The subject matter disclosed herein relates in general to Macro images and in particular to methods for obtaining such images with multi-cameras (e.g. dual-cameras).
Multi-aperture digital cameras (or multi-cameras) are standard for mobile electronic devices (e.g. smartphones, tablets, etc.). A multi-camera usually comprises a camera with a wide field-of-view (or “angle”) FOVW (“Wide” camera), and at least one additional camera, either with the same FOV (e.g. a depth auxiliary camera), with a narrower (than FOVW) field of view FOVT (Telephoto or “Tele” camera), or with an ultra-wide field of view FOVUW wider than FOVW (“UW camera”). In some embodiments below, a Wide or Ultra-Wide camera may be referred to as a “non-Macro camera”.
A “Macro-photography” mode is becoming a popular differentiator for smartphone cameras. “Macro-photography” refers to photographing objects that are very close to the camera, so that the image size of an object recorded on the image sensor is nearly as large as the actual size of the object photographed, i.e. it has a large object: image magnification (M) of e.g. 10:1 to 1:1. Such an image may be referred to as “Macro image”. First smartphones that include a Macro camera with a Macro FOV (FOVM), often based on an UW camera have entered the consumer market. A Macro camera can be realized with a Tele camera. An advantage is the high magnification M of a Macro images captures with a Tele camera, so that one may speak of a “Super Macro Image”. In some examples, the Macro camera may be a scanning Tele camera which can scan a scene with its native FOVM, for example as described in co-owned U.S. Pat. No. 10,578,948.
Macro images are recorded at very small object-camera distances of around 20 cm or less. A UW camera may still be capable to focus to these small distances. Generally, very small objects (e.g., less than 1 cm in size) are targeted as image objects (i.e. are objects of interest or “OOIs”). Such very small OOIs for a Macro image may be occluded by the multi-camera hosting device, making it difficult to point the Macro camera to capture the OOI in a precise manner. This is especially significant when FOVM captures a small area (e.g. a few square millimeters) of an object (e.g., placed 2 cm to 10 cm away from the camera) while being integrated in a large device. It would be beneficial to have a method that supports a quick and user-friendly way to direct a Macro camera FOVM towards very small OOIs.
In some embodiments there is provided a split screen view on a multi-camera hosting device showing a preview image segment of an ultra-wide camera FOV together with a preview image segment of the FOVM to support the targeting of an OOI with the FOVM.
The image segment of an ultra-wide camera FOV being displayed to the user may contain some differentiating element marking the area of the OOI that is to be captured by the Macro mode.
Such differentiating element marking may include a touchable box, for example a rectangular box. The user may get a feedback on the screen in which direction the multi-camera hosting device is to be moved to catch the OOI with the FOVM.
In various embodiments there are provided mobile electronic devices, comprising a first camera with a first field of view FOV1, a second, Macro camera with a Macro field of view FOVM smaller than FOV1 and a device screen that includes a first screen section configured to display first image data from the first camera and a second screen section configured to display second image data from the Macro camera when both cameras are focused to a distance equal to or smaller than 30 cm.
In some embodiments, the FOVM is shown and marked within the first screen section.
In some embodiments, the first screen section includes a visual indication for guiding a user of the mobile electronic device towards a scene using the FOVM.
In some embodiments, the second screen section displays first image data from the first camera.
In some embodiments, a device further comprises a controller for controlling a change in state of the Macro camera based on the first image data. In some embodiments, the state of the Macro camera is a zoom state. In some embodiments, the state of the Macro camera is a focus state.
In some embodiments, the first camera has a focal length between 2 and 7 mm.
In some embodiments, the Macro camera has a focal length between 12 and 40 mm.
In some embodiments, the Macro camera has a focal length between 14 and 30 mm.
In some embodiments, the Macro camera has a focal length between 15 and 20 mm.
In some embodiments, both cameras can be focused to a distance smaller than 20 cm.
In some embodiments, both cameras can be focused to a distance of 10 cm or less.
In some embodiments, at least one camera can be focused to a distance between 5 and 10 cm.
In some embodiments, at least one camera can be focused to a distance of 5 cm or less.
In some embodiments, at least one camera can be focused to a distance of 3 cm or less.
In some embodiments, the first camera is an Ultra-Wide camera.
In some embodiments, the first camera is a Wide camera.
