The present invention is generally directed to a cleaning system for ultraviolet (UV) disinfection modules. More specifically, the present invention is directed to a split wiper or brush, with associated housing, that permits cleaning systems to be quickly and efficiently replaced or adapted to specific treatment conditions.
Utilization of UV for disinfection of potable and wastewater increases on an ongoing basis. A number of UV disinfection systems are commercially available and utilized for a wide variety of wastewater and potable disinfection process.
In general, UV light is a portion of the electromagnetic spectrum that has many uses. For example, UV light can be used in a purification or disinfection system to kill bacteria and break down chemicals in a fluid, such as water or air. UV light can also be used to cause chemical reactions in order to break down certain chemicals and make certain chemical compounds.
In order to harness this ability of UV light, a UV reactor may be utilized. In general, a UV reactor may comprise one or more UV lights, often made from a straight hollow tube of UV transparent material, such as quartz. This tube is filled with a gas such that when an electric current passes through the gas, ultraviolet light is produced. Such UV lamps are often placed in a secondary jacket of UV transparent material, again, such as quartz. The jacket may keep water or wastewater away from the lamp. The lamp and jacket may be referred to as a reactor tube.
One or more reactor tubes may be placed in a disinfection module so that the water or wastewater flows through and/or around the reactor tubes. However, it has been an ongoing problem in the field of UV disinfection that, over the course of time, the quartz jackets surrounding the individual UV lamps tend to foul due to the slow build-up or accumulation of deposited material on the quartz jackets. Such materials include particulates, fats, oils, greases and the like that are typical of foreign matter contained with the water being disinfected. A number of systems and processes have been developed to remove such accumulations and/or deposits. Such systems include various reciprocating wiper systems which tend to have one problem or another in effectively and economically achieving the task of cleaning quartz jackets for an extended period of time.
As fouling and scale accumulate on the outer jackets, it increasingly blocks the UV light, thereby reducing the effectiveness of the disinfection module. However, oftentimes, due to the arrangement of multiple reactor tubes, the task of cleaning the jackets is difficult without partially dismantling the disinfection module. This issue has been addressed in the art in various ways, for example by U.S. Pat. No. 6,649,917, owned by Infilco Degremont, Inc., and incorporated herein by reference in its entirety.
Broadly speaking, U.S. Pat. No. 6,649,917 teaches utilizing a cleaning plate with a multiplicity of holes, and associated wipers. The cleaning plate traverses between two headers along the path of the reactor tubes, and with the reactor tubes traveling through the holes and associated wipers on the cleaning plate. However, issues with the gradual decreasing effectiveness of the wipers or brushes that encircle the reactor tubes may be present. In addition, depending on specific water and/or wastewater conditions, the type of cleaning implement (e.g., a solid wiper or a brush) may vary.
Changing the wipers or brushes may be a time and manpower intensive task, as a header may need to be removed to slide the cleaning plate and wipers off of the multiplicity of lamps, replace the wipers, and slide the entire unit back on. Such time and manpower requirements reduce the ability to quickly and efficiently change the cleaning implement if the water and/or wastewater conditions change.
Accordingly, it is desirable to provide a cleaning system for a UV disinfection module that can quickly and efficiently be changed in order to allow for quick and efficient routine maintenance or adaptation to existing or changing water or wastewater conditions.
Aspects of some embodiments of the present invention may include a cleaning system for a UV disinfection module having a pair of headers with a multiplicity of UV lamps extending therebetween comprising: a cleaning plate having a multiplicity of openings therein, the openings arranged to substantially coincide with positions of the lamps to permit movement of the plate between the headers; a split wiper assembly comprising a plurality of wiper portions, each wiper portion mounted in a housing, the split wiper assembly connected to the cleaning plate and substantially encircling each opening, sized such that each split wiper assembly has an inner diameter less than the exterior diameter of a corresponding lamp; and a movement device operatively connected to move the plate between the headers.
