This invention relates to ski equipment, and specifically relates to an improved boot binding system for use with splitboards.
Snowboarding is a very popular winter recreational sport that was developed in the 1980's. The more commonly used snowboards are structured as a single board having binding assemblies attached to the board for receiving the boots of the snowboarder (also referred to herein as the “rider”).
Another popular form of snowboarding involves the use of what is known as a splitboard, which comprises two separate and conjoinable boards. When separated, the two boards are skis; when conjoined together, the boards form a snowboard. Splitboards provide the user with the alternative of using the skis in a traditional skiing mode or joining the skis for use as a snowboard. The dual configuration of splitboards is particularly useful for using the separate skis for alpine touring into a desired area, then joining the skis into the snowboard configuration to snowboard down a terrain.
U.S. Pat. No. 5,984,324, the contents of which are incorporated herein by reference, discloses a splitboard binding assembly that has become essentially the industry standard for attachment of boot bindings between the skiing and the snowboarding modes of a splitboard. That is, splitboards are provided with a boot binding assembly that secures the boot to the board along its longitudinal axis when in the skiing mode, and is also provided with a boot binding assembly for the snowboarding mode that comprises a pair of toe pucks attached to one ski and a pair of heel pucks attached to the other ski. When the two skis are positioned side-by-side and secured together for use in the snowboarding mode, each toe puck aligns with a respectively positioned heel puck, and a boot binding is then slid onto an aligned heel and toe puck so that the boot binding spans the two skis.
The '324 patent discloses an exemplary snowboard binding arrangement that comprises a slider plate formed with sides that are curved to form a U-shaped channel on either side of the slider plate. The U-shaped channels are sized to be received on laterally extending flanges on the aligned heel and toe pucks. When the slider plate of the binding is fully engaged on the heel and toe puck, a pin is positioned through holes formed in the forward end of the slider plate to secure the slider plate relative to the heel and toe pucks.
U.S. Pat. Nos. 9,126,099, 9,573,043 and 10,350,588, the contents of each of which, are specifically incorporated herein by reference in their entireties, also discloses a splitboard binding that uses a single toe latch pedal mechanism to secure binding into either the snowboard or ski mode. Such assemblages require a plurality of specialized parts, with an increased manufacturing cost, and are more susceptible to freezing and jamming by snow or ice than simpler designs.
U.S. Pat. No. 8,764,043, the contents of which are specifically incorporated herein by reference, discloses a splitboard binding that eliminates the need for a locking mechanism on the toe for ski mode attachment, by using a circular hook portion that engages with a circular channel on a toe bracket attached to the gliding board, that only engage or disengage at a predetermined angle in excess of one reached during use.
Bindings or binding systems that which are simple to use and easy to operate under harsh conditions would be an improvement in the art.
The present disclosure is directed to splitboard bindings systems that includes a binding that may be attached to either a left or right gliding board in a ski mode or to both the left and right gliding board in a snowboard mode. The binding may include left and right bottom rails attached to the bottom surface of a base plate. The rails and base plate define channels for slidable attachment to “pucks” disposed on the gliding board in snowboard mode. Each of the left and right rails has a circular bore at a forward end for attachment to a counterpart pivot pin on a ski mode toe bracket in a ski mode by a sideways movement. A securing lever is disposed on an upper surface of the toe bracket. When the securing lever is rotated into a securing position, an end of the securing lever prevents removal of the pivot pin from the rail bore. Rotating the securing lever to a removal position allows the binding to be removed.
The assemblies may further include a rear sliding lock positioned on the left or right board near the rear of the binding which may be used to secure the heel of the binding where desired.
It will be appreciated by those of ordinary skill in the art that the various drawings are for illustrative purposes only. The nature of the present disclosure, as well as other embodiments in accordance with this disclosure, may be more clearly understood by reference to the following detailed description, to the appended claims, and to the several drawings.
