1. Field of the Invention
The present invention relates to a device for performing an exercise and, more particularly, to a training device for improving a person's ability to shift their weight from one foot to the other, especially where the training is to assist in spontaneous weight transfer. Also disclosed is a method for operating the exercise device. The present invention also relates to the field of specialty training exercises for maximizing athletic and health preserving physical skills.
2. Background of the Art
Many exercise devices are presently available for a wide variety of exercise and conditioning movements for individuals. An exercise device to assist in training an individual to spontaneously shift weight from one foot to the other is not available. To address this need, the present invention was developed. The device of the present invention improves balance and coordination and provides improved cardiovascular health.
A number of patents concerned with various exercise devices have been granted. These patents include the following:
In U.S. Pat. No. 4,185,622, Swenson discloses a foot and leg exerciser with an inclinable base, at least one foot pad for supporting and moving the foot of the user, and means for moving the foot pads in a pattern to provide mild exercise which simulates normal walking. The heel ends of the foot pads are moved in a vertical plane by revolving cranks driven by an electric motor through reduction gears, while the toe ends of the foot pads are supported on adjustable rocker arms. Starting, stopping and speed of the motor are controllable by the user through a remote control box.
Easley et al., in U.S. Pat. No. 5,199,931, describe an improved exercise machine for simulating stair climbing, and is particularly adapted for in-home use. The device includes a generally upright frame with a base. Right and left foot pedals are pivotally mounted to the base on both sides of the upstanding portion of the frame, respectively, and a handlebar is provided adjacent to the upper end of the frame. The foot pedals are linked to a mechanical resistance element, namely a flywheel. The linkage includes a strap connecting each pedal to a single drive shaft, in turn connected by a belt transmission to the flywheel. A resistance adjustment feature is included in the invention.
In U.S. Pat. No. 5,242,343, Miller discloses an exercise device that includes a pair of foot engaging links. The first end of each link is supported for rotational motion about a pivot axis and a second end of each foot link is guided in a reciprocal path of travel. The combination of these foot link motions permits the user's foot to move in an inclined, oval path of travel. This natural foot action exercises a large number of muscles through a wide range of motion. Only a single fly wheel is connected to both foot pads.
Metcalf et al., in U.S. Pat. No. 5,338,273, describe a synchronous/asynchronous exercise machine that is changeable between a synchronous exercise mode wherein a user's limbs, such as his legs, oppositely reciprocate, and an asynchronous exercise mode wherein the user's limbs move independently. The synchronous/asynchronous exercise machine comprises a first movable element for accepting a user's limb, and a second movable element for accepting another limb. A load source against which the user can exercise may also be provided. A first drive belt operatively connects the first movable element to the load source, and a second drive belt operatively connects the second movable element to the load source. A quick change mechanism, which may be connected to the first movable element, is releasably engagable with the second drive belt for changing the synchronous/asynchronous exercise machine between the synchronous exercise mode and the asynchronous exercise mode.
In U.S. Pat. No. 5,423,729, Eschenback discloses an exercise apparatus having a collapsible frame that simulates running and climbing, depending upon where the foot is positioned along the elongated pedal. The user is able to maintain a standing posture while elongated pedals supporting each foot moves through an exercise cycle having a different mode for each foot position that includes translating and nonparallel angular motion generated by a linkage mechanism. Arm exercise is provided by rocker extensions which are phased with the crank to use arm force for moving the crank through dead center positions.
Rogers, Jr., in U.S. Pat. No. 5,529,555, describes a crank assembly for use within an exercising device which promotes cardiovascular exercise yet minimizes impact on critical joints, particularly the ankles and knees. The crank assembly employs a dual coupler system which is interconnected for synchronized rotation. Linkage assemblies are provided which define a predetermined path having a preferred anatomical pattern for foot movement of the user. The crank assembly can be used in an exercising device which promotes leg exercise primarily, or can be combined with two additional linkage assemblies to provide a combined hand motion with leg movement. In this manner, an enhanced cardiovascular workout is provided which minimizes stress on key joints, particularly the ankles and knees.
In U.S. Pat. No. 5,833,583, Chuang discloses an exerciser having a base, two gears secured on the base, and two plates rotatably secured to the base at an axle. Two pinions are rotatably secured to the plates and engaged with the gears. Two foot supports are slidably secured to and movable radially relative to the plates and each foot support has a foot pedal and each has one end secured to the pinions at an eccentric shaft, for allowing the foot pedals to be moved toward and away from the axle and for allowing the foot pedals to be moved along an elliptic moving path when the foot supports are moved radially relative to the plates.