In some embodiments, the Macro camera is a scanning Tele camera. In some embodiments, the device further comprises a controller for controlling a change of a scan state of the Macro camera based on the first image data.
In some embodiments, the Macro camera is a Tele camera having different zoom states.
In some embodiments, the first camera is focused to a first distance different from a second distance that the Macro camera is focused to.
In some embodiments, the first screen section and the second screen section are split vertically when the mobile electronic device is held in a landscape orientation, and the first screen section and the second screen section are split horizontally when the mobile electronic device is held in a portrait orientation.
In some embodiments, the device is a smartphone.
In some embodiments, the device further comprises a controller for controlling a change of a scan state of the Macro camera based on the first image data.
In various embodiments there are provided methods, comprising providing a mobile electronic device that includes a first camera with a first field of view FOV1, a second, Macro camera with a Macro field of view FOVM smaller than FOV1, and a device screen, focusing the first camera and the Macro camera to a distance ≤30 cm, and displaying on a first section of the device screen first image data from the first camera and displaying on a second section of the device screen second image data from the second camera.
In some embodiments, the focusing of the first camera and of the Macro camera to a distance ≤30 cm includes focusing the first camera to a first distance ≤30 cm and focusing the Macro camera to a distance ≤30 cm different from the first distance.
In some embodiments, the focusing of the first camera and of the Macro camera to a distance ≤30 cm includes focusing both cameras to a distance of 20 cm or less.
In some embodiments, the focusing of the first camera and of the Macro camera to a distance ≤30 cm includes focusing both cameras to a distance of 10 cm or less.
In some embodiments, the focusing of the first camera and of the Macro camera to a distance ≤30 cm includes focusing both cameras or one of the cameras to a distance of 5 cm or less.
In some embodiments, the focusing of the first camera and of the Macro camera to a distance ≤30 cm includes focusing both cameras or one of the cameras to a distance of 3 cm or less. In some embodiments, a method further comprises showing and marking the FOVM within the first screen section.
In some embodiments, a method further comprises including in the first screen section a visual indication for guiding a user of the mobile electronic device towards a scene using the FOVM.
In some embodiments, a method further comprises displaying the first image data in the second screen section.
In some embodiments, a method further comprises controlling a change in state of the Macro camera based on the first image data.
In some embodiments, the controlling a change in state of the Macro camera includes controlling a change of a state selected from the group consisting of a scan state, a zoom state and a focus state of the Macro camera.
In some embodiments, the Macro camera is a scanning Tele camera and the controlling a change in state of the Macro camera based on the first image data includes automatically controlling a change of a scan state of the scanning Tele camera.
In some embodiments, the Macro camera is a Tele camera having different zoom states and the controlling a change in state of the Macro camera includes automatically controlling a change of a zoom state of the Tele camera.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. Like elements in different drawings may be indicated by like numerals. Elements in the drawings are not necessarily drawn to scale.
Embodiments disclosed herein solve the problem of occlusion of an object of interest when Macro-photography is performed with multi-cameras included in smartphones and other mobile electronic devices. For simplicity and for example only, the solution is illustrated with a dual-camera, with the understanding that it is also clearly applicable with multi-cameras having three or more cameras.
In some examples, the Macro camera may be a continuous Tele zoom camera where FOVM changes with changing ZF.
In some examples, for performing a method disclosed herein, a smartphone like smartphone 200 may comprise, instead of or additionally to the UW camera with FOVUW 202, a W camera with a FOVW (not shown) that is smaller than FOVUW 202 but still larger than FOVM. In some examples, the W camera may not be able to focus to an object as close as e.g. 10 cm. In such examples, for performing a method disclosed herein, the W camera may be focused to its minimal focus distance, e.g. to 20 cm.
The UW or W cameras mentioned above have a larger depth of field than a Macro capable Tele camera with FOVM. A ROI is easier to detect in UW or W image data than in Macro image data. Therefore, one may use UW or W or M camera image data for automatic ROI detection and selection.
