This invention relates to dispensers for dispensing coating materials such as liquid coating materials (hereinafter sometimes “paint”) or pulverulent coating material (hereinafter sometimes “coating powder” or “powder”) suspended in a gas stream, for example, a stream of air, from, for example, a fluidized powder bed. It is disclosed in the context of a dispenser (hereinafter sometimes a “gun”) for dispensing coating powder. However, it is believed to have utility in other applications as well.
Systems for dispensing coating materials are known. There are, for example, the systems illustrated and described in U.S. Pat. Nos. 3,536,514; 3,575,344; 3,698,636; 3,843,054; 3,913,523; 3,964,683; 4,037,561; 4,039,145; 4,114,564; 4,135,667; 4,169,560; 4,216,915; 4,360,155; 4,381,079; 4,447,008; 4,450,785; Re. 31,867; 4,520,754; 4,580,727; 4,598,870; 4,685,620; 4,788,933; 4,798,340; 4,802,625; 4,825,807; 4,921,172; 5,353,995; 5,358,182; 5,433,387; 5,720,436; 5,853,126; and, 6,328,224. There are also the devices illustrated and described in U.S. Pat. Nos. 2,759,763; 2,955,565; 3,102,062; 3,233,655; 3,578,997; 3,589,607; 3,610,528; 3,684,174; 4,066,041; 4,171,100; 4,214,708; 4,215,818; 4,323,197; 4,350,304; 4,402,991; 4,422,577; Re. 31,590; 4,505,430; 4,518,119; 4,726,521; 4,779,805; 4,785,995; 4,879,137; 4,890,190; and, 4,896,384; British Patent Specification 1,209,653; Japanese published patent applications: 62-140,660; 1-315,361; 3-169,361; 3-221,166; 60-151,554; 60-94,166; 63-116,776; 58-124,560; and 331,823 of 1972; and, French patent 1,274,814. There are also the devices illustrated and described in “Aerobell™ Powder Applicator ITW Automatic Division” and “Aerobell™ & Aerobell Plus™ Rotary Atomizer, DeVilbiss Ransburg Industrial Liquid Systems.” The disclosures of these references are hereby incorporated herein by reference. This listing is not intended to be a representation that a complete search of all relevant art has been made, or that no more pertinent art than that listed exists, or that the listed art is material to patentability. Nor should any such representation be inferred.
According to an aspect of the invention, a dispenser includes an opening through which coating material is dispensed, a coupling for coupling the opening to a source of coating material to be dispensed, and a shroud for enclosing at least a portion of the dispenser. The shroud includes two portions which engage each other at first and second joints which extend generally longitudinally of the shroud.
Illustratively, the shroud comprises a somewhat right cylindrical shroud
Further illustratively, the shroud comprises a somewhat right circular cylindrical shroud, and each of the two portions is consequently part right circular cylindrical.
Illustratively, the shroud includes a longitudinal axis. A first one of the portions subtends an arc measured about the axis of somewhat more than 180°, and a second one of the portions subtends an arc about the axis of somewhat less than 180°. Further illustratively according to this aspect, the first one of the portions subtends an arc measured about the axis of about 200°, and the second one of the portions subtends an arc measured about the axis of about 160°.
Illustratively, the shroud portions are constructed from resilient, electrically non-conductive materials. Further illustratively according to this aspect, the shroud portions are constructed from acetal resin.
Illustratively, the shroud portions include inner sidewalls including grooves which extend generally longitudinally therealong.
Illustratively, a first of the shroud portions includes a lateral edge including a first feature, and a second of the shroud portions includes a lateral edge including a second feature which is complementary to the first feature.
Further illustratively according to this aspect, the first feature comprises a somewhat V-bottomed groove, and the second feature comprises a somewhat V-shaped edge.
Additionally illustratively according to this aspect, the first shroud portion includes two lateral edges. Each lateral edge of the first shroud portion includes a first feature. The second shroud portion includes two lateral edges. Each lateral edge of the second shroud portion includes a second feature which is complementary to the first feature. Each first feature comprises a somewhat V-bottomed groove. Each second feature comprises a somewhat V-shaped edge.
Further illustratively according to this aspect, the apparatus includes a gasket material interposed between the first and second features.
Illustratively, the dispenser includes a forward end adjacent the opening. The forward end includes a feature for cooperating with a feature provided on a forward end of a first one of the shroud portions to facilitate engagement of the forward end of the first one of the shroud portions with the forward end of the dispenser. The forward end also includes a feature for cooperating with a feature provided on a forward end of a second one of the shroud portions to facilitate engagement of the forward end of the second one of the shroud portions with the forward end of the dispenser.
Illustratively, the feature on the forward end of one of the dispenser and the shroud portions comprises a groove extending substantially continuously around a perimeter of the forward end of said one of the dispenser and the shroud portions, and the feature provided on the forward end of the other of the dispenser and the shroud portions includes a lip for engaging the groove.