Maresh, in U.S. Pat. No. 5,895,339, discloses an exercise apparatus having a linkage assembly which links rotation of a crank to generally elliptical movement of a foot supporting member. The linkage assembly includes a first link having a first end rotatably connected to a first rocker link, an intermediate portion rotatably connected to the crank, and a second end rotatably connected to a rearward end of the foot supporting member. An opposite, forward end of the foot supporting member is rotatably connected to a second rocker link. An upper distal portion of the second rocker link is sized and configured for grasping by a person standing on the foot supporting member.
U.S. Pat. No. 5,947,874, by Dougherty, discloses an exercise device for simulating elliptical motion of stair climbing, including a frame having a front support and a rear support, and with upper and lower exercise units. The front support and rear support meet at an apex where they form an acute angle. The exercise units each include a pair of elliptical guide tracks which each form a closed loop. A pair of actuating levers is each attached onto the guide tracks by a partial sleeve which is capable of travel around the loop. Each exercise unit also includes a flywheel assembly which has two pairs of flywheels mounted to the rear support. Each flywheel is attached to one of the actuating levers by a connecting lever. The flywheels are shaped and the connecting levers are connected to the flywheels so as to permit elliptical motion of the actuating levers around the guide track.
Sterns et al., in U.S. Pat. No. 6,030,320, describe an exercise apparatus having a linkage assembly which links rotation of a crank to the generally elliptical movement of a force receiving member. The apparatus may be folded into a storage configuration having an overall height which is less than the greater of the diameter of the crank and the diameter of a flywheel which rotates together with the crank.
In U.S. Pat. No. 6,080,086, Maresh et al. disclose an exercise apparatus that links rotation of a crank to the generally elliptical motion of a foot supporting member. In particular, both a foot supporting linkage and a draw bar linkage are movably connected between a rocker link and the crank in such a manner that the foot supporting member is constrained to move through an elliptical path of motion. The configuration of the elliptical path may be selectively altered by adjusting the draw bar linkage relative to the rocker link.
Birrell, in U.S. Pat. No. 6,123,650, describes an exerciser including a floor engaging frame and a forward upright post structure. Toward the rear of the frame are attached left and right axle mount supports, which house a transverse axle. The axle is bifurcated allowing the two halves to rotate independently of one another and connect to left and right drive wheels, respectively. Left and right foot link members rollably engage the drive wheels at the link member's rear end portions. The forward end portions of the foot link members rollably engage left and right inclinable guide ramps. The inclinable guide ramps are biased rotationally upwardly, to resist downward forces, by biasing members, such as springs. Left and right foot support portions are mounted on the foot link members. As the foot link members reciprocate forwardly and rearwardly along the inclinable guide ramps, the interaction of the oscillating weight of a running or walking user, together with the independently upwardly biased inclinable guide ramps, causes the foot support portions to travel along an elliptical path.
U.S. Pat. No. 6,165,107 by Birrell describes an exerciser that includes a floor engaging frame. Toward the rear of the frame are attached left and right axle mount supports that house a transverse axle. The axle connects the left and right drive wheels. Rear portions of left and right foot link members rollably engage the drive wheels. Front portions of the foot link members rollably engage left and right inclinable guide ramps. The inclinable guide ramps are biased rotationally upwardly by a ramp return assembly that causes one ramp to pivot downwardly as the other ramp pivots upwardly. Forward and rearward pulley and belt systems are connected to the foot links and provide flexibly coordinated motion which substantially relates the movement of the first and second foot links to each other, while permitting some degree of uncoordinated motion between the foot links. When the foot link members reciprocate along the inclinable guide ramps, the interaction between the oscillating weight of a user and the upwardly biased guide ramps causes the foot support portions to travel along elliptical paths.
Maresh et al., in U.S. Pat. No. 6,248,046, describe an exercise apparatus that links rotation of a crank to generally elliptical motion of a foot supporting member. In particular, both a foot supporting linkage and a draw bar linkage are movably connected between a rocker link and the crank in such a manner that the foot supporting member is constrained to move through an elliptical path of motion. The configuration of the elliptical path may be selectively altered by adjusting the draw bar linkage relative to the rocker link.