In an exemplary case, a user wishes to use smartphone 200 for capturing an OOI (e.g. a flower 208 which forms an image 216 in a camera) or a ROI with very high (Macro) resolution. For methods of use as disclosed herein, screen 206 is split into two sections, a first section 210 (possibly cropped) and a second section 212. The first screen section may display first image data from the first camera with FOV1 and the second screen section may display second image data from the second camera with FOVM. The examples here show a “split screen” view on the screen, i.e. the two screen sections are shown side by side. In other examples (not shown) one may display a “picture-in-picture” view on the screen, i.e. one screen section may be shown as an inlay in the other screen section. In some examples, the second screen section may be shown on the entire screen or on a large segment of the screen except on a segment where the first screen section is shown, and wherein the first screen section covers a smaller area on the screen than the second screen. In the embodiment of
Such a method or apparatus in which the screen is split and both the ultra-wide FOV and Macro FOV are shown allows the user to find an OOI and capture it with the Macro camera (and possibly also simultaneously with the UW camera) even if the handset (image capture device) occludes the OOI.
Optionally, the Macro lens may have a fixed effective focal length (EFL) providing a fixed zoom factor (ZF), or an adaptable (variable) EFL providing an adaptable ZF. The adaption of EFL may be discrete or continuous, i.e. a discrete number of varying EFLs for providing a plurality of discrete or continuous zoom states with respective ZFs. Camera 510 may be switched to a beneficial zoom state automatically.
Optionally, Macro camera 510 may be a folded camera that includes an OPFE 518 and an OPFE actuator 522 for actuating OPFE 518 for OIS and/or FOV scanning. In some embodiments, the FOV scanning of the Macro camera may be performed by actuating one or more OPFEs. A scanning Macro camera that performs FOV scanning by actuating two OPFEs is described for example in the co-owned U.S. provisional patent application No. 63/110,057 filed Nov. 5, 2020.
Macro camera module 510 further comprises a first memory 524, e.g. in an EEPROM (electrically erasable programmable read only memory). In some embodiments, first calibration data may be stored in memory 524. In other embodiments, the first calibration data may be stored in a third memory 560 such as a NVM (non-volatile memory). The first calibration data may comprise calibration data between image sensors 514 and 534.
Electronic device 500 further comprises a UW camera 530 with a FOVUW larger than FOVM of camera 510. UW camera 530 includes UW lens module 532 with a UW lens and a UW image sensor 534. A lens actuator 536 may move lens module 532 for focusing and/or OIS. In some embodiments, second calibration data may be stored in a second memory 538. In other embodiments, the second calibration data may be stored in third memory 560. The second calibration data may comprise calibration data between image sensors 514 and 534.
The Macro camera may have an effective focal length (EFL) of e.g. 8-30 mm or more, a diagonal FOV of 10-40 deg and a f number of about f/#=1.8-6. The UW camera may have an EFL of e.g. 2.5-8 mm, a diagonal FOV of 50-130 deg and a f/# of about 1.0-2.5.
In some embodiments, the Macro camera may cover about 50% of the area of the UW camera's FOV. In some embodiments, the Macro camera may cover about 10% or less of the area of the UW camera's FOV.
Electronic device 500 further comprises an application processor (AP) 540. Application processor 540 comprises a camera controller 542, a user control unit 544, OOI/ROI selector 546 and an image processor 548. Electronic device 500 further comprises a screen control 550 and a screen 570. Screen 570 may display methods as disclosed herein.
Returning now to the method of use as in
While this disclosure has been described in terms of certain examples and generally associated methods, alterations and permutations of the examples and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific examples described herein, but only by the scope of the appended claims.
It is appreciated that certain features of the presently disclosed subject matter, which are, for clarity, described in the context of separate examples, may also be provided in combination in a single example. Conversely, various features of the presently disclosed subject matter, which are, for brevity, described in the context of a single example, may also be provided separately or in any suitable sub-combination.
Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.
It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.
All patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present disclosure.
