SPOREFORMING PROBIOTIC STRAINS, METHODS AND USES THEREOF

Information

  • Patent Application
  • 20210379122
  • Publication Number
    20210379122
  • Date Filed
    October 24, 2019
    4 years ago
  • Date Published
    December 09, 2021
    2 years ago
  • Inventors
    • DOS REIS SERRA; Claudia Alexandra
    • ENES OLIVEIRA DA SILVA; Paula Cristina
    • OLIVA TELES; Aires
    • TAVARES; Fernando
  • Original Assignees
Abstract
The present disclosure relates to the isolation, identification and characterization of novel sporeforming probiotic strain(s) with NSPase (Non-Starch Polysaccharides-active hydrolases) activity isolated from fish gut microbiota, methods and uses thereof. The sporeforming probiotic strain(s) with NSPase activity now disclosed are able of producing carbohydrate-active enzymes (CAZymes) that hydrolyse non-starch polysaccharides (NSPs) and accesses their potential as probiotics (PRO) for use in particular in aquafeeds.
Description
TECHNICAL FIELD

The present disclosure relates to the isolation, identification and characterization of novel sporeforming probiotic strain(s) with NSPase (Non-Starch Polysaccharides-active hydrolases) activity isolated from fish gut microbiota, methods and uses thereof.


The sporeforming probiotic strain(s) with NSPase activity now disclosed are able of producing carbohydrate-active enzymes (CAZymes) that hydrolyse non-starch polysaccharides (NSPs) and accesses their potential as probiotics (PRO) for use in particular in aquafeeds.


BACKGROUND ART

The gastrointestinal microbial community plays a critical role on vertebrates' health and metabolism, impacting host metabolism, immune status and health/disease balance. In the last decade, this relationship has received increased attention particularly in humans, where it is known to control local (at the gut level) health status as well as systemic health. The gut microbiota of vertebrates, ranging from mammals to teleost fish, is involved in host appetite control and obesity development [1], protection against pathogens, immunity enhancement or inflammatory processes [2]. Additionally, gut microorganisms respond to a wide range of factors, including dietary composition, and harbor a relevant and diversified enzymatic repertoire that might interfere with host metabolism [3, 4]. This is particularly important in fish nutrition, because fish do not possess all of the necessary enzymes to cope with the current aquaculture dietary challenges [4].


A main difficulty within fish nutrition is its dependence on fish meal (FM), an unsustainable commodity and a source of organic pollutants. The most obvious sustainable alternatives to fish meal are plant feedstuffs, but their nutritive value is limited by the presence of high levels of non-starch polysaccharides (NSPs) which are not metabolized by fish.


These facts are disclosed to illustrate the technical problem addressed by the present disclosure.


GENERAL DESCRIPTION

Aquaculture output is growing rapidly and has already surpassed fisheries in terms of providing food to meet the growing human population [5]. Aquaculture is greatly dependent on FM, an unsustainable commodity and a source of organic pollutants, almost exclusively provided by fisheries. This is particularly obvious in carnivorous fish production due to their high dietary protein requirement (40-50%), which is mainly provided by FM. Plant feedstuffs (PF) are sustainable alternatives to FM, and among them, soybean meal (SBM), rapeseed meal (RSM), and sunflower meal (SFM), have been acknowledged as the most promising due to their high protein level, world-wide availability, and reasonable price. However, the nutritive value of PF is limited by the presence of several anti-nutritional factors, including high levels of non-starch polysaccharides (NSPs) which are not digested by fish [6]. NSPs content in SBM, RSM, and SFM averages 22-24% and the major NSPs components are pectic polysaccharides with arabinose, galactose, and xylose residues predominating. Yet, the proportion of these sugar residues varies between PF with galactose being predominant in SBM, arabinose in RSM, and xylose in SFM.


In fish, the carbohydrate-active enzymes (CAZymes) able to hydrolyze the β-glycosidic bonds of NSPs are scarce or non-existent. Thus, dietary NSPs remain indigestible and cannot be used as energy source. Moreover, indigestible NSPs might have detrimental effects on fish performance and nutrient digestibility and on fish health [7]. These adverse effects are associated with the viscous nature of NSPs and their interaction with gut epithelium, mucus, and microbiota, which ultimately result on physiological and inflammatory imbalances [7]. Additionally, and contrary to other animal species, such as pigs and poultry, the supplementation of PF based diets with exogenous carbohydrases does not necessarily translate into an effective strategy for improving NSPs utilization, as diverging results on their impact on fish growth performance and feed utilization have been reported. Therefore, gut microorganisms characterized by a rich secretome are a potential source of in loco carbohydrases that may help fish to overcome the mentioned constraints.


Live microorganisms that confer a health benefit to the host when administered in adequate amounts are denominated probiotics (PRO) [8]. In particular, PRO decrease the incidence of diseases by competing with pathogens for adhesion sites/nutrients; produce natural antimicrobial compounds that inhibit pathogens growth; contribute to a balanced gut microbiota; improve host growth; enhance host immune system and gastrointestinal histomorphology. PRO have also been implicated in bioremediation and water quality improvement by reducing antibiotic usage, contributing to aquaculture sustainability.


Among the bacterial species currently used as PRO, sporeformers show critical advantages: bacterial spores are remarkably resistant dormant structures [9], permitting good shelf-storage; spores are easily produced in large scale and can be dehydrated, facilitating feed incorporation without losing characteristics. Importantly, spores survive gut transit since they are acid and bile tolerant and become successfully established in the gut [10]. In particular, Bacillus subtilis spores, which enjoy GRAS (Generally Regarded As Safe) status from the U.S. Food and Drug Administration (FDA) and are included in the European Food Safety Authority (EFSA) list of Qualified Presumption of Safety (QPS) [11], experience exponentially growing applications in biomedicine and biotechnology (as oral vaccines, disinfectants, PRO or display systems) [12]. In fact, different sporeformers are nowadays used as human and animal PRO [12-13], but within European Union (EU) just one PRO has been authorised for use in aquaculture (Bactocell®, LALLEMAND Inc., Canada).


The role of gut microbiota in shaping human and animal health is well established, and the potential health benefit of manipulating the gut ecosystem using PRO is increasingly being accepted. In carnivorous fish, such as European sea bass, an ideal PRO should not only enhance resistance to pathogens, i.e. by competitive exclusion, the most common criteria for selection of PRO strains, but also help fish in their current dietary challenges, including the utilization of PF. In this disclosure, the application of a PF-based dietary pressure to modulate European sea bass gut microbiota composition and corresponding metabolic functions revealed to be a successful strategy to find carbohydrate-active bacteria with PRO potential. In particular, it was targeted and isolated spore-forming Bacilli, commonly used in PRO preparations, mainly due to their extreme resistance characteristics and indefinitely survival, advantageous for industrial applications [9-10, 12-13, 17].


The composition of the gut microbial communities of fish have been demonstrated to adapt when the host is fed different dietary ingredients [1, 3, 4]. Thus, a selective pressure of plant-based diets on fish gut microbiota, can be a beneficial strategy for an enrichment of bacteria with a secretome able to mobilize the dietary NSPs. By targeting bacterial sporulating isolates with diverse carbohydrase activities from the gut of European sea bass (Dicentrarchus labrax), isolates with high probiotic potential were obtained. By inferring the adaptive fitness to the fish gut and the amenability to industrial processing, the best two candidates were identified to become industrially valuable PRO for improvement of fish health and utilization of dietary NSPs, contributing for sustainable and more cost-effective aquaculture practices.


Thus, the present disclosure relates to screening fish gut microbiota for bacteria capable of producing extracellular digestive enzymes that hydrolyse NSPs present in PF, in particular mannans, glucans, xylans, arabinans, and galactans.


Gut microbiota isolates showing promising metabolic traits and absence of safety concerns can be used as PRO in cost-effective and environmental-friendly diets by allowing the host to obtain energy from otherwise indigestible dietary constituents. In fact, native bacteria with PRO potential will be more apt to become established and persist in the fish gut environment after withdrawal from the diet.


The present disclosure provides several advantages, namely: it solves the incapability of fish to efficiently digest and utilize PF as alternative protein source to FM; compared to exogenous purified enzymes (the only available technology, with poor results in fish), this disclosure has the added value of being also an autochthonous PRO that besides helping fish with the digestive challenges also contributes to fish health and welfare by antagonizing fish pathogens, having a dual positive effect on fish performance. Additionally, this product, by being a sporeformer, is more robust and resistant than the other PRO in EU market, allowing feed incorporation without losing characteristics and storage without refrigeration.


The present disclosure relates to ABP1 which was received on 8 Jun. 2018 and accepted for deposit for patent purposes at the Colección Española de Cultivos Tipo (CECT)—International Depositary Authority under the Budapest Treaty—under the accession number CECT 9675.


The present disclosure also relates to ABP2 which was received on 8 Jun. 2018 and accepted for deposit for patent purposes at the Colección Española de Cultivos Tipo (CECT)—International Depositary Authority under the Budapest Treaty—under the accession number CECT 9676.