In U.S. Pat. No. 6,277,055, Birrell et al. disclose a flexibly coordinated stationary exercise device that includes a frame which has a forward upright member. The axle mounts are attached to the rear region of the frame and support a transverse axle which is preferably operatively connected to a flywheel. The ends of the transverse axle rotatably engage left and right crank arm assemblies that are coupled to the left and right foot links, so that the foot links travel in an arcuate reciprocal path as the transverse axle rotates. The foot links are operatively connected to swing arm mechanisms, which in turn are rotatably connected to the forward upright member at separate pivot points. The swing arm mechanisms further contain hand-gripping portions, and the foot links further contain foot support portions. Flexibly coordinating members are incorporated in the linkage between each respective hand-gripping portion and foot support portion to substantially and resiliently link the movement of the foot support portions to the movement of the hand-gripping portions, while permitting some degree of uncoordinated motion between the foot support portions and the hand-gripping portions.
Steams et al., in U.S. Pat. No. 6,340,340, describe an exercise apparatus that includes a crank rotatably mounted on a frame and an axially extending support connected to the crank at a radially displaced location. A foot supporting member is movably interconnected between the axially extending support and the frame. A linkage assembly links rotation of the crank to movement of a foot platform through a generally elliptical path.
U.S. Pat. No. 6,416,442 by Stearns et al. disclose an exercise apparatus having a linkage assembly which links rotation of a crank to generally elliptical movement of a foot supporting member. The crank rotates about a crank axis relative to a frame and a distal portion of a link moves relative to a connection point on the frame. An intermediate portion of the link is rotatably connected to the crank, and an opposite distal portion of the link is rotatably connected to a rearward end of the foot supporting member. An opposite, forward end of the foot supporting member is movably connected to the frame.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
A stationary exercise device comprises a frame member which has a transverse pivot axis defined relative to the frame member. A first foot tread member and a second foot tread member are present, each foot tread member respectively having a front end, a rear end, and two sides, with each first foot tread member and second foot tread member front end operatively associated with a coupling member or coupler for pivotally coupling the front end of each first and second foot tread member to the transverse pivot axis at a predetermined distance there from, so that each first foot tread member and second foot tread member front end travels in an arcuate path about the transverse pivot axis. Each first foot tread member and second foot tread member moves independently of the other of the first and second foot tread member at both the front end and the rear end. Each first foot tread member and second foot tread member moves along a line between the tread member front end and rear end. Each first and second foot tread member rear end moves in a reciprocating path of travel, as each first and second foot tread member front end travels in an arcuate path. When the exercise device is in use, and when the rear end of each first foot tread member and second foot tread member travels along the reciprocating path of travel in a direction away from the pivot axis, the toe portion of the user's foot associated therewith initially lowers at a rate faster than the heel portion of the user's foot. When the rear end of each first foot tread member and second foot tread member travels along the reciprocating path of travel in a direction toward the pivot axis, the toe portion of the user's foot associated therewith initially rises at a rate faster than the heel portion of the user's foot.
In one embodiment, the stationary exercise device comprises a frame member having a transverse pivot axis defined relative to the frame member. A first foot tread member and a second foot tread member are present, each first and second foot tread member having a front end, a rear end, and two sides. Each first foot tread member and second foot tread member front end is operatively associated with a coupling member for pivotally coupling the front end of each first and second foot tread member to the transverse pivot axis at a predetermined distance from the transverse pivot axis, so that each first and second foot tread member front end travels in an arcuate path about the transverse pivot axis. Each first foot tread member and second foot tread member moves independently of the other of the first foot tread member and second foot tread member, each first and second foot tread member moving along a line between the tread member front end and rear end. Each first and second foot tread member rear end is operatively associated with a glide member for moveable coupling of the rear end of each first and second foot tread member to the frame member. The glide members direct each first and second foot tread member rear end along a reciprocating path of travel, as each first and second foot tread member front end of the same foot tread member travels in an arcuate path. When the exercise device is in use, and when the rear end of each first and second foot tread member travels along the reciprocating path of travel in a direction away from the pivot axis, the toe portion of the user's foot associated therewith initially lowers at a rate faster than the heel portion of the user's foot. When the rear end of each first and second foot tread member travels along the reciprocating path of travel in a direction toward the pivot axis, the toe portion of the user's foot associated therewith initially rises at a rate faster than the heel portion of the user's foot.