This is a 371 application from international patent application PCT/IB2021/050639 filed Jan. 27, 2021, and is related to and claims the benefit of priority from U.S. Provisional patent applications No. 62/980,184 filed 22 Feb. 2020, U.S. Pat. No. 63,032,576 filed 30 May 2020, and U.S. Pat. No. 63,080,047 filed 18 Sep. 2020, all of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2021/050639 | 1/27/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/165764 | 8/26/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4199785 | McCullough et al. | Apr 1980 | A |
5005083 | Grage et al. | Apr 1991 | A |
5032917 | Aschwanden | Jul 1991 | A |
5041852 | Misawa et al. | Aug 1991 | A |
5051830 | von Hoessle | Sep 1991 | A |
5099263 | Matsumoto et al. | Mar 1992 | A |
5248971 | Mandl | Sep 1993 | A |
5287093 | Amano et al. | Feb 1994 | A |
5394520 | Hall | Feb 1995 | A |
5436660 | Sakamoto | Jul 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5459520 | Sasaki | Oct 1995 | A |
5657402 | Bender et al. | Aug 1997 | A |
5682198 | Katayama et al. | Oct 1997 | A |
5768443 | Michael et al. | Jun 1998 | A |
5926190 | Turkowski et al. | Jul 1999 | A |
5940641 | McIntyre et al. | Aug 1999 | A |
5982951 | Katayama et al. | Nov 1999 | A |
6101334 | Fantone | Aug 2000 | A |
6128416 | Oura | Oct 2000 | A |
6148120 | Sussman | Nov 2000 | A |
6208765 | Bergen | Mar 2001 | B1 |
6268611 | Pettersson et al. | Jul 2001 | B1 |
6549215 | Jouppi | Apr 2003 | B2 |
6611289 | Yu et al. | Aug 2003 | B1 |
6643416 | Daniels et al. | Nov 2003 | B1 |
6650368 | Doron | Nov 2003 | B1 |
6680748 | Monti | Jan 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6724421 | Glatt | Apr 2004 | B1 |
6738073 | Park et al. | May 2004 | B2 |
6741250 | Furlan et al. | May 2004 | B1 |
6750903 | Miyatake et al. | Jun 2004 | B1 |
6778207 | Lee et al. | Aug 2004 | B1 |
7002583 | Rabb, III | Feb 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7038716 | Klein et al. | May 2006 | B2 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7248294 | Slatter | Jul 2007 | B2 |
7256944 | Labaziewicz et al. | Aug 2007 | B2 |
7305180 | Labaziewicz et al. | Dec 2007 | B2 |
7339621 | Fortier | Mar 2008 | B2 |
7346217 | Gold, Jr. | Mar 2008 | B1 |
7365793 | Cheatle et al. | Apr 2008 | B2 |
7411610 | Doyle | Aug 2008 | B2 |
7424218 | Baudisch et al. | Sep 2008 | B2 |
7509041 | Hosono | Mar 2009 | B2 |
7533819 | Barkan et al. | May 2009 | B2 |
7619683 | Davis | Nov 2009 | B2 |
7738016 | Toyofuku | Jun 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7809256 | Kuroda et al. | Oct 2010 | B2 |
7880776 | LeGall et al. | Feb 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7964835 | Olsen et al. | Jun 2011 | B2 |
7978239 | Deever et al. | Jul 2011 | B2 |
8115825 | Culbert et al. | Feb 2012 | B2 |
8149327 | Lin et al. | Apr 2012 | B2 |
8154610 | Jo et al. | Apr 2012 | B2 |
8238695 | Davey et al. | Aug 2012 | B1 |
8274552 | Dahi et al. | Sep 2012 | B2 |
8390729 | Long et al. | Mar 2013 | B2 |
8391697 | Cho et al. | Mar 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8439265 | Ferren et al. | May 2013 | B2 |
8446484 | Muukki et al. | May 2013 | B2 |
8483452 | Ueda et al. | Jul 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8547389 | Hoppe et al. | Oct 2013 | B2 |
8553106 | Scarff | Oct 2013 | B2 |
8587691 | Takane | Nov 2013 | B2 |
8619148 | Watts et al. | Dec 2013 | B1 |
8803990 | Smith | Aug 2014 | B2 |
8896655 | Mauchly et al. | Nov 2014 | B2 |
8976255 | Matsuoto et al. | Mar 2015 | B2 |
9019387 | Nakano | Apr 2015 | B2 |
9025073 | Attar et al. | May 2015 | B2 |
9025077 | Attar et al. | May 2015 | B2 |
9041835 | Honda | May 2015 | B2 |
9137447 | Shibuno | Sep 2015 | B2 |
9185291 | Shabtay et al. | Nov 2015 | B1 |