The present disclosure therefore relates to a bacterial strain selected from ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, and/or from ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo.


Furthermore, the present disclosure also relates to a composition for aquatic animal feed comprising a bacterial strain selected from ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, and/or from ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo.


In an embodiment, said composition may comprise 1×105-1×1012 of colony forming units of the bacterial strain per gram of the composition, preferably said composition may comprise 1×107-1×1010 colony forming units of the bacterial strain per gram of the composition, more preferably said composition may comprise 2×109 colony forming units of the bacterial strain per gram of the composition.


In an embodiment, said composition may further comprise a preservative.


In an embodiment, said composition may be a granulate form, a powdered form or a pellet.


In an embodiment, said composition may be a granulate form wherein the granulate form is coated, in particular wherein the coating comprises a salt and/or wax and/or a flour.


The present disclosure also relates to a method for feeding an aquatic animal present in an aquaculture comprising the step of feeding the aquatic animal with the composition now disclosed.


In an embodiment, the step of feeding the aquatic animal may be carried out during the life span of the aquatic animal.


In an embodiment, the aquatic animal may be selected from the following list: a shellfish, fish, amberjack, arapaima, barb, bass, bluefish, bocachico, bream, bullhead, cachama, carp, catfish, catla, chanos, char, cichlid, cobia, cod, crappie, dorada, drum, eel, goby, goldfish, gourami, grouper, guapote, halibut, java, labeo, lai, loach, mackerel, milkfish, mojarra, mudfish, mullet, paco, pearlspot, pejerrey, perch, pike, pompano, roach, Atlantic salmon, salmon, sampa, sauger, sea bass, European sea bass, seabream, gilthead seabream, white seabream, shiner, sleeper, snakehead, snapper, snook, sole, spinefoot, sturgeon, sunfish, sweetfish, tench, terror, tilapia, trout, tuna, turbot, vendace, walleye, halibut, whitefish or shrimp.


This disclosure also relates to the use of a bacterial strain selected from ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, and/or from ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, as a probiotic.


This disclosure also relates to the use of a bacterial strain selected from ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, and/or from ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, as a supplement to feedstuff, preferably as a supplement to feedstuff for fish or shellfish.


Furthermore, the present disclosure also relates to an isolated polynucleotide or polypeptide from ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, wherein the isolated polynucleotide is selected from the following list: SEQ. ID. No. 19 (ABP10666), SEQ. ID. No. 20 (ABP10667), SEQ. ID. No. 7 (ABP10654), SEQ. ID. No. 24 (ABP10671), SEQ. ID. No. 36 (ABP10829), SEQ. ID. No. 37 (ABP10830), or combinations thereof, wherein the isolated polynucleotide encodes for a polypeptide that hydrolyses a non-starch polysaccharide, preferably non-starch polysaccharides present in plant feedstuffs, preferably wherein the non-starch polysaccharide is mannan, glucan, xylan, arabinan, and/or galactan.


The present disclosure also relates to an isolated polynucleotide or polypeptide from ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, wherein the isolated polynucleotide is selected from the following list: SEQ. ID. No. 160 (ABP24564), SEQ. ID. No. 161 (ABP24565), SEQ. ID. No. 162 (ABP24566), SEQ. ID. No. 163 (ABP24567) or combinations thereof, wherein the isolated polynucleotide encodes for a polypeptide that hydrolyses a non-starch polysaccharide, preferably non-starch polysaccharides present in plant feedstuffs, preferably wherein the non-starch polysaccharide is mannan, glucan, xylan, arabinan, and/or galactan.





BRIEF DESCRIPTION OF THE DRAWINGS

The following figures provide preferred embodiments for illustrating the description and should not be seen as limiting the scope of the present disclosure.



FIG. 1. Morphological diversity (Panels A-J) of representative sporeforming fish isolates obtained from European sea bass gut contents. Photographs of colonies grown 24 h in LB (Luria-Bertani) agar medium, are at the same scale defined in Panel J (0.5 cm). Panel K depicts a representative image of the different development stages of sporulation [(a) vegetative cell, (b) sporulating cell (forespore engulfed by the mother cell) and (c) free spore] that were observed in each sporeforming isolate by phase-contrast microscopy. Sporulation was induced by nutrient exhaustion in solid Difco Sporulation Medium (DSM).



FIG. 2. (A) Diversity of sporeforming genera obtained from European sea bass digesta samples. (B) Distribution of bacterial species within the Bacillus genus depicted in panel A.



FIG. 3. Carbohydrolitic profile of representative sporeformers (A-L) isolated from the gut of European sea bass, when cultured on solid minimal medium (M9) alone or supplemented with D-glucose (Gluc), D-fructose (Fruct), D-xylose (Xyl), L-arabinose (Arab), D-galactose (Galact), D-mannose (Mann), Xylooligosaccharides (XOS) and Galactooligosaccharides (GOS).



FIG. 4. (A) Carbohydrolitic profile of the best 11 sporeformers (codes in the x axis) isolated from European sea bass gut, when cultured in liquid minimal medium supplemented with D-glucose, D-fructose, D-xylose, L-arabinose, D-galactose, D-mannose, Xylooligosaccharides (XOS) and Galactooligosaccharides (GOS) for 24 h at 37° C. with agitation. Growth was quantified by measuring the optical density (OD) at an absorbance of 600 nm. The results presented are the average of three independent experiments with error bars representing the standard deviation. (B) PCR detection of genes coding for β-glucanase (bglS), levanase or β-D-fructofuranosidase (sacC), mannan endo-1,4-β-mannosidase (gmuG), endo-1,5-α-L-arabinanase (abnA) and arabinoxylan arabinofuranohydrolase (xynD) carbohydrases in the genome of fish isolates (FI numbers on top of the figure). The amplicon size, in base pairs (bp) is depicted on the right.



FIG. 5. Titer of viable cells present in 24 h DSM (Difco Sporulation Medium) cultures of each sporeformer fish isolate (codes in x axis) before (grey, total cells) and after (black, sporulating or heat resistant cells) a 20 min heat treatment at 80° C. Sporulation was induced by nutrient exhaustion in liquid DSM at 37° C., 150 rpm. Numbers on top of the panel correspond to the percentages (%) of sporulation calculated as the ratio between sporulating cells and total cells. Bacillus subtilis 168 was used as control and the results are the average of three independent experiments with error bars representing the standard deviation.



FIG. 6. Viability of spores from each sporeformer isolate (codes in x axis) when exposed for 4 h (T4, dark grey) to simulated stomach conditions (0.85% NaCl, pH 2, containing 3 mg m1−1 pepsin) followed by 24 h (T24, black) exposition to simulated gut condition (Luria-Bertani, LB, pH 8 containing 1 mg m1−1 pancreatin and 0.3% bile salts). The initial viable counts (time 0 or TO) are depicted in light grey. B. subtilis 168 was used as control and the results are the average of three independent experiments with error bars representing the standard deviation.



FIG. 7. Antimicrobial activity of sporeforming fish isolates ABP1, ABP20, ABP27 and ABP2 against different fish pathogens (Staphylococcus aureus, Photobacterium damselae, Vibrio harveyi, Aeromonas bivalvium and Tenacibaculum maritimum). (A) Growth inhibition screened by a colony overlay assay, where the producer strains were inoculated as spots on Luria-Bertani agar plates, grown for 24 h and then covered by Soft Marine Agar (for Tenacibaculum maritimum) or Soft Brain Heart Infusion Agar (for all the other) inoculated with indicator pathogenic strains. (B) Growth Inhibition screened by a cell-free supernatant assay in which a Marine Agar plate seeded with Tenacibaculum maritimum was perforated with 0.5 cm holes and filled with 100 μl of filtered culture medium from overnight grown sporeforming isolates. B. subtilis 168 (Bsub) was used as control. All photographs are to scale.



FIG. 8. Germination of populations of purified spores of sporeformers fish isolates ABP7, ABP1, ABP20, ABP27, ABP34 and ABP2 at 37° C. in 50 mM Tris-HCl, pH7.5 (control, black circles) or in response to the addition of 100 mM L-alanine (dark grey circles) or a mixture of 100 mM KCl, 56 mM glucose, 56 mM fructose and 33 mM L-asparagine (AGFK, light grey circles). B. subtilis 168 was used as control.





DETAILED DESCRIPTION

The present disclosure relates to the isolation, identification and characterization of novel sporeforming probiotic strain(s) with NSPase (Non-Starch Polysaccharides-active hydrolases) activity isolated from fish gut microbiota, methods and uses thereof.


In an embodiment, sporeformers were isolated from the gut of European sea bass juveniles challenged with PF diets based on SBM, RSM or SFM, which have different NSPs profiles. European sea bass was the model species chosen due to its high commercial importance in European aquaculture and its carnivorous feeding habits, thus being more challenging to cope with PF-based diets. However, other models could be equally used such as gilthead seabream (Sparus aurata) or white seabream (Diplodus sargus) or Atlantic salmon (Salmo solar).