The unique independent foot/leg activity of the system of the device of the present invention enables training exercises that can enhance advanced physiological skills and techniques that can enhance abilities, capabilities, skills and responses. The independent functioning of the two footpads and their inertial systems (referred to herein as decoupled footpad systems in that each footpad and each inertial system glides and rotates independent of the other footpad and inertial system) enables general and specific training and skill enhancing exercises and progressions of exercises that provide unique results on the individuals.
Referring to the
A rear end 40b, 45b of the foot tread members 40 and 45, moves in a reciprocating path of travel as each foot tread member 40, 45 travels in an arcuate path. The rear ends 40b, 45b of the foot tread members 40, 45 may be suspended by cables, rods, straps, belts or similar suspension means, or may simply ride directly on a suitable support surface associated with the planar plate member 18. Preferably, the rear end 40b, 45b of the foot tread members 40 and 45, respectively, terminate in glide members 48 that ride on a suitable support surface. Within the context of this application, a “glide member” is defined as an element having a sliding, gliding, rolling or otherwise friction reducing function, yet including a support and guiding function for the foot tread member rear ends 40b, 45b. In the present embodiment of
The apparatus of the
The
It is to be noted that the preferred practice of the device of this invention the two footpads and their respective inertial systems are stabilized on a frame that connects and stabilizes the two footpad systems into a single device. However, in a less preferred embodiment, two separate footpad and inertial systems may be positioned adjacent to each other and their own mass or independent securing (e.g., bolts, screws, etc.) that can stabilize the two independent systems adjacent to each other so that the two systems effectively operate together as if they were a single device. Additionally a single footpad and inertial system unit may be used as a training system for activities where two feet or legs act synchronously, as in skateboarding or snowboarding.
Another feature of the present invention is the variable path of travel that the user's feet experience, depending upon the location of each foot on the elongated foot treads 40, 45. When positioned near the foot tread front ends 40a, 45a, the user's feet travel in a nearly circular path. When positioned near the foot tread rear end 40b, 45b, the user's feet travel in an elliptical path. Thus, greater versatility in exercise is available, depending upon the location of the user's feet on the elongated foot tread 40, 45.
In addition, the user can operate the exercise device 10 facing toward the pivot axis A, by positioning the user's feet, one on each foot pad 41, 46, with the toe portion of the user's foot nearer the pivot axis A than the heel portion of the user's foot. Alternatively, the user can operate the exercise device 10 facing away from the pivot axis A, with the heel portion of the user's foot nearer the pivot axis A than the toe portion of the user's foot.
With the toe portion of the user's feet nearer the pivot axis A, and when the rear end 40b, 45b of each foot tread member 40, 45 travels along the reciprocating path of travel in a direction away from the pivot axis A, the toe portion of the user's foot associated therewith initially lowers at a rate faster than the heel portion of the user's foot, and when the rear end 40b, 45b of each foot tread member 40, 45 travels along the reciprocating path of travel in a direction toward the pivot axis A, the toe portion of the user's foot associated therewith initially rises at a rate faster than the heel portion of the user's foot.
Conversely, with the heel portion of the user's feet nearer the pivot axis A, and when the rear end 40b, 45b of each foot tread member 40, 45 travels along the reciprocating path of travel in a direction away from the pivot axis A, the heel portion of the user's foot associated therewith initially lowers at a rate faster than the toe portion, and when the rear end 40b, 45b of each foot tread member 40, 45 travels along the reciprocating path of travel in a direction toward the pivot axis A, the heel portion of the user's foot associated therewith initially rises at a rate faster than the toe portion.
Referring now to
A rear end 40b, 45b of the foot tread members 40 and 45, moves in a reciprocating path of travel as each foot track member 40, 45 travels in an arcuate path. The rear ends 40b, 45b of the foot track members 40, 45 may be suspended by cables, rods, straps, belts or similar suspension means, or may simply ride directly on a suitable support surface associated with the planar plate member 18. Preferably, the rear end 40b, 45b of the foot tread members 40 and 45, respectively, terminates in a glide member 48 having a sliding, gliding, rolling or otherwise friction reducing function, yet including a support and guiding function for the foot tread member rear ends 40b, 45b. In the present embodiment of
The apparatus of the
The
Another feature of the present invention is the variable path of travel that the user's feet experience, depending upon the location of each foot on the elongated foot treads 40, 45. When positioned near the foot tread front ends 40a, 45a, the user's feet travel in a nearly circular path. When positioned near the foot tread rear end 40b, 45b, the user's feet travel in an elliptical path. Thus, greater versatility in exercise is available, depending upon the location of the user's feet on the elongated foot tread 40, 45.