Aspects of some embodiments of the present invention may include a cleaning system for a UV disinfection module having a pair of headers with a multiplicity of UV lamps extending therebetween comprising: a cleaning plate having a multiplicity of openings therein, the openings arranged to substantially coincide with positions of the lamps to permit movement of the plate between the headers; a split wiper assembly comprising a plurality of wiper portions that overlap each other in order to fully encircle each opening, each wiper portion mounted in a housing the split wiper assembly connected to the cleaning plate and substantially encircling each opening, sized such that each split wiper assembly has an inner diameter less than the exterior diameter of a corresponding lamp; the split wiper assembly being held in position by one or more mounting plates comprising a first surface and a second surface and wherein the first surface is in contact with the split wiper assembly and the second surface is in contact with the cleaning plate, thereby sandwiching the split wiper assembly between the first surface and the cleaning plate; and a movement device operatively connected to move the plate between the headers.
Still other aspects of some embodiments of the present invention may include a cleaning system for a UV disinfection module having a pair of headers with a multiplicity of UV lamps extending therebetween comprising: a cleaning plate having a multiplicity of openings therein, the openings arranged to substantially coincide with positions of the lamps to permit movement of the plate between the headers; a split wiper assembly comprising a plurality of wiper portions that overlap each other in order to fully encircle each opening, each wiper portion mounted in a housing the split wiper assembly connected to the cleaning plate and substantially encircling each opening, sized such that each split wiper assembly has an inner diameter less than the exterior diameter of a corresponding lamp; the split wiper assembly being held in position by one or more mounting plates comprising a first surface and a second surface and wherein the first surface is in contact with the split wiper assembly and the second surface is in contact with the cleaning plate, thereby sandwiching the split wiper assembly between the first surface and the cleaning plate; and a rotatable screw operatively connected to move the cleaning plate between the headers.
Note that other aspects will become apparent from the following description of the invention taken in conjunction with the following drawings, although variations and modifications may be effected without departing from the spirit and scope of the novel concepts of the invention.
The present invention can be more fully understood by reading the following detailed description together with the accompanying drawings, in which like reference indicators are used to designate like elements. The accompanying figures depict certain illustrative embodiments and may aid in understanding the following detailed description. Before any embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. The embodiments depicted are to be understood as exemplary and in no way limiting of the overall scope of the invention. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The detailed description will make reference to the following figures, in which:
Before any embodiment of the invention is explained in detail, it is to be understood that the present invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. The present invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
The matters exemplified in this description are provided to assist in a comprehensive understanding of various exemplary embodiments disclosed with reference to the accompanying figures. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the exemplary embodiments described herein can be made without departing from the spirit and scope of the claimed invention. Descriptions of well-known functions and constructions are omitted for clarity and conciseness. Moreover, as used herein, the singular may be interpreted in the plural, and alternately, any term in the plural may be interpreted to be in the singular.
With reference to
In operation, water or wastewater (or any fluid to be treated, including air or other gases) may travel through the UV lamps 110. For example, the water or wastewater may travel in a direction parallel to that of the cleaning plate 130 and therefore pass around and/or between the one or more UV lamps 110. As the water or wastewater passes around and/or between the one or more UV lamps 110, the UV light emitted by the lamps 110 may disinfect or otherwise treat the water or wastewater.
In addition, the UV disinfection module 10 may comprise a cleaning plate 130. A movement device 140—for example, a threaded rod or screw, a hydraulic piston, an electric or fluid motor, magnetic, a chain drive or other rotary device, etc. may also be present. The movement device 140 may be disposed such that it can effectuate movement of the cleaning plate 130 from one header 150 to the other header 160. Note that the cleaning plate 150 may or may not contact each header 150, 160, but rather may travel substantially between the two.
The Cleaning plate 130 may include a number of holes or orifices aligned with the UV lamps 110 and jackets 120, such that as the cleaning plate 130 travels between the headers 150, 160, the UV lamps 110 and jackets 120 pass through the holes or orifices.
With reference to
As noted above, such prior art systems have several drawbacks and disadvantages. For example, it can be very difficult and time consuming to replace the cleaning apparatus 220. Cleaning apparatus 220 may be replaced after wear and erosion of the cleaning apparatus 220 reduces its effectiveness, or may be replaced in order to adapt the cleaning apparatus 220 to the specific conditions of the water or wastewater the UV disinfection unit is treating. For example, the characteristics of some water or wastewater may result in scale accumulating on the UV lamps and jackets, which may require a stiff rubber wiper for removal. The characteristics of other water or wastewater treated may result in a layer of sludge or film accumulating on the UV lamps and jackets, which may require a bristle brush for removal.