Providing fish with self-gut bacteria capable of producing carbohydrate-active extracellular enzymes that hydrolyse NSPs emerge as a strategy with enormous potential to overcome PF-diets limitations. The bacterial strains now disclosed were isolated with this purpose and their genome sequences support their view as potential NSPs-hydrolyzers that might help aquaculture fish on using high PF-diets.


Having in mind the enhanced adaptability of gut microbial communities, a selective pressure of plant-based diets on fish gut microbiota was carried out for an enrichment of bacteria with a secretome able to mobilize the dietary NSPs. By targeting bacterial spores, remarkably resistant dormant structures with increasing applications in animal health, namely as vaccines or PRO, it was possible to isolate carbohydrate-active gut bacterial strains, from European sea bass, with PRO potential. By inferring the adaptive fitness to the fish gut and the amenability to industrial processing, the best candidates were identified to become industrially valuable PRO for improvement of fish health and utilization of dietary NSPs, contributing for sustainable and more cost-effective aquaculture practices.


In an embodiment, the PRO were isolated and purified, identified to the species level, fully characterised, namely its safety following EFSA guidelines, NSPase activity, antimicrobial activity against important fish-pathogens, adaptive fitness to the fish gut and the amenability to industrial processing. The complete genome has been sequenced.


In an embodiment, there is a need for further research namely addressing the in vivo efficacy in improving PF utilization by fish and disease resistance in bacterial infection models. A preliminary assay using challenging plant-based diets (CTR−), revealed that supplementation with ABP1, or ABP1 and ABP2 (Mix) has a positive effect on the final body weight, the weight gain, the feed efficiency and the protein efficiency ratio of European sea bass juveniles, with a tendency to get closer to a FM-based diet (CTR+) (Table 1). Future analyses including digestive enzymes activity and gut microbiota modulation, might help explain the results obtained. Furthermore, a comprehensive screening of ABP1 and ABP2 genomes will potentially allow the identification of new carbohydrases or antimicrobial molecules.









TABLE 1







Growth performance and feed utilization efficiency of European sea bass fed the experimental diets1.









Diets













CTR−
ABP1
ABP2
Mix
CTR+
















Final body weight (g)
74.0 ± 4.8a

83.0 ± 1.6ab

73.7 ± 6.8a
80.0 ± 12.0ab

97.0 ± 2.0b



Weight gain (% IBW)
155.4 ± 16.6a
 185.3 ± 5.4ab
160.5 ± 23.2a
176.0 ± 41.3ab
233.8 ± 6.7b 


Daily growth index2
17.3 ± 0.1 
19.8 ± 0.0
17.7 ± 0.2 
18.9 ± 0.3 
23.4 ± 0.1


Feed intake (g kg ABW−1§ day−1)
15.4 ± 1.4 
16.7 ± 0.3
15.6 ± 0.2 
15.8 ± 1.3 
17.5 ± 0.1


Feed efficiency3
 0.82 ± 0.03a
0.86 ± 0.02ab
0.84 ± 0.03ab
0.87 ± 0.06ab
0.94 ± 0.01b


Protein efficiency ratio4
 1.82 ± 0.08a
1.86 ± 0.05ab
 1.84 ± 0.07a
1.88 ± 0.12ab
2.09 ± 0.02b






IBW: initial body weight.




§ABW: average body weight (initial body weight + final body weight)/2.




1Mean values and standard deviation (±SD) are presented for each parameter (n = 3).



Significant differences within the diets are indicated by different letters (Tukey test, P < 0.05).



2DGI: ((final body weight1/3 − initial body weight1/3)/time in days) × 100.




3FE: (wet weight gain/dry feed intake).




4PER: (wet weight gain/crude protein intake).







In an embodiment, the fermentation of the strains can be easily reproduced by another practitioner. Furthermore, regarding commercial applications, companies within the aquaculture and feed industry may be potentially interested in acquiring these strains for the development of new PRO with digestive added-value.


In an embodiment, diet composition was formulated. Three experimental diets were formulated to be isonitrogenous (47% crude protein), isolipidic (17% crude lipid) and to contain 30% of soy bean meal (SBM diet), 30% of rapeseed meal (RSM diet) or 30% of sunflower meal (SFM diet). A FM-based diet was used as the control diet (CTR diet). Fish oil and pregelatinized maize starch were the main lipid and carbohydrate sources, respectively. Bicalcium phosphate was added to adjust dietary phosphorus level. All diet ingredients were thoroughly mixed and dry-pelleted in a laboratory pellet mill (California Pellet Mill, CPM Crawfordsville, Ind., USA), through a 3.0 mm die. Pellets were dried in an oven at 50° C. for 24 h, and then stored at −20° C. until used. Ingredients and proximate composition of the experimental diets are presented in Table 2.









TABLE 2







Ingredients composition and proximate


analysis of experimental diets













Dietsa
CTR
SBM
RSM
SFM











Ingredients (% dry weight)













Fish mealb
60.2
38.7
45.2
48.1



Soy bean mealc

30.0





Rapeseed meald


30.0




Sunflower meale



30.0



Pregelatinized maize starchf
23.2
11.6
8.0
4.8



Fish oil
12.1
13.6
12.4
13.0



Bicalcium phosphateg
1.0
2.6
1.0
0.6



Choline chloride (50%)
0.5
0.5
0.5
0.5



Vitamin premixh
1.0
1.0
1.0
1.0



Mineral premixi
1.0
1.0
1.0
1.0



Binderj
1.0
1.0
1.0
1.0







Proximate analysis (% dry weight)













Dry matter
91.5
92.4
92.7
93.5



Crude protein
46.9
46.5
46.3
46.4



Crude lipids
17.3
16.1
16.6
16.8



Ash
11.3
11.7
11.3
11.1







DM dry matter,



CP crude protein,



CL crude lipid




aCTR, control fishmeal-based diet; SBM, soybean meal-based diet; RSM, rapeseed meal-based diet; SFM, sunflower meal-based diet





bSteam Dried LT fish meal, Pesquera Diamante, Austral Group, S.A Perú (CP: 74.7% DM; GL: 9.8% DM)





cSorgal, S.A. Ovar, Portugal (CP: 53.7% DM; GL: 2.1% DM)





dSorgal, S.A. Ovar, Portugal (CP: 37.5% DM; GL: 4.0% DM)





eSorgal, S.A. Ovar, Portugal (CP: 30.3% DM; GL: 1.0% DM)





fC-Gel Instant-12016, Cerestar, Mechelen, Belgium





gPremix, Portugal (Calcium: 24%; Total phosphorus: 18%)





hVitamins (mg kg1 diet): retinol acetate, 18,000 (IU kg−1 diet); cholecalciferol, 2000 (IU kg−1 diet); alfa tocopherol acetate, 35; sodium menadione bisulphate, 10; thiamine-HCl, 15; riboflavin, 25; calcium pantothenate, 50; nicotinic acid, 200; pyridoxine HCl, 5; folic acid, 10; cyanocobalamin, 0.02; biotin, 1.5; ascorbic acid, 50; inositol, 400





iMinerals (mg kg−1 diet): cobalt sulphate, 1.91; copper sulphate, 19.6; iron sulphate, 200; sodium fluoride, 2.21; potassium iodide, 078; magnesium oxide, 830; manganese oxide, 26; sodium selenite, 0.66; zinc oxide, 37.5; dibasic calcium phosphate, 8.02 (g kg−1 diet); potassium chloride, 1.15 (g kg−1 diet); sodium chloride, 0.44 (g kg−1 diet)





jAquacube (guar gum, polymethyl carbamide, manioc starch blend, hydrate calcium sulphate) Agil, UK.







In an embodiment, the animal experiment was performed at the Marine Zoology Station, Porto University, Portugal, with European sea bass, juveniles obtained from a commercial fish farm (Maresa S. A., Ayamonte, Huelva, Spain). After transportation to the experimental facilities fish were first submitted to a quarantine period of 30 days before transfer to the experimental system where they were allowed to adapt for 15 days. Before the experimental period, fish were fed a commercial diet (48% protein, 11% lipids, 5% starch). The trial was performed in a recirculating water system equipped with 12 cylindrical fiberglass tanks of 100 l water capacity and thermo-regulated to 22.0±1.0° C. Tanks were supplied with continuous flow of filtered seawater (2.5-3.5 l min−1) of 34.0±1.0 g l−1 salinity and dissolved oxygen was kept near saturation (7 mg l−1). Thereafter, 20 European sea bass with an initial mean body weight of 34.4 g were distributed to each tank and the experimental diets randomly assigned to triplicate groups. The trial lasted 45 days and fish were fed by hand, twice daily, 6 days a week, until apparent visual satiation. The experiment was performed by accredited scientists (following FELASA category C recommendations) and was conducted according to the EU directive 2010/63/EU on the protection of animals for scientific purposes.