In addition, when the exercise device 10 is in use, and when the rear end 40b, 45b of each foot tread member 40, 45 travels along the reciprocating path of travel in a direction away from the pivot axis A, the toe portion of the user's foot associated therewith initially lowers at a rate faster than the heel portion of the user's foot, and when the rear end 40b, 45b of each foot tread member 40, 45 travels along the reciprocating path of travel in a direction toward the pivot axis A, the toe portion of the user's foot associated therewith initially rises at a rate faster than the heel portion of the user's foot.
Referring now to
A foot tread member 45 and attached wheeled member 55 are shown in greater detail in
Referring now to
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
It is also to be noted that it is not necessary to use straps to secure feet into position and that the friction provided by the long foot pad portion 46 can be used to provide secure foot positioning. A strap may be added, or a simple belt that slips over the foot and the foot tread member 45 for additional security. A strap or belt that secures to the sides 40c of the foot tread member 45 may also be provided.
As the foot pad portion 46 is likely to be subject to uneven wear in use, the foot pad portions should be replaceable easily. Having foot pad portions that slip into, snap into, fit into, or are secured into the frame of the foot tread portion 45 are desirable. A non-limiting example of such a construction is shown in
The foot pad member covers the substantial surface of the foot tread member (e.g., most of the available surface area except for frames, printed instruction which may or may not have a friction surface, lighting, clips for shoes, belts, etc.) so that a significant area can be used by the user. The coverage of 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% up to nearly or exactly to 100% of the surface area for frictional surface or pad replacement with critical areas having friction material on or added to the pad can be used. Lower amounts of pad area could also be used.
A stationary exercise device 100 according to the disclosed technology as shown in
Each first and second support member 86a, 86b will pivot about a vertical pivot axis B, D respectively when connected to the rigid connector member 17 to provide inward movement of the first and second support members 86a, 86b. Each direction member 91a and housing 16a, of the first and second support member 86a, 86b must not interfere with the other direction member 91b and housing 16b of the first and second support member 86a, 86b when each first and second support member 86a, 86b pivots inward. A first foot tread 40 and second foot tread 45, each first and second foot tread member 40, 45 having a front and rear end 40a, 45a, and each first and second foot tread member 40, 45 travels in a reciprocating arcuate path about each transverse axis C, A respectively.
When each supporting member 86a, 86b pivots inward, the reciprocating arcuate path of the front end 40a, 45a of the foot tread member 40, 45 operatively associated with that supporting member 86a, 86b travels in a nearly circular path and the rear end 40b, 45b of the foot tread member 40, 45 becomes fixed.
A stationary elliptical exercise device 100 according to the present invention includes at least one inertial mass or rotational resistance component 25a, 25b providing rotational movement which has a plurality of weights disposed equally about a circumference of the inertial mass. Preferably, there are two inertial masses, one for each foot tread member 40, 45. Preferably, the inertial mass 25a, 25b would be surrounded by a housing 16a, 16b that does not restrict rotational movement. The greater the overall mass of the rotational resistance component 25a, 25b, the greater the force needed for initial rotational movement. Therefore, the toe portion of the user's foot needs to exert more force of the front end 40a, 45a of each first and second foot tread member 40, 45 to initiate arcuate movement. The size and shape of the rotational resistance component 25a, 25b has several possibilities. However if the embodiment includes support members 91a, 91b that pivot inward, then the size and shape of the rotational resistance component 25a, 25b surrounded by a housing 16a, 16b should be restricted as to not interfere with the other housing 16a, 16b containing the other rotational resistance component 25a, 25b.