9215377 | Sokeila et al. | Dec 2015 | B2 |
9215385 | Luo | Dec 2015 | B2 |
9270875 | Brisedoux et al. | Feb 2016 | B2 |
9286680 | Jiang et al. | Mar 2016 | B1 |
9344626 | Silverstein et al. | May 2016 | B2 |
9360671 | Zhou | Jun 2016 | B1 |
9369621 | Malone et al. | Jun 2016 | B2 |
9413930 | Geerds | Aug 2016 | B2 |
9413984 | Attar et al. | Aug 2016 | B2 |
9420180 | Jin | Aug 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9485432 | Medasani et al. | Nov 2016 | B1 |
9578257 | Attar et al. | Feb 2017 | B2 |
9618748 | Munger et al. | Apr 2017 | B2 |
9681057 | Attar et al. | Jun 2017 | B2 |
9723220 | Sugie | Aug 2017 | B2 |
9736365 | Laroia | Aug 2017 | B2 |
9736391 | Du et al. | Aug 2017 | B2 |
9768310 | Ahn et al. | Sep 2017 | B2 |
9800798 | Ravirala et al. | Oct 2017 | B2 |
9851803 | Fisher et al. | Dec 2017 | B2 |
9894287 | Qian et al. | Feb 2018 | B2 |
9900522 | Lu | Feb 2018 | B2 |
9927600 | Goldenberg et al. | Mar 2018 | B2 |
10841481 | Nagao | Nov 2020 | B2 |
20020005902 | Yuen | Jan 2002 | A1 |
20020030163 | Zhang | Mar 2002 | A1 |
20020063711 | Park et al. | May 2002 | A1 |
20020075258 | Park et al. | Jun 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020167741 | Koiwai et al. | Nov 2002 | A1 |
20030030729 | Prentice et al. | Feb 2003 | A1 |
20030093805 | Gin | May 2003 | A1 |
20030160886 | Misawa et al. | Aug 2003 | A1 |
20030202113 | Yoshikawa | Oct 2003 | A1 |
20040008773 | Itokawa | Jan 2004 | A1 |
20040012683 | Yamasaki et al. | Jan 2004 | A1 |
20040017386 | Liu et al. | Jan 2004 | A1 |
20040027367 | Pilu | Feb 2004 | A1 |
20040061788 | Bateman | Apr 2004 | A1 |
20040141065 | Hara et al. | Jul 2004 | A1 |
20040141086 | Mihara | Jul 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20050013509 | Samadani | Jan 2005 | A1 |
20050046740 | Davis | Mar 2005 | A1 |
20050157184 | Nakanishi et al. | Jul 2005 | A1 |
20050168834 | Matsumoto et al. | Aug 2005 | A1 |
20050185049 | Iwai et al. | Aug 2005 | A1 |
20050200718 | Lee | Sep 2005 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20060067672 | Washisu et al. | Mar 2006 | A1 |
20060102907 | Lee et al. | May 2006 | A1 |
20060125937 | LeGall et al. | Jun 2006 | A1 |
20060170793 | Pasquarette et al. | Aug 2006 | A1 |
20060175549 | Miller et al. | Aug 2006 | A1 |
20060187310 | Janson et al. | Aug 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060227236 | Pak | Oct 2006 | A1 |
20070024737 | Nakamura et al. | Feb 2007 | A1 |
20070126911 | Nanjo | Jun 2007 | A1 |
20070177025 | Kopet et al. | Aug 2007 | A1 |
20070188653 | Pollock et al. | Aug 2007 | A1 |
20070189386 | Imagawa et al. | Aug 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070285550 | Son | Dec 2007 | A1 |
20080017557 | Witdouck | Jan 2008 | A1 |
20080024614 | Li et al. | Jan 2008 | A1 |
20080025634 | Border et al. | Jan 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030611 | Jenkins | Feb 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080106629 | Kurtz et al. | May 2008 | A1 |
20080117316 | Orimoto | May 2008 | A1 |
20080129831 | Cho et al. | Jun 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090109556 | Shimizu et al. | Apr 2009 | A1 |
20090122195 | Van Baar et al. | May 2009 | A1 |
20090122406 | Rouvinen et al. | May 2009 | A1 |
20090128644 | Camp et al. | May 2009 | A1 |
20090185047 | Takachi | Jul 2009 | A1 |
20090190909 | Mise et al. | Jul 2009 | A1 |
20090219547 | Kauhanen et al. | Sep 2009 | A1 |
20090252484 | Hasuda et al. | Oct 2009 | A1 |
20090295949 | Ojala | Dec 2009 | A1 |
20090324135 | Kondo et al. | Dec 2009 | A1 |
20100013906 | Border et al. | Jan 2010 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103194 | Chen et al. | Apr 2010 | A1 |
20100165131 | Makimoto et al. | Jul 2010 | A1 |