In an embodiment, sampling was carried out as follows. Fish in each tank were bulk-weighed at the beginning and at the end of the trial, after 1 day of feed deprivation. For that purpose, fish were slightly anaesthetized with 0.3 ml l−1 ethylene glycol monophenyl ether (Sigma-Aldrich, Steinheim, Germany). On the sampling days (at day 15 after the beginning of the trial and at the end of the trial or day 45), fish were fed several times over the day to guarantee that gut was full at sampling time. At 4 h after the first meal, 3 fish per tank were randomly sacrificed with an overdose of ethylene glycol monophenyl ether, for collection of biological samples under aseptic conditions. To overcome inter-fish variation, the resulting material was pooled into one sample per tank to assess differences between dietary groups. Whole-gut (without pyloric caeca) were aseptically excised and squeezed to collect the digesta contents.


In an embodiment, the isolation of sporeforming bacteria was performed as follows. Each sample of digesta (1 g) obtained from fish fed the different dietary treatments was homogenized in 9 ml of buffered saline solution (0.9%). Serial dilutions were prepared in Bott & Wilson (B&W) salts and 100 μl aliquots spread on the surface of LB agar medium, after 20 min heat treatment at 65° C., for sporeformers selection. Plates were incubated at 30° C. in aerobic conditions for up to 5 days. Following selection, sporeformers were isolated and characterized for morphology in DSM, to confirm spore production by phase-contrast microscopy. Colonies representing different morphologies were picked at random and purified by restreaking on agar plates of the same media, before storage at −80° C. in LB broth with 30% glycerol. Sporeformers isolates were routinely grown aerobically at 37° C. in LB or DSM. The laboratory strain B. subtilis 168 [14] was used as a control in most of the experiments described in the present disclosure.


In an embodiment, screening sporeforming bacteria for carbohydrates metabolization was carried out as follows. Each sporeformer isolate was cultured on solid M9 minimal medium [15] supplemented with 0.2% (w/v) of each of the following carbohydrates: D-glucose (G7528), D-fructose (F3510), D-xylose (X3877), L-arabinose (A3256), D-galactose (G0750), D-mannose (63580), all purchased from Sigma-Aldrich, Steinheim, Germany-Aldrich Co. LLC. The Xylooligosaccharides (XOS) and Galactooligosaccharides (GOS) are commercially available prebiotics from Qingdao FTZ United International Inc. (Quingdao, China) that were added at the same concentration (0.2%). Growth after 24 h at 37° C. was recorded by photographing colonies in a Gel Doc XR System (Bio-Rad) using the Image Lab software v.4.0.1 (Bio-Rad). Growth quantification was assessed by measuring the colony volume on fixed areas with local background subtraction (adjusted volume=[CNT*mm2] data counts/mm2) using the Quantity One software v.4.6.9 (Bio-Rad). Quantification of carbohydrates utilization in liquid M9 was performed after an overnight enrichment in liquid LB at 37° C. with agitation. Each isolate was diluted to an initial optical density (OD600; absorbance measured at 600 nm) of 0.1 in liquid M9 minimal medium alone or supplemented with 0.2% of the different carbohydrates previously tested. Bacterial growth was followed during 48 h and quantified by measuring the OD600. In both solid and liquid medium assays, results presented were corrected by subtracting the colony volume/OD600 measured in M9 alone.


In an embodiment, the taxonomic identification of PRO isolates was performed as follows. Identification was carried out for all the isolates with promising extracellular carbohydrolytic activities. Total genomic DNA extraction was performed from overnight LB cultures, using the EZNA bacterial DNA purification kit (Omega Bio-Tek, USA), according to the manufacturer's instructions and quantified with the Qubit 2.0 Fluorometer (Invitrogen, Oregon, USA). PCR amplification of the small-subunit rRNA (16S rRNA) was carried at an annealing temperature of 55° C. using primers 27F and 1492R. Each 20 μl reaction contained 1×DreamTaq Buffer (Thermo Scientific, Vilnius, Lithuania), 0.2 mM of each dNTP (Thermo Scientific, Vilnius, Lithuania), 0.2 μM of each primer (STAB Vida, Lisboa, Portugal), 1 U of DreamTaq DNA Polymerase (Thermo Scientific, Vilnius, Lithuania) and 25 ng of DNA template. The Bioinformatics Resources Sequence Match package of the Ribosomal Database Project 11 (http://rdp.cme.msu.edu) and BLAST of the GenBank nonredundant (nr) nucleotide database (http://www.ncbi.nlm.nih.gov) were used to analyse the sequencing data.


In an embodiment, the screening of PRO isolates for NSPases was performed as follows: to tentatively obtain a set of primers specific for the genes encoding NSPs degrading enzymes (NSPases), an initial search was conducted at the Protein Knowledgebase—UniProtKB with terms “family:hydrolase AND annotation:(type:location AND secreted) AND taxonomy:“Bacteria”. A file containing bacterial secreted glycosyl hydrolases (GH) was then created and the ones involved in the utilization of NSPs of interest were chosen for further analysis. Enzymes chosen included mannanases, mannosidases, arabinofuranosidases, arabinanases, glucosidases, glucanases, fructosidases (fructanases), fructafuranosidases, galactorunases, xylosidases, and xylanases. The protein sequence of each individual enzyme was used to search for similar proteins in the translated nucleotide database (tblastn) (http://www.ncbi.nlm.nih.gov) and to make nucleotide alignments between the sequences obtained with ClustalW algorithm using Geneious R7 v7.1.7 (Biomatters, Auckland, New Zealand). Regions of sequence conservation were chosen to design primer pairs (Table 4) with the Vector NTI 10 software (Invitrogen, Carlsbad, Calif.), with a calculated annealing temperature of approximately 55° C. and an amplicon size of 200 to 250 base pairs (bp). PCR amplification was done essentially as described for the 16S rRNA (previous section), adjusting the annealing temperature to 55° C. and the extension time to 30 s.


In an embodiment, biosafety issues in particular antibiotics susceptibility and hemolytic activity were also evaluated. Antimicrobial resistance was studied by testing susceptibility of sporeforming isolates to different classes of antibiotics, namely Macrolides (Erythromycin, EM), Aminoglycosides (Kanamycin, KM, Streptomycin, SM, and Gentamycin, GM), Tetracyclines (Tetracycline, TC), Glycopeptides (Vancomycin, VA) and Cloramphenicol (CL), following the recommendations of the EFSA Panel on Additives and Products or Substances used in Animal Feed [16]. Minimal inhibitory concentrations (MIC) were determined using Etest® (bioMérieux, Inc.). Hemolysis was determined on Columbia 5% sheep blood agar plates streaked with colonies from fresh LB plates, after incubation at 37° C. for 24, 48 and 72 h.


In an embodiment, antimicrobial activity screening assays were performed as follows. The antimicrobial activity of selected sporeforming isolates was assessed by a colony overlay assay using as targets different fish pathogens. Zones of growth inhibition around the producer strains spots after 24 h incubation at 25° C. (for Photobacterium damselae, Vibrio harveyi, Tenacibaculum maritimum and Aeromonas bivalvium) or 37° C. (for Staphylococcus aureus) were considered as positives and the corresponding growth-inhibition halos diameter measured (mm). A cell-free supernatant screening assay was performed by inoculating BHI or Marine Agar (for T. maritimum) plates with overnight cultures of indicator strains, assuring a uniform and complete coverage of the agar plate. After 15 min rest to allow plates to dry, 1 cm holes where done in the agar and consequently filled with 200 μl of cell-free supernatant of each producer strain, previously centrifuged and filtered through a 0.2 μm cellulose filter, from stationary phase LB cultures (grown overnight at 37° C.). Zones of growth inhibition around the producer strains supernatant holes obtained after 24 h incubation at 25° C. or 37° C. (as before) were considered as positive. All observations were recorded by photographing in a Gel Doc XR System (Bio-Rad) using the Image Lab Software (Bio-Rad).


In an embodiment, sporulation, germination and resistance to gut environment were also carried out as follows. The kinetics of spore formation and germination was quantified using adaptations of well-established methods [15, 17]. Sporulation occurred in DSM for 24 h at 37° C. in an orbital shaker at 200 rpm, and its efficiency was determined by plating serial dilutions made in B&W isotonic buffer (Bott and Wilson salts: 1.24% K2HPO4, 0.76% H2PO4, 0.1% trisodium citrate, 0.6% [NH4]2SO4, pH 6.7) on LB agar, before and after a 20 min heat treatment at 80° C. to eliminate vegetative cells. Following 24 h incubation at 37° C., visible colonies were counted, and sporulation efficiency calculated as the titre of colony forming units (CFU ml−1) before and after the heat treatment.