An alternative perspective on the technology described herein comprises as a stationary elliptical exercise device 100. The device may comprise: at least one inertial mass or rotational resistance component 25a, 25b providing inertial resistance to rotational movement, which resistance is transferred to foot tread movement. The inertial mass 25a, 25b may comprise a plurality of attachable and removeable weights radially disposed about a point of rotation of the inertial mass 25a, 25b. The attachment and removal should be simple to facilitate easy replacement and adjustment, as by snaps, screws, clips, toggles and the like. The plurality of weights may be attached symmetrically or eccentrically about the inertial mass 25a, 25b. Preferably they may be with a single plane of rotation or define a wider volume of rotation. At least some components of each individual inertial mass may comprise a coupling member for foot tread members 40, 45, at least two of the coupling members (in this instance the bell cranks 30, 35) comprising a front end 40a, 45a of each of a first foot tread member 40, 45 and a front end 40a, 45a of a second foot tread member 40, 45 pivotally affixed to an at least one inertial mass. The stationary elliptical exercise device 100 may have at least two inertial masses each comprising a coupling member (in this instance the bell cranks 30, 35), each coupling member comprising a front end 40a, 45a of each of a first foot tread member 40, 45 or a second foot tread member 40, 45 pivotally affixed to an at least one inertial mass 25a, 25b. Two of the at least two inertial masses may be separately attached to only one of the first foot tread member 40, 45 and the second foot tread member 40, 45. The stationary elliptical exercise device 100 may further comprise a housing 16a, 16b that surrounds said inertial mass 25a, 25b and is connected to a rigid connector member 17 and a device structural leg support 95a, 95b.
Another description can be as a stationary exercise device 100 comprising: a first support member 91a for a first pivoting element 93a attached to a first rotational resistance component 25a and a second supporting member 91b for a second pivoting element 93b attached to a second rotational resistance component 25b. Each first and second support member 91b has a transverse axis C, A for each rotational resistance component 25a, 25b and a vertical pivot axis B, D. Each first and second support member 91a, 91b pivots about each vertical pivot axis B, D. There is a first foot tread member 40 and second foot tread member 45. Each first and second foot tread member 40, 45 having a front 40a, 45a and rear 40b, 45b end. Each first and second foot tread member 40, 45 front end 40a, 45a travels in an arcuate path about each transverse axis C, A. As each support member 91a, 91b pivots inward, a prescribed reciprocating arcuate path of the front ends 40a, 45a of each respective first and second foot tread member 40, 45 is imposed. That arcuate path remains parallel to a plane of rotation of the rotational resistance component 25a, 25b.
A further alternative description is as a stationary exercise device 100 comprising: a first support member 91a for a first pivoting element 93a attached to a first rotational resistance component 25a and second supporting member 91b for a second pivoting element 93b attached to a second rotational resistance component 25b. Each first and second support member 91a, 91b has a transverse axis C, A for each rotational resistance component 25a, 25b and a vertical pivot axis B, D, and each first and second support member 91a, 91b pivots about each vertical pivot axis B, D. The first foot tread member 40 and second foot tread member 45, each first and second foot tread member 40, 45 having a front 40a, 45a and rear 40b, 45b end, and each first and second foot tread member front end 40a, 45a travels in an arcuate path about each transverse axis C, A. As each support member 91a, 91b pivots inward, a prescribed reciprocating arcuate path of the rear ends 40b, 45b of each respective first and second foot tread member 40, 45 is imposed changes between a longest path defining a tread movement plane parallel to a plane of rotation defined by a respective rotational resistance component 25a, 25b and a fixed stationary point for the respective rear end 40b, 45b.
The stationary exercise device 100 may have the first and second support member 91a, 91b comprises a housing 16a, 16b, a leg support 95a, 95b, and a direction member 91a, 91b, and the leg support 95a, 95b traverses said housing 16a, 16b, a free end of said leg support 95a, 95b is pivotally affixed to a rigid connector 17, and a second free end is connected to said direction member 91a, 91b. Each support member 91a, 91b may pivot according to design specification, preferably at least 45 degrees, at least 60 degrees, at least 75 degrees pivots or even at least about 90 degrees.
The stationary exercise device 100 may have the rotational resistance component 25a, 25b comprising an at least one inertial mass or rotational resistance component 25a, 25b providing inertial resistance to rotational movement wherein the inertial mass 25a, 25b comprises a plurality of attachable and removeable weights radially disposed about a point of rotation of the inertial mass 25a, 25b.