Illustratively, the dispenser includes a rearward end including a feature for cooperating with a feature provided on a rearward end of a first one of the shroud portions to facilitate engagement of the rearward end of the first one of the shroud portions with the rearward end of the dispenser. The rearward end of the dispenser also includes a feature for cooperating with a feature provided on a rearward end of a second one of the shroud portions to facilitate engagement of the rearward end of the second one of the shroud portions with the rearward end of the dispenser.
Illustratively according to this aspect, the feature on a rearward end of the dispenser includes a ring including at least one tab, and the feature provided on a rearward end of a first one of the shroud portions includes a flange provided with at least one passageway permitting passage of the at least one tab therethrough during assembly of the shroud to the dispensing device.
Illustratively according to this aspect, the dispenser includes a forward end adjacent the opening. The forward end includes a feature for cooperating with a feature provided on a forward end of a first one of the shroud portions to facilitate engagement of the forward end of the first one of the shroud portions with the forward end of the dispenser. The forward end of the dispenser also includes a feature for cooperating with a feature provided on a forward end of a second one of the shroud portions to facilitate engagement of the forward end of the second one of the shroud portions with the forward end of the dispenser.
Illustratively according to this aspect, the feature provided on a rearward end of a first one of the shroud portions includes a ramp surface provided on the flange for cooperating with the at least one tab to urge the feature provided on a forward end of the first one of the shroud portions into engagement with the forward end of the dispenser.
Illustratively, the source of coating material to be dispensed comprises a source of pulverulent coating material suspended in a gas or mixture of gases.
The invention may best be understood by referring to the following detailed description and accompanying drawings which illustrate the invention. In the drawings:
As used in this application, terms such as “electrically conductive” and “electrically non-insulative” refer to a broad range of conductivities electrically more conductive than materials described as “electrically non-conductive” and “electrically insulative.” Terms such as “electrically semiconductive” refer to a broad range of conductivities between electrically conductive and electrically non-conductive. Terms such as “front,” “back,” “up,” “down,” and the like, are used only to describe an illustrative embodiment, and are not intended as limiting.
Coating material particles are typically quite small. Sizes in the range of 5 μm-50 μm are not uncommon. As a result, coating material particles are typically highly penetrating, that is, capable of entering through small openings into, for example, equipment used to dispense them and accumulating there. As a consequence, it is desirable to design coating material dispensing equipment with a view toward being able to clean it without too much difficulty.
In order to clean powder coating equipment between an interval during which a first color or type of powder coating material is being dispensed and an interval during which a second color or type of powder coating material is being dispensed, cleaning of the powder coating equipment is conducted at intervals. Such cleaning may involve, for example, wiping down of the equipment to dislodge any accumulated powder.
Additionally, coating material dispensing equipment needs to be designed with a view toward conducting other types of maintenance, routine and otherwise, on the equipment. Maintenance sometimes involves disassembly of covers, or shrouds, which enclose components of the coating material dispensing system, for example, to reduce the exposure of such components to dispensed coating material. Covering of such components has the potential to reduce the amount and complexity of the cleaning which must be conducted on the dispensing equipment. Consequently, a consideration in the design of such shrouds is the ability of the shrouds to protect covered components against the ingress of coating material into the covered components, while at the same time facilitating the removal of the shrouds so that covered components can be serviced as necessary.
Powder flows from a powder source 32 forward through powder delivery tube 14 to nozzle 12. Powder source 32 may be of any of a number of known types such as, for example, a fluidized bed of the general type illustrated and described in U.S. Pat. No. 5,768,800. A powder supply hose 46 extends from powder source 32 through a robot arm (not shown) to the end of which robot powder gun adapter plate 20 is mounted. A proximal end 47 of powder delivery tube 14 is coupled through a forward manifold 50 (see also
An illustratively somewhat right circular cylindrical shroud 60, surrounds and encloses portions of such powder dispensing equipment, connections 14 and the like. The shroud 60 includes two portions 62 (see also
A first of the portions, illustratively, the smaller portion 64, is provided with a feature 70, for example, a somewhat V-bottomed groove, along each of its lateral edges 72. The second of the portions, illustratively, the larger portion 62, is provided with complementary feature 74, illustratively a somewhat V-shaped edge, along each of its lateral edges 76 to cooperate with respective ones of the somewhat V-bottomed grooves 70 along respective lateral edges 72 of the first portion 64. One or the other or both of features 70, 74 can be furnished with, for example, gasket material 78, such as, for example, O-ring material, to promote sealing of portions 62, 64 together to impede the penetration of dispensed coating material into the interior 79 of shroud 60.
Forward manifold 50 includes a perimetrally extending, rearwardly facing feature 80, such as a groove or relief for cooperating with complementary forward features 82, illustratively lips, of larger shroud portion 62 and smaller shroud portion 64.
At its rearward end, each shroud portion 62, 64 includes a flange 90 which extends perimetrally partway around its rearward extent. Flanges 90 are interrupted at intervals by passageways 92 which permit the passage of respective tabs 94 of a shroud retainer ring 96 (see also
Number | Date | Country | |
---|---|---|---|
60503118 | Sep 2003 | US |