Preparation of highly purified spores was done as follows: in brief, 48 h spores preparations (in liquid DSM) of each isolate were centrifuged for 10 min at 10000 g and 4° C. Cell pellets were suspended in 50 mM Tris-HCl (pH 7.2) containing 50 μg ml−1 of lysozyme, and incubated for 1 h at 37° C. After a single wash with 1 volume of distilled water (10 min at 10000 g, 4° C.), cell pellets were suspended in 0.05% SDS, followed by three washes with distilled water and finally suspended in 1 volume of distilled water. Spores purity and recovery yields were determined by plating serial dilutions on LB agar, before and after a 20 min heat treatment at 80° C.


Spore germination in response to the addition of 100 mM L-alanine or to a mixture of 100 mM KCl, 56 mM glucose, 56 mM fructose and 33 mM L-asparagine (AGFK), was performed at 37° C. in 50 mM Tris-HCl, pH 7.5.


Potential resistance to gut transit was evaluated by determining the acid and bile tolerance of each selected isolate. For that purpose, 48 h DSM spores preparations were heat-treated for 20 min at 80° C. to eliminate vegetative cells and harvested by centrifugation. After a double wash with Phosphate-buffered saline (PBS), serial dilutions made in B&W salts were plated onto LB agar plates to determine the initial bacterial counts. Spores were then diluted in 1 volume of 0.85% NaCl, pH 2, containing 3 mg ml−1 pepsin (Sigma-Aldrich, Steinheim, Germany), to mimic stomach conditions. Following 4 h incubation at 37° C. with agitation, serial dilutions made in B&W were again plated onto LB agar plates to determine bacterial counts, and, after a single wash with PBS, spores were resuspended in LB, pH 8 containing 1 mg ml−1 pancreatin (Sigma-Aldrich, Steinheim, Germany) and 0.3% bile salts (Sigma-Aldrich, Steinheim, Germany). Bacterial incubation continued for 24 h at 37° C. with agitation to mimic passage through the gut. Finally, serial dilutions made in B&W were again plated onto LB agar plates to determine the final bacterial counts. All plates were incubated at 37° C. during 24 h prior to colonies count.


In an embodiment, shotgun genome sequencing was carried out at the Research and Testing Laboratory (Lubbock, Tex., USA) using the PacBio RSII sequencer (Pacific Biosciences, CA, USA). A total of 78,219 and 96,855 reads (with a mean read length of 13,383 and 15,478 base pairs) were obtained for ABP1 and ABP2, respectively, using as reference the Bacillus subtilis subsp. subtilis str. 168 (AL009126.3) [14]. The raw sequences were assembled using Pacific Biosciences SMRT Analysis v2.3.0. The total size of the assembly was around 4,068 Mb (2 final contigs) for ABP1 and 4,308 Mb (3 final contigs) for ABP2. A BLAST analysis against the RefSeq_genome database (NCBI) revealed that the best match for ABP1 is the Bacillus subtilis subsp. subtilis str. BSP1 (CP003695.1; (11)) while for ABP2 a best match is Bacillus sp. LM 4-2 (CP011101.1; (12)). The BLAST version used was the 2.7.1.


Both assemblies were analysed by using the Rapid Annotation Subsystem Technology (RAST) server. The amino acid sequences of each gene identified in RAST were processed using BLASTP+ against the RefSeq_Protein (NCBI), RefSeq_RNA (NCBI) and All-tRNA [4] (http://gtrnadb.ucsc.edu/) databases and then passed along the DAVID web service to determine other crucial annotation data such as GO Terms, PFAMs, TIGRFAMS, EC numbers or KEGG Pathways.


In an embodiment, statistical analysis was conducted by one-way ANOVA using the SPSS 21 software package for Windows (IBM® SPSS® Statistics, New York, USA). Data were tested for normality and homogeneity of variances by the Shapiro-Wilk and Levene's test, respectively. When normality was not verified, data were transformed prior to ANOVA. Significant differences among groups were determined by the Tukey's multiple range test. The probability level of 0.05 was used for rejection of the null hypothesis.


More than 200 bacterial isolates were obtained from the heat-treated gut contents of European sea bass fed each dietary situation (CTR, SBM, RSM and SFM). Following purification, 160 isolates representing different samples and colony morphologies (illustrated in FIG. 1, Panels A to J) were chosen for analysis. Spore production of each isolate, induced by nutrient exhaustion on Difco Sporulation medium, was confirmed by phase-contrast microscopy (FIG. 1, Panel K). All isolates were identified by partially sequencing the 16S rRNA gene revealing a predominance (60%) of Bacillus species among European sea bass gut contents (FIG. 2A). Oceanobacillus were also present, although to a lower extent (˜10%), with the remaining isolates distributed between the genera Lysinibacillus and Sporosarcina (with 5% each), Aneurinibacillus and Virgibacillus (with less than 1% of the isolated population, each). Identification to the species level was in most cases inconclusive. Nevertheless, the great majority (>60%) of the isolates belonging to the Bacillus genus fall in the B. cereus group (B. cereus, B. anthracis, B. thuringiensis, B. mycoides, B. pseudomycoides, B. weihenstephanensis, and B. cytotoxicus) or in the B. subtilis-B. licheniformis clade (B. subtilis, B. vallismortis, B. mojavensis, B. atrophaeus, B. amyloliquefaciens, B. licheniformis, B. sonorensis, and B. tequilensis) (FIG. 2B).


In an embodiment, the carbohydrolytic activity of gut sporeformes was evaluated. The entire collection of 160 isolates was screened for their carbohydrolytic potential by substrate specific culture-based methods, and different profiles of carbohydrate utilization could be assigned to different isolates, as illustrated in FIG. 3. The great majority of isolates grew well on glucose-supplemented medium, but not in the other carbohydrates tested. The quantification of each colony density or volume revealed the 43 isolates with higher and/or broader carbohydrolytic capacity (FIG. 8).


In an embodiment, the carbohydrate-active gut sporeformes were testes as PRO for aquaculture as follows. The selected 43 isolates were checked for minimal biosafety requirements to be considered as PRO, following the guidelines from the EFSA and the World Health Organization (WHO) [8, 17]. The majority (33) of the isolates exhibited some degree of hemolytic activity when cultivated on 5% sheep blood agar plates, with 14 isolates showing strong or β hemolysis (Table 3). Half of the isolates revealed to be resistant to at least 1 antimicrobial, and 10 isolates were resistant to 2 or more antimicrobials, defined as MR in Table 3 and detailed in Table 5. These tests allowed selecting a strict group of 11 isolates as good candidates to become a PRO for European sea bass (Table 3, highlighted in bold lettering), as isolates showing strong hemolytic activity or any antimicrobial resistance to the different classes of antibiotics tested were not further studied.









TABLE 3







Characterization and identification of the 43 isolates with broader carbohydrate-activity









16S rRNA sequence analysis














Isolatea
Dietb
Sporesc
Catalased
Hemolysise
AbRf
Closest known speciesg
% ID


















ABP3

CTR
+
+
β


B. thuringiensis; B. cereus

100



ABP4

CTR
+
+
γ


Bacillus sp.

99.2



ABP5

CTR
+
+
γ


B. subtilis

98.2



ABP6

SFM
+
+
β


B. cereus

100



ABP7

SFM
+
+
α


B. pumilus; B. safensis

100



ABP8

SFM
+
+
α
MR

B. licheniformis

100



ABP9

SFM
+
+\−
β


B. cereus

100



ABP10

SFM
+
+
β


B. simplex; B. macroides

100



ABP1

SFM
+
+
α


B. subtilis

100



ABP11

SBM
+
+
β
R

B. sp

99.2



ABP12

SBM
+
+
α
R

B. safensis

99.8



ABP13

RSM
+
+
α
MR

B. licheniformis

100



ABP14

RSM
+
+
α
R

B. pumilus

99



ABP15

RSM
+
+
β
R

B. cereus; B. subtilis

99.6



ABP16

RSM
+
+
α
R

B. safensis; B. pumilus

100



ABP17

CTR
+
+
β


B. subtilis; B. mojavensis

99.2



ABP18

CTR
+
+
α
MR

B. licheniformis; B. aerius

100



ABP19

CTR
+
+
β


B. subtilis

99.6



ABP20

SBM
+
+
α


B. subtilis; B. amyloliquefaciens

100



ABP21

RSM
+
+
α
MR

B. licheniformis

100



ABP22

RSM
+
+
γ
MR

B. licheniformis; B. aerius

86.2



ABP23

RSM
+
+
α
MR

B. licheniformis

100



ABP24

RSM
+
+
α
MR

B. licheniformis

100



ABP25

RSM
+
+
α
R

B. pumilus

99.9



ABP26

RSM
+
+
β


B. licheniformis

100



ABP27

SFM
+
+
α


B. subtilis; B. amyloliquefaciens

100



ABP28

SFM
+
+
β
R

B. cereus

100



ABP29

SFM
+
+
α
MR

B. licheniformis; B. aerius

100



ABP30

SFM
+
+\−
β
R

B. cereus

100



ABP31

CTR
+
+
β


B. cytotoxicus

97.8



APB32

SFM
+
+
γ
MR

B. licheniformis

100



ABP33

SFM
+
+
α
R

B. safensis

99.5



ABP34

SFM
+
+
α


Bacillus sp.