20100196001 | Ryynänen et al. | Aug 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100259836 | Kang et al. | Oct 2010 | A1 |
20100283842 | Guissin et al. | Nov 2010 | A1 |
20100321494 | Peterson et al. | Dec 2010 | A1 |
20110058320 | Kim et al. | Mar 2011 | A1 |
20110063417 | Peters et al. | Mar 2011 | A1 |
20110063446 | McMordie et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110128288 | Petrou et al. | Jun 2011 | A1 |
20110128395 | Choi | Jun 2011 | A1 |
20110164172 | Shintani et al. | Jul 2011 | A1 |
20110229054 | Weston et al. | Sep 2011 | A1 |
20110234798 | Chou | Sep 2011 | A1 |
20110234853 | Hayashi et al. | Sep 2011 | A1 |
20110234881 | Wakabayashi et al. | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110298966 | Kirschstein et al. | Dec 2011 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120044372 | Cote et al. | Feb 2012 | A1 |
20120062780 | Morihisa | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120075489 | Nishihara | Mar 2012 | A1 |
20120105579 | Jeon et al. | May 2012 | A1 |
20120124525 | Kang | May 2012 | A1 |
20120154547 | Aizawa | Jun 2012 | A1 |
20120154614 | Moriya et al. | Jun 2012 | A1 |
20120196648 | Havens et al. | Aug 2012 | A1 |
20120229663 | Nelson et al. | Sep 2012 | A1 |
20120249815 | Bohn et al. | Oct 2012 | A1 |
20120287315 | Huang et al. | Nov 2012 | A1 |
20120320467 | Baik et al. | Dec 2012 | A1 |
20130002928 | Imai | Jan 2013 | A1 |
20130016427 | Sugawara | Jan 2013 | A1 |
20130063629 | Webster et al. | Mar 2013 | A1 |
20130076922 | Shihoh et al. | Mar 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130094126 | Rappoport et al. | Apr 2013 | A1 |
20130113894 | Mirlay | May 2013 | A1 |
20130135445 | Dahi et al. | May 2013 | A1 |
20130155176 | Paripally et al. | Jun 2013 | A1 |
20130182150 | Asakura | Jul 2013 | A1 |
20130201360 | Song | Aug 2013 | A1 |
20130202273 | Ouedraogo et al. | Aug 2013 | A1 |
20130235224 | Park et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258044 | Betts-Lacroix | Oct 2013 | A1 |
20130270419 | Singh et al. | Oct 2013 | A1 |
20130278785 | Nomura et al. | Oct 2013 | A1 |
20130321668 | Kamath | Dec 2013 | A1 |
20140009631 | Topliss | Jan 2014 | A1 |
20140049615 | Uwagawa | Feb 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140160311 | Wang et al. | Jun 2014 | A1 |
20140192238 | Attar et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140218587 | Shah | Aug 2014 | A1 |
20140313316 | Olsson et al. | Oct 2014 | A1 |
20140362242 | Takizawa | Dec 2014 | A1 |
20150002683 | Hu et al. | Jan 2015 | A1 |
20150042870 | Chan et al. | Feb 2015 | A1 |
20150070781 | Cheng et al. | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150103147 | Ho et al. | Apr 2015 | A1 |
20150138381 | Ahn | May 2015 | A1 |
20150154776 | Zhang et al. | Jun 2015 | A1 |
20150162048 | Hirata et al. | Jun 2015 | A1 |
20150195458 | Nakayama et al. | Jul 2015 | A1 |
20150215516 | Dolgin | Jul 2015 | A1 |
20150237280 | Choi et al. | Aug 2015 | A1 |
20150242994 | Shen | Aug 2015 | A1 |
20150244906 | Wu et al. | Aug 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150261299 | Wajs | Sep 2015 | A1 |
20150271471 | Hsieh et al. | Sep 2015 | A1 |
20150281678 | Park et al. | Oct 2015 | A1 |
20150286033 | Osborne | Oct 2015 | A1 |
20150316744 | Chen | Nov 2015 | A1 |
20150334309 | Peng et al. | Nov 2015 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160154202 | Wippermann et al. | Jun 2016 | A1 |
20160154204 | Lim et al. | Jun 2016 | A1 |
20160212358 | Shikata | Jul 2016 | A1 |
20160212418 | Demirdjian et al. | Jul 2016 | A1 |
20160241751 | Park | Aug 2016 | A1 |
20160291295 | Shabtay et al. | Oct 2016 | A1 |
20160295112 | Georgiev et al. | Oct 2016 | A1 |