Therefore, in accordance with some embodiments of the present invention, a cleaning device that is split into at least two (2) components will now be discussed. With reference to
It may be important to maintain uniform friction around the circumference of the UV lamp or jacket. If the friction is greater on one side than the other, the resulting moment may cause the cleaning plate to become askew, which may jam the cleaning plate on the UV lamps or jackets between the headers. In order to maintain such uniform friction, and in accordance with some embodiments of the present invention, the split wiper portions 310, 320 may each surround more than 180 degrees, thereby providing overlap of coverage. In addition, in order to provide uniform friction—and uniform coverage—the split wiper portions 310, 320 may be inserted into split housing components 330, 340.
The split housing components 330, 340 may be designed such that the housing components 330, 340 may fit together into a single assembly 30. For example, a first housing component 330 may comprise an extruded portion 331 that may align with the opening in the second housing component 340. Similarly, the second housing component 340 may comprise an extruded portion that may align with the opening in the first housing component 330. In order to provide a secure attachment, it is contemplated that the housing portions 330, 340 may be keyed to mate with each other. For example, the first housing portion 330 may comprise an opening 332 sized and located such that, upon assembly, a raised portion 341 of the second housing component may fit within the opening.
A side view of the assembled split wiper assembly 350 illustrates how the two wiper and housing portions interlock together. Top view of the assembly 360 illustrates the same. Note how the raised portion from one of the housing components 362 mates with the housing 361 of the other portion. With reference to cross-section A-A—depicted in assembly 370—the overlapping portions of the wipers 310 and 320 can be seen.
In accordance with some embodiments of the present invention, it is also contemplated that the split wiper portions 310, 320 may comprise a lip or ridge 311, 321 on the wiper portion that may align with a recess (for example, recess 343 in the second housing portion) in the housing portions 330, 340. Such design may provide for additional securement of the split wiper portions.
Moreover, the recess 343 that receives the wiper portion may have an inside diameter slightly smaller than the outside diameter of the wiper portion. Accordingly, even as the wipers wear and tear, friction force between the wiper assembly and the UV lamps or jackets may be maintained—or at least maintained above a minimum value, thereby increasing the useful lifetime of the wiper.
With reference to
Note that
With reference to
With continued reference to
It is contemplated that various other methodologies, systems, and approaches may be used to attach the split wiper assemblies to the cleaning plate. With reference to
Note that various other attachment methodologies are contemplated, including but not limited to the use of an interference fit, alternative mechanical connections (e.g. screws, rivets, pins, snap rings etc.), tensile connection (e.g. clamp, spring, bungee, etc.), and/or any other type of connection or attachment.
With reference to
Note that while the cleaning plate is discussed as moving along the UV lamps or jackets between two headers, it is contemplated that the cleaning plate may be moved beyond the effective portion of the UV lamps such that the cleaning plate may be stored out of the UV light in order to prevent damage or degradation of the wipers or brushes.
Moreover, it is contemplated by the present invention that various devices may be included in the housing and wiper portions to ensure certain, specific, or constant pressure between the wiper portions and the UV lamps or jackets. For example, it is contemplated that a spring may be included in the housing, such that the spring may exert pressure on the wiper portion against the UV lamp or jacket. Accordingly, as the wiper portion wears, minimum friction forces may be maintained. In accordance with some embodiments of the present invention, it is contemplated that after assembly of the wiper portions, a spring, band, bungee, or other type device—for example with elastic properties—may be included around the assembly to exert force on the wiper portions against the UV lamps or jackets. Such device may, for example, pull or push the wiper portions towards the center of the UV lamp or jacket.
It will be understood that the specific embodiments of the present invention shown and described herein are exemplary only. Numerous variations, changes, substitutions and equivalents will now occur to those skilled in the art without departing from the spirit and scope of the invention. Accordingly, it is intended that all subject matter described herein and shown in the accompanying drawings be regarded as illustrative only, and not in a limiting sense, and that the scope of the invention will be solely determined by the appended claims.