100



ABP35

SBM
+
+
γ
MR

B. licheniformis

100



ABP2

SBM
+
+
α


B. subtilis

100



ABP36

SBM
+
+
γ


B. simplex; B. macroides

100



ABP37

SBM
+
+
β


B. subtilis

76.1



ABP38

SFM
+
+
γ


Bacillus sp.

99.5



ABP39

SFM
+
+
γ
R

Bacillus sp.

100



ABP40

RSM
+
+
α


Bacillus sp.

98.7



ABP41

SFM
+
+
γ
R

B. licheniformis

100



ABP42

SBM
+
+
γ
R

B. licheniformis

100



ABP43

RSM
+
+
β


B. thuringiensis; B. cereus

100






aIn underlined lettering are the isolates showing strong hemolytic activity or any antimicrobial resistance, discarded from the rest of the disclosure and in bold the 11 isolates used in subsequent tests.




bCTR, control fishmeal-based diet; SBM, soybean meal-based diet; RSM, rapeseed meal-based diet; SFM, sunflower meal-based diet.




cSpores detected by phase-contrast microscopy of 24 h cultures in DSM agar.




dCatalase activity tested by resuspending a colony in a 3% solution of hydrogen peroxide (Sigma).




eHemolysis determined on Columbia 5% sheep blood agar plates after incubation at 37° C. for 24, 48 and 72 h (shown is the final reading at 72 h incubation). β-hemolysis, the bacterial hemolytic enzymes completely break down the blood cells; α-hemolysis, the bacterial hemolytic enzymes only partially break down the blood cells; γ-hemolysis corresponds to essentially no hemolytic activity detected.




fAbR-Antimicrobial resistance determined by the E-test method against several antibiotics (Table 5). R—resistance to one antimicrobial; MR—resistance to 2 or more antimicrobials; — no resistance phenotype detected.




gClosest known species found using RDP based on partial sequences (600 to 800 nt) of the 16S rRNA gene.







The selected 11 isolates were then simultaneously cultured in M9 liquid medium to quantify bacteria growth after 24 h in liquid M9 supplemented with the different carbohydrates (FIG. 4A). The results from 3 independent experiments (FIG. 4A) allowed to eliminate fish isolates ABP4 and ABP5 from the follow-up tests, after revealing the lowest capacity to metabolize the carbohydrates tested.


The presence of specific carbohydrases coding genes in these 11 isolates was investigated by using oligonucleotide primers specifically designed to target the genes coding for β-glucanase (bglS), levanase or β-D-fructofuranosidase (sacC), mannan endo-1,4-β-mannosidase (gmuG), endo-1,5-α-L-arabinanase (abnA), and arabinoxylan arabinofuranohydrolase (xynD) (Table 4). Their broad carbohydrolytic phenotype could not be correlated with the presence of the target genes, since no PCR amplification was obtained for the most promising isolates (ABP38 and ABP40) while all target genes seem to be present in the worst fish isolates ABP4 and ABP5 (FIG. 4B).









TABLE 4







Oligonucleotide primers used in the present disclosure









Target enzymea/geneb
Primer Name
Primer Sequence (5′-3′)





β-glucanase (GH16-EC 3.2.1.73 /bglS
BglS-339F
AGGGATCGTTTCATCGTTCT



BglS-553R
TAATAGAGTTTGGCTGCCAATC





Levanase (β-D-fructofuranosidase) (GH32 - EC
SacC-106F
CCTCAATATCACTTCACACCGGAG


3.2.1.80)/sacC
SacC-336R
ATCTACAACTGCGCTTCCAGAAAA





Mannan endo-1,4-β-mannosidase (GH26-EC
GmuG-563F
TCAGGCCGCTGCATGAAATGAACG


3.2.1.78)/gmuG
GmuG-786R
AATATCCACGTAAGACGCGCCCGG





Endo-1,5-α-L-arabinanase (GH43 - EC:3.2.1.99)/
AbnA-311F
GGGCGCCGGACATCCAATACTATA


abnA
AbnA-564R
AGTCAGCTTAATGCCGCTCCAAAA





Arabinoxylan arabinofuranohydrolase (GH43 -
XynD-361F
AAATGGGCAGGTGCGTCATGGGC


EC:3.2.1.55)/xynD
XynD-591R
GTCGTCATCTACAAATACTGCCGG






aThe enzyme Glycoside Hydrolase Family (GH) number and the EC number are providing in brackets




bgene name in B. subtilis strain 168 genome, whose sequence was used to design the oligonucleotide primers







Table 5. Susceptibility of selected isolates to various antimicrobial agents


In an embodiment, sporeforming isolates ABP7, ABP1, ABP20, ABP27, ABP34, ABP2, ABP36, ABP38, and ABP40, that simultaneously met the minimal safety requirements to be eligible as PRO and were the most efficient isolates in metabolizing the carbohydrates tested, were further characterized to determine their sporulation efficiency, an important characteristic for future industrial production and feed incorporation.


In an embodiment and by comparison with the well-studied standard strain B. subtilis 168 [14], isolates ABP36, ABP38, and ABP40 did not reach a minimum titer of 107 ml−1 heat-resistant cells, after 24 h sporulation induction by nutrient exhaustion in DSM liquid medium (FIG. 5) and were discarded from the subsequent tests. Furthermore, ABP38, and ABP40 did not even reach that minimum level of total (viable) cells, revealing to be inadequate for future industrial applications. With the exception of ABP20, the remaining six isolates presented an efficiency of sporulation higher than 70%, which anticipates a high suitability for cost-effective spore production (FIG. 5).


In an embodiment, the potential to survive passage through the gastrointestinal tract, important for in vivo efficacy, was determined by exposure to sequential simulated stomach and gut conditions. Purified spores of isolates ABP7, ABP1, ABP20, ABP27, ABP34 and ABP2 were first subjected during 4 h to acidified NaCl containing pepsin, to mimic stomach conditions, followed by 24 h exposure to alkalinized LB medium containing pancreatin and bile salts. While 4 h in simulated stomach conditions had nearly no effect on the isolates survival, the subsequent 24 h exposure to simulated gut conditions lead to a reduction in each bacterial population (FIG. 6). In particular, cell survival was dramatically decreased in isolates F192 and F1157, similarly to what was observed to the standard strain B. subtilis 168 (FIG. 6). Isolates ABP1 and ABP2, which showed higher sporulation efficiency, and consequently higher cell number at time 0, were the best fit to survive in the gut.


In an embodiment, the remaining four isolates, namely ABP1, ABP20, ABP27, ABP2, were characterized for their antimicrobial activity against several fish pathogenic strains, namely P. damselae, V. harveyi, T. maritimum, A. bivalvium, and S. aureus. As illustrated in FIG. 7A, all isolates showed some extent of antimicrobial activity. Strain ABP1 was successful in inhibiting the growth of S. aureus, T. maritimum and to a lower extent V. harveyi. ABP20 was only active against Ph. damselae. ABP27 inhibited the growth of S. aureus and of Ph. damselae while ABP2 was active against Ph. damselae, V. harveyi and T. maritimum. The control B. subtilis 168 could also effectively inhibit the growth of S. aureus, Ph. damselae and T. maritimum, but this last inhibitory activity was lost when using its cell-free supernatant (FIG. 7B) as opposing to the killing activity observed with the cell-free supernatant of ABP2, clearly indicating that this strain produces an extracellular inhibition molecule(s) capable of inhibiting T. maritimum growth (FIG. 7B).


In an embodiment, and in an attempt to infer the germination capacity of these strains inside the animal gut, spores of the same four isolates, ABP1, ABP20, ABP27 and ABP2, were subject to different germinants, namely L-alanine and a mixture of KCl, glucose, fructose and L-asparagine (AGFK). For the conditions tested, isolates ABP20 and ABP27 were unable to germinate (FIG. 9), leading to the selection of isolates ABP1 and ABP2 as the best PRO strains.


In an embodiment, the 4,068,058 bp genome of ABP1 was found to consist on 4,304 open reading frames (ORFs) with 4,184 genes identified (30 rRNAs genes and 86 tRNA genes).


In an embodiment, isolate ABP2 contained a slightly bigger genome, with 4,308,180 bp. A total of 4,643 genes (from 4,759 ORFs) were identified, including 28 rRNAs genes and 82 tRNA genes.


In an embodiment, the G+C content of ABP1 and ABP2 genomes was estimated to be 43.9% and 43.4% respectively.


In an embodiment, an exhaustive comparative analysis against the reference B. subtilis str. 168 [14] using Geneious R7 v7.1.7 software (Biomatters, Auckland, New Zealand) revealed the absence of more than 200 genes from ABP1 and ABP2 genomes. These are mostly associated with prophage like regions, namely Prophage3, SPR and the Skin element, or with mobile genetic elements such as the integrative and conjugative element ICEBs1. As previously described for other gut isolates including B. subtilis str. BSP1 [17], several negative regulators of sporulation (e.g. rapE, rapK) are also absent, resulting in a higher sporulation efficiency of these isolates when compared to the B. subtilis str. 168, with the advantage that this behaviour can have at the industrial and gut levels. Interestingly, both isolates lack the sdpABCIR operon of sporulation delaying proteins, which might result in even earlier trigger of sporulation.