The present disclosure relates to apparatus, systems, and methods for snowboard and splitboard bindings. It will be appreciated by those skilled in the art that the embodiments herein described, while illustrative, are not intended to so limit this disclosure or the scope of the appended claims. Those skilled in the art will also understand that various combinations or modifications of the embodiments presented herein can be made without departing from the scope of this disclosure. All such alternate embodiments are within the scope of the present disclosure.
Turning to
At either side surface of the planar section, a sidewall 104L or 104R may be disposed as a generally orthogonal wall. Where present, the sidewalls 104L or 104R may contain strap openings 107, allowing for connection to securing straps or other securing structures to retain a user's foot in the binding 100. It will be appreciated that the planar section may include different openings or structures for connection to other types of securing features for use as a plate-type binding or a strap-type binding. For example, a highback may be attached using a rear strap.
Left and right bottom rails 120L and 120R are attached to the bottom surface 103 of the base plate 102. Each of the left and right bottom rails 120L or 120R has a rounded forward end 121 with a circular bore 122 disposed therethrough at a generally orthogonal angle to a long axis of the rail, to serve as a pivoting attachment point to a toe bracket 200 in a ski mode. The bores 122 allow the binding 100 to attach to the separated members of the gliding board for ski mode attachment, as depicted in
As depicted, each bottom rail 120L or 120R may be formed as an elongated member that defines a channel in connection with the bottom surface 103 of the base plate 102. For use in snowboard or glide mode, the two halves of the splitboard are joined together, and the bindings 102 secured thereto, as disclosed in Applicant's prior U.S. Pat. No. 9,884,243, the contents of which are specifically incorporated herein by reference. Such channels may be open at the rear end of the binding 100 and additional structures and features may be present to facilitate sliding placement on the pucks and securement thereto, as by use of a heel locking securing lever. It will be appreciated that other mechanisms for attaching to the splitboard in a snowboard conformation, or for securement in such a position may be used. Each bottom rail 120 may further include connection structures allowing it to be connected to the base plate 100. In the depicted embodiment, these include screw holes 130.
Turning to
The base plate 210 may have a planar lower surface for contacting the upper surface of the gliding member, with a recess for the crampon attachment member 202. The base plate 210 may further include a planar upper surface 212 spaced apart from the planar lower surface. At a forward edge, a generally triangular portion 213 may extend forwardly defining the front edge. A lever securing lock 217 may be formed as an extension of the base plate 210 that extends forwards of the front edge along one side of the triangular portion 213, as a portion having a reduced height and a with a slanted front surface 211 that may be formed as a wedge tapering from the front edge to a ridge 215 having a generally vertical rear wall 216 (
A connection member 220 may be formed as a body having a generally planar central portion 222 with generally flat lower and upper surfaces and two pivot supports 206A and 206B disposed at the front upper corners. As depicted, each pivot support may include a transverse member and a connected front member, each connected to the adjacent edge of the planar central portion and joined to one another. For example, where the connection member 220 is formed of a steel alloy, the transverse and front members may be formed by bending tabs to the correct position and then welded to one another.
Pivot pins 208A and 208B are disposed on each of the pivot supports, 206A and 206B. As depicted, each extends in the same direction orthogonal to the long axis of the gliding member on which the toe bracket 200 is installed. In the depicted embodiment, they extend in the right-hand direction, but it will be appreciated that on other embodiment, it may be the opposite direction. Additionally, as depicted, the pivot pins 208A and 208B are in coaxial alignment.
In some exemplary embodiments, the pivot pins 208A and 208B and pivot supports 206A and 206B may be constructed from like materials, such as the same grade of stainless steel, which are joined to one another using a suitable process. For example, in some embodiments, the pivot pines may be welded to the pivot supports. In other exemplary embodiments, the pivot pins 208 may be formed to allow them to be joined to the supports similar to a rivet, as shown in
A securing lever 230 may have a pivot point 234, such as a hole for attachment to an axle or pivot that extends upwards vertically from the base plate 210 through the connection member. In one embodiment, the axle may be a threaded shaft that screws into a recess in the base plate and has a nut placed thereon to retain the securing lever. A handle portion 232 extends from one side of the pivot point at an angle generally in the same direction as the pivots 208A and 208B and forwards to a connection structure 233.
