gas composition including, but not limited to engine position sensor data, speed sensor data, exhaust mass flow sensor data, fuel rate data, pressure sensor data, temperature sensor data from locations throughout the engine 202, 302, and 402, an exhaust aftertreatment system, data regarding requested power, and other data. The controller 201, 301, 401 can then generate control signals and output these signals to control the mixing valves 236, 336 and 436 and the thermostats 234, 334, and 434.
Modifications of each of the above embodiments are within the scope of the disclosure. For instance, the front-to-back radiator portions 240 and 242 of vertically split radiator 208 of the condenser cooler system shown in
Although a limited number of embodiments is described herein, those skilled in the art will readily recognize that there could be variations, changes and modifications to any of these embodiments and those variations would be within the scope of the disclosure.
This application claims benefit of priority to Provisional Patent Application No. 61/372,472, filed on Aug. 11, 2010, the entire contents of which are hereby incorporated by reference.
This invention was made with government support under “Exhaust Energy Recovery,” contract number DE-FC26-05NT42419 awarded by the Department of Energy (DOE). The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/047494 | 8/11/2011 | WO | 00 | 9/27/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/021757 | 2/16/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3232052 | Ricard | Feb 1966 | A |
3789804 | Aguet | Feb 1974 | A |
4009587 | Robinson, Jr. et al. | Mar 1977 | A |
4164850 | Lowi, Jr. | Aug 1979 | A |
4204401 | Earnest | May 1980 | A |
4232522 | Steiger | Nov 1980 | A |
4267692 | Earnest | May 1981 | A |
4271664 | Earnest | Jun 1981 | A |
4428190 | Bronicki | Jan 1984 | A |
4458493 | Amir et al. | Jul 1984 | A |
4581897 | Sankrithi | Apr 1986 | A |
4630572 | Evans | Dec 1986 | A |
4831817 | Linhardt | May 1989 | A |
4873829 | Williamson | Oct 1989 | A |
4911110 | Isoda et al. | Mar 1990 | A |
5121607 | George, Jr. | Jun 1992 | A |
5207188 | Hama et al. | May 1993 | A |
5421157 | Rosenblatt | Jun 1995 | A |
5649513 | Kanda | Jul 1997 | A |
5685152 | Sterling | Nov 1997 | A |
5771868 | Khair | Jun 1998 | A |
5806322 | Cakmakci et al. | Sep 1998 | A |
5915472 | Takikawa et al. | Jun 1999 | A |
5950425 | Takahashi et al. | Sep 1999 | A |
6014856 | Bronicki et al. | Jan 2000 | A |
6035643 | Rosenblatt | Mar 2000 | A |
6055959 | Taue | May 2000 | A |
6128905 | Fahlsing | Oct 2000 | A |
6138649 | Khair et al. | Oct 2000 | A |
6301890 | Zeretzke | Oct 2001 | B1 |
6321697 | Matsuda et al. | Nov 2001 | B1 |
6324849 | Togawa et al. | Dec 2001 | B1 |
6393840 | Hay | May 2002 | B1 |
6494045 | Rollins, III | Dec 2002 | B2 |
6523349 | Viteri | Feb 2003 | B2 |
6571548 | Bronicki et al. | Jun 2003 | B1 |
6598397 | Hanna et al. | Jul 2003 | B2 |
6606848 | Rollins, III | Aug 2003 | B1 |
6637207 | Konezciny et al. | Oct 2003 | B2 |
6701712 | Bronicki et al. | Mar 2004 | B2 |
6715296 | Bakran et al. | Apr 2004 | B2 |
6745574 | Dettmer | Jun 2004 | B1 |
6748934 | Natkin et al. | Jun 2004 | B2 |
6751959 | McClanahan et al. | Jun 2004 | B1 |
6792756 | Bakran et al. | Sep 2004 | B2 |
6810668 | Nagatani et al. | Nov 2004 | B2 |
6817185 | Coney et al. | Nov 2004 | B2 |
6848259 | Keller-Sornig et al. | Feb 2005 | B2 |
6877323 | Dewis | Apr 2005 | B2 |
6880344 | Radcliff et al. | Apr 2005 | B2 |
6910333 | Minemi et al. | Jun 2005 | B2 |