In an embodiment, ABP1 and ABP2 genomes also accommodate new genes, some of which coding for NSPs-active hydrolases. For instance, additional genes that might be involved in xylose and mannose metabolism are found in ABP1, while ABP2 contains one myo-inositol catabolic operon, that might contribute to the cycling of inositol phosphates in the marine environment or to their bioavailability (from PF-diets) inside the fish-gut.


In an embodiment, by sequencing the 16S rRNA gene, all isolates could be assigned to a genus, being Bacillus the most prevalent (>60%). Affiliation to a species based on a single molecular marker (16S rRNA) was limited, as expected. This was the case for isolates belonging to the B. cereus group (B. cereus, B. anthracis, B. thuringiensis, B. mycoides, B. pseudomycoides, B. weihenstephanensis, and B. cytotoxicus) or to the B. subtilis-B. licheniformis clade (B. subtilis, B. vallismortis, B. mojavensis, B. atrophaeus, B. amyloliquefaciens, B. licheniformis, B. sonorensis, and B. tequilensis), whose 16S rRNA gene sequences obtained do not differ enough to distinguish them.


Although several Bacillus spp. are quite common in the gut of different animals, including the ones with high-fiber feeding habits, such as soil invertebrates or the giant panda [19], few studies have focused on their carbohydrolytic potential. For example, predominant B. subtilis strains from the gut microbial community of the giant panda, seem to have the capacity to growth in a higher fiber environment [20], opening the possibility that also in fish, Bacillus spp. may have a decisive role in shaping their host digestive capacity towards the efficient utilization of PF-diets. In fact, two recent studies, although limited to cellulase and xylanase activities, reported the isolation of carbohydrate-active Bacillus spp. from the gut of different fish species. The 160 isolates tested in the present disclosure showed different, and in some cases potent, hydrolytic capacities when using as sole carbon source selected carbohydrates including xylose, galactose, arabinose, or mannose. This observation was further sustained by the presence of genes coding for specific extracellular CAZymes that can help fish in obtaining the otherwise unavailable energy trapped in PF. The absence of amplification for these specific genes in some isolates, despite showing broad carbohydrolytic activities, is not surprising considering that some studies suggests that new or substantially different CAZymes involved the metabolization pathways are yet to be found in the Bacilli group of organisms. Furthermore, the lack of PCR amplification of these genes, observed with some isolates, may also be caused by mismatches of the primer pairs, due to the difficulty to design gene-specific primers regarding genomic regions poorly conserved.


In an embodiment, PRO approval within EU for incorporation into animal feed, including aquafeeds, is subject to strict and exhaustive exigencies following EFSA guidelines on quality, safety, and efficacy of the candidate(s) bacterial strain(s) [21]. Besides the obligation of strain deposition in an internationally recognised culture collection, candidate PRO isolates must be tested for the presence of any acquired antibiotic resistance genes [11, 16, 22]. PRO, which are given to animals in massive amounts, should not contribute to the escalation of antimicrobial resistance by acting as vehicles of transferable genetic determinants. Unfortunately, these rules do not apply worldwide, and very recently antimicrobial resistant strains were found in PRO products used in Vietnamese shrimp culture or in Chinese human commercial products, with all the risks those findings pose to the aquaculture production sector and to public health [23]. Although EFSA guidelines only require the absence of acquired (transmittable) resistance genes, allowing the use of bacterial strains whose antibiotic resistance is chromosomally encoded, the option of eliminating all the strains showing any antimicrobial resistance to the different classes of antibiotics tested. Adding to that criterion, strains showing strong hemolytic activity, indicative of virulence potential in several pathogenic bacterial species, including sporeforming ones, were also not further tested. These tests allowed to select a group of 11 PRO candidates that qualify with the minimal biosafety issues to be approved by EFSA.


In an embodiment, to demonstrate efficacy, EFSA requires three in vivo studies showing statistically-significant effects on each target animal species [21]. To conduct such follow-up in vivo studies in European sea bass growth and digestibility trials, it was necessary, for practical reasons, to narrow the group of interesting and potential PRO candidates. These were subjected to a series of consecutive tests to analyze some desired characteristics on a future PRO product. First the sporulation yield, an important parameter in industrial and economical terms, was determined by comparison with the well-studied standard laboratory strain B. subtilis 168 [14]. Six isolates demonstrated high yield spore formation, which anticipates a good suitability for cost-effective spores' production in industrial scale. Additionally, higher sporulation levels might also act as a form of propagation inside the animal gut, maximizing these strains beneficial effect [10, 17]. Second, exposure of purified spores to sequential simulated gastric and gut conditions, revealed the four isolates best equipped to survive passage through the gastrointestinal tract, important to guarantee their in vivo efficacy. In particular, isolates ABP1 and ABP2, which also showed higher sporulation efficiency, seem to be the best suited to reach, at higher numbers, the gut where their PRO action can take place. To take advantage of these isolates as PRO, upon passage through the stomach and anterior gut, spores must germinate to originate new vegetative cells that can produce the enzymes/molecules thought to benefit their host. In nature, spore germination is believed to occur in response to specific nutrients. For example, B. subtilis spores are known to germinate in response to L-alanine, L-valine and L-asparagine but not in response to their D-enantiomers. Taken this, and although the mechanisms of germination of spores of different Bacilli (independently of their specific species) are thought to be essentially the same, it cannot be ruled out that some of the isolates might respond efficiently to other germination molecules that might be abundant in vivo (inside the animal gut), explaining the germination failure of isolates ABP20 and ABP27 under the conditions assayed. Finally, and besides their carbohydrolytic potential, these PRO might also benefit the fish host by minimizing colonization with pathogenic species, known to be especially problematic in marine aquacultures. This is the case of T. maritimum whose growth was efficiently inhibited in vitro, when exposed to both cells and cell-free culture medium of isolate ABP2.


In an embodiment, sequencing ABP1 and ABP2 genomes allowed a comprehensive screening of their genomic potential to better meet the EFSA criteria for PRO. Both genomes accommodate new genes, some of which coding for NSPases (NSP-active hydrolases). For example, additional genes that might be involved in xylose (e.g. ABP10666, ABP10667), mannose (e.g. ABP10654, ABP10671) and sucrose (e.g. ABP10829, ABP10830) metabolism are found in ABP1, while ABP2 contains one myo-inositol catabolic operon (ABP24564 to ABP24567), that might contribute to the cycling of inositol phosphates in the marine environment or to their bioavailability (from PF-diets) inside the fish-gut.


In an embodiment, dissecting these genomes permitted to detail and further document their biotechnological value as PRO and/or as sources of carbohydrases or antimicrobial molecules. For instance, determining the number and type of CAZymes present in each genome provides deeper understanding on their carbohydrolytic potential also allows identification of genomic features responsible for adaptation to life within the gut that may support the role of Bacillus spp. as PRO [10, 12-13, 17-18]. The growing applications of spores in biomedicine and biotechnology (as oral vaccines, PRO or display systems) [12-13, 18], and the fact that there are approximately 30 PRO strains approved as feed additives in EU, but only one for aquaculture (Bactocell®, which is not a sporeformer formulation), underscore the importance of this disclosure.


Sequences

This disclosure relates to 2 PRO strains, ABP1 and ABP2, which genome comprises at least one polynucleotide encoding a protein which is involved in PRO behavior, and which polynucleotide is substantially identical to a polynucleotide sequence according to ABP10666, ABP10667, ABP10654, ABP10671, ABP10829, ABP10830 for ABP1 and ABP24564 to ABP24567 for ABP2.