20160301840 | Du et al. | Oct 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20160353012 | Kao et al. | Dec 2016 | A1 |
20160381289 | Kim | Dec 2016 | A1 |
20170019616 | Zhu et al. | Jan 2017 | A1 |
20170070731 | Darling et al. | Mar 2017 | A1 |
20170094187 | Sharma | Mar 2017 | A1 |
20170187962 | Lee et al. | Jun 2017 | A1 |
20170214846 | Du et al. | Jul 2017 | A1 |
20170214866 | Zhu et al. | Jul 2017 | A1 |
20170242225 | Fiske | Aug 2017 | A1 |
20170289458 | Song et al. | Oct 2017 | A1 |
20180013944 | Evans, V et al. | Jan 2018 | A1 |
20180017844 | Yu et al. | Jan 2018 | A1 |
20180024329 | Goldenberg et al. | Jan 2018 | A1 |
20180059379 | Chou | Mar 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180150973 | Tang et al. | May 2018 | A1 |
20180176426 | Wei et al. | Jun 2018 | A1 |
20180198897 | Tang et al. | Jul 2018 | A1 |
20180241922 | Baldwin et al. | Aug 2018 | A1 |
20180295292 | Lee et al. | Oct 2018 | A1 |
20180300901 | Wakai et al. | Oct 2018 | A1 |
20180368656 | Austin et al. | Dec 2018 | A1 |
20190121103 | Bachar et al. | Apr 2019 | A1 |
20190289201 | Nishimura | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
101276415 | Oct 2008 | CN |
201514511 | Jun 2010 | CN |
102215373 | Oct 2011 | CN |
102739949 | Oct 2012 | CN |
103024272 | Apr 2013 | CN |
103841404 | Jun 2014 | CN |
109729266 | May 2019 | CN |
1536633 | Jun 2005 | EP |
1780567 | May 2007 | EP |
2523450 | Nov 2012 | EP |
S59191146 | Oct 1984 | JP |
04211230 | Aug 1992 | JP |
H07318864 | Dec 1995 | JP |
08271976 | Oct 1996 | JP |
2002010276 | Jan 2002 | JP |
2003298920 | Oct 2003 | JP |
2004133054 | Apr 2004 | JP |
2004245982 | Sep 2004 | JP |
2005099265 | Apr 2005 | JP |
2006238325 | Sep 2006 | JP |
2007228006 | Sep 2007 | JP |
2007306282 | Nov 2007 | JP |
2008076485 | Apr 2008 | JP |
2010204341 | Sep 2010 | JP |
2011085666 | Apr 2011 | JP |
2013106289 | May 2013 | JP |
20070005946 | Jan 2007 | KR |
20090058229 | Jun 2009 | KR |
20100008936 | Jan 2010 | KR |
20110082494 | Jul 2011 | KR |
20140014787 | Feb 2014 | KR |
101477178 | Dec 2014 | KR |
20140144126 | Dec 2014 | KR |
20150118012 | Oct 2015 | KR |
2000027131 | May 2000 | WO |
2004084542 | Sep 2004 | WO |
2006008805 | Jan 2006 | WO |
2010122841 | Oct 2010 | WO |
2014072818 | May 2014 | WO |
2017025822 | Feb 2017 | WO |
2017037688 | Mar 2017 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages. |
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages. |
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages. |
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages. |
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages. |
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages. |
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages. |
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages. |
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages. |
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages. |
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages. |
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages. |
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages. |
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages. |
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages. |
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages. |
European Search Report in related EP patent application 21757234.6, dated Dec. 7, 2022. |
Office Action in related EP patent application 21757234.6, dated Dec. 20, 2022. |
Office Action in related KR patent application 2022-7010978, dated Oct. 17, 2023. |
Number | Date | Country | |
---|---|---|---|
20220385831 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
63080047 | Sep 2020 | US | |
63032576 | May 2020 | US | |
62980184 | Feb 2020 | US |