In the depicted embodiment, the connection structure 233 may be a portion at a lower side of the handle portion nearer the distal end, which has a flat front surface 235 (
A locking end 236 may be a generally flat end surface that is wider than the pivot pin 208B defining the end of the portion of the lever extending from pivot point 234 toward the pivot pin 208A that extends into the body of the toe bracket 200, in the secured position. As depicted, the locking end 236 may reside adjacent, but slightly below the pin 208B.
Securing lever 230 may thus have an angled paddle shape from the locking end to the connection structure on the handle portion. When the securing lever 230 is rotated to the secured position (as in
For release, a user may lift the handle portion 232 upwards, flexing the securing portion 233 away from the ridge 215, allowing the rotation to be reversed to move the lever 230 back over the ridge 215 and in the opposite direction, to pivot the locking end 236 away from the pivot pin 208B. Where, as best illustrated
In a typical construction, the binding plate and rails may be formed from relatively lightweight materials, such as aluminum alloys, to reduce weight, while the connection member and pivot pin are constructed from materials that are selected to provide suitable strength as the binding pivots in the ski mode, bearing the weight of a user. The bushing or sleeves may be constructed from appropriate materials to provide a durable bearing surface to protect the lighter weight material from wear and be compatible with the rail and the pivot pin. For example, a brass alloy may be used.
As depicted, in
As depicted in
For removal, the securing lever 230 may be rotated to the unsecured position, as depicted in
In will be appreciated that the ability to secure the bindings 100 to the board may be useful to riders for storage, transport, and securing while making adjustments to the board during use. Systems in accordance with the present disclosure require two separate actions by a user to “unlock” the binding before it can be slidably released from the pivot pins. This reduces the likelihood of a binding becoming unsecured when not desired, due to movement during transport or adjustment.
As further depicted in
Where a user desires to secure the heel of the binding 100 to the board B during ski mode use, a sliding heel lock assembly 600 may be used as depicted in the secured position in
While this disclosure has been described using certain embodiments, it can be further modified while keeping within its spirit and scope. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. For example, embodiments where the circular portion and bores are disposed on a structure attached to the binding other than the railings may be used. This application is intended to cover any and all such departures from the present disclosure as come within known or customary practices in the art to which it pertains, and which fall within the limits of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/908,347, filed Sep. 30, 2019, which is incorporated herein by reference in its entirety, including but not limited to those portions that specifically appear hereinafter.
Number | Name | Date | Kind |
---|---|---|---|
5984324 | Wariakois | Nov 1999 | A |
7823905 | Ritter | Nov 2010 | B2 |
8226109 | Ritter | Jul 2012 | B2 |
8764043 | Neubauer et al. | Jul 2014 | B2 |
9022412 | Ritter | May 2015 | B2 |
9126099 | Ritter | Sep 2015 | B2 |
9220968 | Ritter | Dec 2015 | B2 |
9573043 | Ritter | Feb 2017 | B2 |
9782664 | Ritter | Oct 2017 | B1 |
9827481 | Ritter | Nov 2017 | B2 |
9833686 | Ritter | Dec 2017 | B2 |
10035058 | Ritter | Jul 2018 | B1 |
10092816 | Ritter | Oct 2018 | B2 |
10350588 | Kaneko et al. | Jul 2019 | B2 |
10814210 | Ritter | Oct 2020 | B2 |
20130341889 | Neubauer | Dec 2013 | A1 |
20140210187 | Ritter | Jul 2014 | A1 |
20150343298 | Ritter | Dec 2015 | A1 |
20170189788 | Wariakois | Jul 2017 | A1 |
20190224560 | Ritter | Jul 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210093943 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62908347 | Sep 2019 | US |