6964168 | Pierson et al. | Nov 2005 | B1 |
6977983 | Correia et al. | Dec 2005 | B2 |
6986251 | Radcliff et al. | Jan 2006 | B2 |
7007487 | Belokon et al. | Mar 2006 | B2 |
7028463 | Hammond et al. | Apr 2006 | B2 |
7044210 | Usui | May 2006 | B2 |
7069884 | Baba et al. | Jul 2006 | B2 |
7117827 | Hinderks | Oct 2006 | B1 |
7121906 | Sundel | Oct 2006 | B2 |
7131259 | Rollins, III | Nov 2006 | B2 |
7131290 | Taniguchi et al. | Nov 2006 | B2 |
7159400 | Tsutsui et al. | Jan 2007 | B2 |
7174716 | Brasz et al. | Feb 2007 | B2 |
7174732 | Taniguchi et al. | Feb 2007 | B2 |
7191740 | Baba et al. | Mar 2007 | B2 |
7200996 | Cogswell et al. | Apr 2007 | B2 |
7225621 | Zimron et al. | Jun 2007 | B2 |
7281530 | Usui | Oct 2007 | B2 |
7325401 | Kesseli et al. | Feb 2008 | B1 |
7340897 | Zimron et al. | Mar 2008 | B2 |
7454911 | Tafas | Nov 2008 | B2 |
7469540 | Knapton et al. | Dec 2008 | B1 |
7578139 | Nishikawa et al. | Aug 2009 | B2 |
7665304 | Sundel | Feb 2010 | B2 |
7721552 | Hansson et al. | May 2010 | B2 |
7797940 | Kaplan | Sep 2010 | B2 |
7823381 | Misselhorn | Nov 2010 | B2 |
7833433 | Singh et al. | Nov 2010 | B2 |
7866157 | Ernst et al. | Jan 2011 | B2 |
7942001 | Radcliff et al. | May 2011 | B2 |
7958873 | Ernst et al. | Jun 2011 | B2 |
7997076 | Ernst | Aug 2011 | B2 |
20020099476 | Hamrin et al. | Jul 2002 | A1 |
20030033812 | Gerdes et al. | Feb 2003 | A1 |
20030213245 | Yates et al. | Nov 2003 | A1 |
20030213246 | Coll et al. | Nov 2003 | A1 |
20030213248 | Osborne et al. | Nov 2003 | A1 |
20050262842 | Claassen et al. | Dec 2005 | A1 |
20080289313 | Batscha et al. | Nov 2008 | A1 |
20090031724 | Ruiz | Feb 2009 | A1 |
20090090109 | Mills et al. | Apr 2009 | A1 |
20090121495 | Mills | May 2009 | A1 |
20090133646 | Wankhede et al. | May 2009 | A1 |
20090151356 | Ast et al. | Jun 2009 | A1 |
20090179429 | Ellis et al. | Jul 2009 | A1 |
20090211253 | Radcliff et al. | Aug 2009 | A1 |
20090320477 | Juchymenko | Dec 2009 | A1 |
20090322089 | Mills et al. | Dec 2009 | A1 |
20100018207 | Juchymenko | Jan 2010 | A1 |
20100071368 | Kaplan et al. | Mar 2010 | A1 |
20100083919 | Bucknell | Apr 2010 | A1 |
20100101224 | Kasuya et al. | Apr 2010 | A1 |
20100139626 | Raab et al. | Jun 2010 | A1 |
20100180584 | Berger et al. | Jul 2010 | A1 |
20100192569 | Ambros et al. | Aug 2010 | A1 |
20100229525 | Mackay et al. | Sep 2010 | A1 |
20100257858 | Yaguchi et al. | Oct 2010 | A1 |
20100263380 | Biederman et al. | Oct 2010 | A1 |
20100282221 | Le Lievre | Nov 2010 | A1 |
20100288571 | Dewis et al. | Nov 2010 | A1 |
20110005477 | Terashima et al. | Jan 2011 | A1 |
20110006523 | Samuel | Jan 2011 | A1 |
20110094485 | Vuk et al. | Apr 2011 | A1 |
20110209473 | Fritz et al. | Sep 2011 | A1 |
20120023946 | Ernst et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
1 273 785 | May 2007 | EP |
60-222511 | Nov 1985 | JP |
8-68318 | Mar 1996 | JP |
9-32653 | Feb 1997 | JP |
10-238418 | Sep 1998 | JP |
11-166453 | Jun 1999 | JP |
2005-36787 | Feb 2005 | JP |
2005-42618 | Feb 2005 | JP |
2005-201067 | Jul 2005 | JP |
2005-329843 | Dec 2005 | JP |
2007-332853 | Dec 2007 | JP |
2008-240613 | Oct 2008 | JP |
2009-167995 | Jul 2009 | JP |
2009-191647 | Aug 2009 | JP |
2010-77964 | Apr 2010 | JP |
2009098471 | Aug 2009 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority mailed Mar. 19, 2012 from corresponding International Application No. PCT/US2011/047494. |
Number | Date | Country | |
---|---|---|---|
20140007575 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61372472 | Aug 2010 | US |