Each of the resistance/inertial components 202 and 204 are provided with associated rotational levers 208a and 208b, respectively. These rotational levers 208a and 208b are in turn connected to foot pads or footpad support surfaces 210a and 210b, respectively. The foot pads or footpad support surfaces 210a and 210b are respectively engaged in a sliding manner with guiding or sliding tracks 214 and 216. The sliding or guiding engagement between the guiding or sliding tracks 214 and 216 and the respectively associated foot pads 214 and 216 may be with any type of engaging glide systems such as the ball in track systems 212a and 212b shown in the figure. Any other glide engaging system that allows for at least forward and rearward movement while tolerating angular displacement in the vertical direction because of the respective angle changes resulting from the height changes in the lever components 208a and 208b may be used. One unique aspect of this system is the fact that the area 220 on top of the lower footpad surface 216 is sufficient in area as to allow a foot to be present so that there is always a significant forward and rearward displacement of the user's two feet, and the system may be used with the user facing perpendicular to the perspective of the image, with shoulders in parallel alignment with the footpads. This system 200 can enable a very eccentric motion that is desirable for training complex foot movements as might be experienced in Nordic skiing, and Alpine skiing. This system may be described as an elliptical exercise device comprising two resistance components and two footpads, each of the two resistance components being connected to a footpad, wherein the two resistance components are oriented with a longitudinal displacement with both footpads extending in the longitudinal direction, with a front end of one footpad engaged with a top surface of the other footpad so that the two footpads remain in an engaged relationship as a user operates the elliptical exercise device.
Although specific examples of materials, components, subcomponents, and elements have been used, one skilled in the art would appreciate the use of other materials, components, subcomponents, and elements that would still work in providing a device as taught herein. For example, although an exercise device has been shown with two frame housings 16, a more modular unit with a single frame housing and a single foot tread member can be provided. This could enable single arm exercising or single leg exercising and could then be expanded into a two foot tread device as described elsewhere.
There are series of exercises or procedures of use of the equipment, preferably performed in order or sequences referred to herein as progressions. The precise nature of some of the series of moves and transitions between movements are unique to the independent operation of the footpads and inertial systems described herein. Because of the independent motion capabilities of the two footpads, independent, sequential and/or contemporaneous motions may be used in the series of exercises described herein.
All of the series, exercises and progressions described herein are performed on a glide system in which there are (as described herein) two decoupled footpads, with each of the decoupled footpads having individual and distinct inertial systems associated with each of the decoupled footpads. Certain concepts are to be understood in the explanation of these exercises and progressions of exercises.
Weighting and dis-weighting refer to the application of weight and force to the foot pads, with dis-weighting indicating that less than 10%, preferably less than 5%, more preferably less than 3% and most preferably less than 2% (down to essentially 0%) of the user's body mass is applied to a single foot pad. The remaining weight will be on the other foot or partially dis-weighted from the foot pads by arm support or upward momentum. The term “pick-up” refers to a complete lifting of a foot from a foot pad, particularly in a rapid movement attempting to lift the foot from a perfectly dis-weighted (less than 5% weight, or less than 2% body weight against the foot pad at the time of lift) position with regard to the foot that is being picked up. A “set-up” is the positioning of a foot pad at a specific relative position (e.g., usually midway through a half rotation from a lowermost position, e.g., with the foot pad approximately horizontal). A “hop” is a rapid shift of weight onto a single foot pad, usually to a foot pad in a set up position, and preferably by dis-weighting of one foot and transfer of all weight to the other foot, as opposed to leaping from one foot to the other by applying significant force to the one foot.
In measuring or indicating foot positions and foot pad positions, it will be assumed that there is a crank attachment of the front of a foot pad into the inertial or counterweight component. When the crank is vertically downward and the tip (front tip) of the foot pad is in its lowermost position, that position is considered “down,” “all of the way down” or the “lowest position.” As the foot pad is moved and the crank rotates, lifting the front tip of the foot pad, the crank will attain a relatively horizontal position which will be referred to as a midway point or midway position. If the foot pad movement has been forward (the toe of the foot moving forward), that position would be midway forward. If the initial movement were rearward (the heel of the foot being forward in the direction of initial movement from the lowest position” to the horizontal position, that would be midway rearward.
These procedures are intended to be used in combination with the unique independent foot pad systems (FPS) of the present technology with “Super Heightened Instant Force Transfer” (SHIFT) maneuvers to eliminate lower-extremity injuries and enhance lower body control. The use of the system may optionally begin with a General Adaptation Phase (GAP) where a first time user or warming up user experiments with and experiences the general range of motions available from the FPS.
A beginning point for the progressions or exercises that can be used with the equipment would comprise, by way of a non-limiting example, from a static or kinetic position, initiating a set-up, with as much weight as possible on one foot (a first foot) while the other foot (second foot) is dis-weighted, preferably to less than 1% body weight supported on the second foot while it is still in contact with the second foot pad (corresponding to the foot pad under the second foot). The set-up on the first foot leaves the second foot free to manipulate the second foot pad. A set-up is usually begun in one of the approximately midway positions or preferably with both foot pads in the same (both in forward midway positions or both rearward midway positions, although they may be in either opposed position) positions. The goal of the set up is:
Phase 1: General Adaptation Phase (GAP)
This is where the client experiences the motion for the first time with no rules or progressions just pure neuro-muscular adaptation. This phase generally constitutes a free-form effort by a user to accommodate herself/himself to the apparatus by attempts at random, but controlled movement of the two footpads by the user. A pattern may be imposed on this GAP, but that is relatively immaterial, as this is an acclimation period, not a true optimization or true skill training function. To that degree, the GAP is somewhat optional, except for reasons of safety on the system as in most warmup efforts.
Phase 2: Progression Dependent Adaptation (PDA) of Super Heightened Instant Force Transfer (SHIFT)
Progression Set 1 (A Secondary stability point is generally required, in which the user initially establishes a base position, as with both footpads parallel and equally positioned in a relatively forward/backward position, so that the two feet of the user are parallel. A user may choose an initial stabilized position of slightly skewed foot positions, or one foot slightly ahead of another, at the user's discretion. Both sides (both footpads and both feet) are assumed always at the beginning of the procedures)
Progression Set 4 (Perform the Tandem Progression with Opposing Footpad Motion—one foot forward while other foot simultaneously goes backward on Sets 2 and 3). In this action, the pumping action is the same as in Set 3B, but with the feet moving in opposed directions. In this, as compared to 3B, one footpad is moving forward while the other is moving backwards.
Progression Set 5 (Reverse User Orientation on Set 2, 3, and 4). The person performs the sets as above, except that the direction of the user is reversed. In previous examples, where the crank was in front of the user, the crank will now be positioned behind the user, who has reversed orientation on the system.
Progression Set 6 (Close Eyes on Set 2, 3, 4, and 5). The user will now perform the progressions identified above in sets 2, 3, 4 and 5, but with eyes closed.
Progression Set 7 (Add Force Vector Interference on Set 2, 3, 4, 5, and 6) In this set of progressions, inertia or mass or resistance applied through any part of the body (e.g., as with weights, bands, or pulleys in hand, on arms, on trunk, on legs, etc.) to increase forces needed in performing progressions.
A method of improving mobility skills of a user on a stationary elliptical exercise device 100 (of
This application is a continuation-in-part of U.S. Patent Application Ser. No. 60/789,675 filed Apr. 4, 2006, which is a continuation-in-part of co-pending utility application Ser. No. 10/833,529, filed 28 Apr. 2004, which is a continuation-in-part of utility application Ser. No. 10/637,972, filed 11 Aug. 2003 now U.S. Pat. No. 7,033,306, which claims the benefit under 35 U.S.C. §119 (e) of provisional application Ser. No. 60/418,394, filed 9 Oct. 2002. Application Ser. Nos. 10/637,972 and 60/418,394 are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4185622 | Swenson | Jan 1980 | A |
5199931 | Easley et al. | Apr 1993 | A |
5242343 | Miller | Sep 1993 | A |
5247853 | Dalebout | Sep 1993 | A |
5259269 | Swenson, Sr. | Nov 1993 | A |
5338273 | Metcalf et al. | Aug 1994 | A |
5423729 | Eschenbach | Jun 1995 | A |
5529555 | Rodgers, Jr. | Jun 1996 | A |
5833583 | Chuang | Nov 1998 | A |
5895339 | Maresh | Apr 1999 | A |
5947874 | Dougherty | Sep 1999 | A |
6030320 | Stearns et al. | Feb 2000 | A |
6080086 | Maresh et al. | Jun 2000 | A |
6123650 | Birrell | Sep 2000 | A |
6165107 | Birrell | Dec 2000 | A |
6234939 | Moser et al. | May 2001 | B1 |
6248046 | Maresh et al. | Jun 2001 | B1 |
6277055 | Birrell et al. | Aug 2001 | B1 |
6340340 | Stearns et al. | Jan 2002 | B1 |
6416442 | Stearns et al. | Jul 2002 | B1 |
6551218 | Goh | Apr 2003 | B2 |
20020107114 | Byrd, Jr. | Aug 2002 | A1 |
20060094569 | Day | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060293154 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60789675 | Apr 2006 | US | |
60418394 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10833529 | Apr 2004 | US |
Child | 11447688 | US | |
Parent | 10637972 | Aug 2003 | US |
Child | 10833529 | US |