In an embodiment, the polynucleotides as listed in Table 6 were isolated from Bacillus subtilis strain ABP1 or ABP2, and are absent or divergent in/from B. subtilis 168 [14], and at least in 5 out of 11 sequenced Bacillus isolates including:













TABLE 6







Gene Name
Lenght (aa)
SED ID NR/Protein




















ABP10118
202
1



ABP10119
215
2



ABP10120
286
3



ABP10121
153
4



ABP10181
604
5



ABP10182
851
6



ABP10654
316
7



ABP10655
880
8



ABP10656
37
9



ABP10657
254
10



ABP10658
422
11



ABP10659
74
12



ABP10660
771
13



ABP10661
425
14



ABP10662
710
15



ABP10663
280
16



ABP10664
623
17



ABP10665
389
18



ABP10666
163
19



ABP10667
178
20



ABP10668
237
21



ABP10669
355
22



ABP10670
65
23



ABP10671
257
24



ABP10672
130
25



ABP10673
275
26



ABP10674
527
27



ABP10675
294
28



ABP10676
509
29



ABP10677
79
30



ABP10678
61
31



ABP10825
106
32



ABP10826
111
33



ABP10827
194
34



ABP10828
520
35



ABP10829
516
36



ABP10830
473
37



ABP10831
451
38



ABP10832
227
39



ABP10833
151
40



ABP10834
161
41



ABP10835
63
42



ABP10836
489
43



ABP10837
152
44



ABP10838
234
45



ABP10839
227
46



ABP10840
598
47



ABP10841
381
48



ABP10842
278
49



ABP10843
384
50



ABP10844
367
51



ABP10845
344
52



ABP10846
358
53



ABP10847
344
54



ABP10848
482
55



ABP10849
202
56



ABP10850
216
57



ABP10851
388
58



ABP10852
322
59



ABP10853
72
60



ABP10854
39
61



ABP10855
437
62



ABP10856
563
63



ABP10857
240
64



ABP10858
332
65



ABP10859
421
66



ABP10860
418
67



ABP10886
52
68



ABP10887
1015
69



ABP10888
66
70



ABP10889
982
71



ABP10890
715
72



ABP10891
56
73



ABP10892
84
74



ABP10981
427
75



ABP10982
300
76



ABP10983
390
77



ABP10984
467
78



ABP10985
392
79



ABP10986
594
80



ABP10987
446
81



ABP10988
335
82



ABP10989
248
83



ABP11306
51
84



ABP11307
272
85



ABP11308
504
86



ABP11309
341
87



ABP11310
464
88



ABP11311
404
89



ABP11312
269
90



ABP11821
388
91



ABP11822
130
92



ABP11823
162
93



ABP11824
669
94



ABP11825
112
95



ABP11826
306
96



ABP11827
335
97



ABP11828
284
98



ABP11889
298
99



ABP11890
308
100



ABP11891
52
101



ABP12521
153
102



ABP12522
63
103



ABP12523
92
104



ABP12651
250
105



ABP12652
58
106



ABP12653
43
107



ABP13703
49
108



ABP13704
185
109



ABP13705
44
110



ABP13706
303
111



ABP13707
82
112



ABP13708
243
113



ABP13709
260
114



ABP13710
48
115



ABP13711
339
116



ABP13712
78
117



ABP13713
382
118



ABP13714
141
119



ABP13715
49
120



ABP13716
224
121



ABP13717
58
122



ABP13718
50
123



ABP13719
192
124



ABP13720
209
125



ABP13721
273
126



ABP22957
419
127



ABP22958
299
128



ABP22959
187
129



ABP22960
102
130



ABP22961
573
131



ABP22962
84
132



ABP22963
58
133



ABP22964
222
134



ABP23145
87
135



ABP23146
273
136



ABP23147
52
137



ABP23148
81
138



ABP23149
306
139



ABP23150
60
140



ABP23151
62
141



ABP23223
973
142



ABP23238
376
143



ABP23224
200
144



ABP23225
623
145



ABP23226
65
146



ABP23227
378
147



ABP23228
107
148



ABP23229
130
149



ABP23230
51
150



ABP23231
156
151



ABP23232
670
152



ABP23233
112
153



ABP23234
306
154



ABP23235
273
155



ABP23236
47
156



ABP23237
285
157



ABP23502
37
158



ABP24563
41
159



ABP24564
484
160



ABP24565
388
161



ABP24566
309
162



ABP24567
339
163



ABP24568
41
164



ABP24598
52
165



ABP24599
111
166



ABP24600
48
167



ABP24601
384
168



ABP24602
189
169



ABP24603
674
170



ABP24604
389
171



ABP24605
170
172



ABP24606
43
173



ABP20078
155
174



ABP20079
56
175



ABP20080
196
176



ABP20081
93
177



ABP20082
43
178



ABP20083
109
179



ABP20084
144
180



ABP20085
51
181



ABP20086
182
182



ABP20087
49
183



ABP20088
53
184



ABP20089
73
185



ABP20090
67
186



ABP20091
216
187



ABP20092
117
188



ABP20093
66
189



ABP20094
279
190



ABP20095
40
191



ABP20096
101
192



ABP20119
72
193



ABP20120
503
194



ABP20121
269
195



ABP20122
172
196



ABP20123
165
197



ABP20226
227
198



ABP20227
2296
199



ABP20228
253
200



ABP20229
880
201



ABP20230
285
202



ABP20231
744
203



ABP20232
355
204



ABP20233
83
205



ABP20234
379
206



ABP20235
58
207




















Sequence Listing









SEQ. ID
SEQ.



No.
Name
Amino acids sequence (one letter code)





SEQ. ID.
ABP10118
MNLTGESKNFDDYLLELNEVDYSNPIICALANELFNPLQTEIEKVKIAYEFVRDEISHTWDTQSKRVTCNASE


NO. 1.

VLSFKEGICYAKSNLLAALLRSEGIPTGFCYQRLMLFNTPDKGYCIHALNAVFFHSLNKWIRLDSRGNKIGID




AQFSLDKERLAFPIRQEFDEIDYPLIYVRPHPKTIAVLKEHKDAIEMYKYHLPERI





SEQ. ID.
ABP10119
MIWLVGLDWSIQWGTVFTVAGTLTAAFLGQVFSHRYSQKREEIKQKKESFQNLYSPVVFKILNYLELEREK


NO. 2.

QNIMFIKGLDETEFTERYQDDELYNPSIEFKEILEIVGLNLKYGSLELIREYQETLSIAKRMEAFEGHCGTHLYF




CGVFISDYINLSKDLGVYSQTMETSTEGSLLLSRLETLIPQLVVLECLWNFYLGFFMQYLVLIKKINIL





SEQ. ID.
ABP10120
MELKNKIKRVAIYLRKSRNKEGEETEETLAKHRKRLLDIAHKNNWQYEIFQEVGSSMDEMRPECQRMINKL


NO. 3.

TDGIFDAVLSVNLARVTRDDAETPKFMNLLRQDDILFVTDSERVYDLEVQEDWQALKFTGFVNNWEYENI




KAQLRKGKKDSAKMGRWSNGKPNYGYIYNRLERKLEIDEEKAKAVKLAFQMTIDGIGADNIAVKLNKLGY




RTNKGKFFHGQSIVRMIRSEIYKGWIVANRLKGRNKTNGKIRPQDQWIVVKDAVKPCIIDEDTWDKANKA




GHLIK





SEQ. ID.
ABP10121
MYSYKLIDNEKVREKLEELIDEKREIHLKLTDNHLDKHLGITYDLLDVNDDGSYSGFFRTTPYIRRSDLILPGESI


NO. 4.

GIKLPSYFLIMINYLSRLEEQDCFPELELKITYNDTNFKTWETKFIIKVDQISKIEISSFYKLQTSLVYEFISKNKK





SEQ. ID.
ABP10181
MAVVTTIKHPMISGYVKGFVDKYEISRRKAKNEHNIFEMFINDLILSSYNNDPNASYEDMETGTAFGIDGV


NO. 5.

AIFINDKLVEGVEDVDYICNSTRKIEVKFLFTQTKTSEKFDRSEVRDFLQGVNRFFNFEFCEITELKNSWETAK




YIYDLSTKFKNDPALKMYYTALAPKKISVKDEDIDLHLKSEILTGLEVLKQRYIFDEDNISLNFIGLKEIRELHQK




ENNLTEIKFNLDKQPVPYPKDSTGIIKSAYFGLIKLEDLLDILSEAVDGERILRKGIFEDNIRDYLGANEKFDVNL




DMKNGLTGTNAHLFGLLNNGITIIADQVHIISTEASLVNYQIVNGCQTSNVIFESLKDIIEKNIYIPIRLIGTEDE




DTKNAIIKATNSQTALKPEQLLALRDEQKSLEEYYRAKRNQNKFLLYYERRTEQYRNEDIQKTKIINIPFQIKA




TSAMFLDLPHEVSGQYGKVEQKTRGKLFTDSSLLNPYYVSGLTWYRVEAFIRNNEEGKKHRRARWHIMM




VIKYLISDLKNPSKIIDKNAEKISEKVEKVMLNDAKSLEIIENALSLIKEFIINEGILDISEDRKFFERKETTTGL




IEMLKNRLKTLS





SEQ. ID.
ABP10182
MEHSNKLNIVYKSIQQMKESYGKLLKVEFHIHTPASHDYRLLPGKLFKNMKLTEVFDVALNEGLYSKEFLERI


NO. 6.

QKEDFAIFEKQVIEDINRDFHVSFSNFKEILGYQLIAHSLYKNNIHAAVISDHNTINGFKKLQAVLVDYYKSRI




KGNTQRKSIKLFLGIEISCSDYYHLVGIFDEHKYTDLKNFVSKYIHSEEEGTYISCLDMVNRITENGGIPYIAHIN




TSDFLGTNLYKRSLFGFSGLKILGLTNIDSKERISNRIKKYQESSKGDFCFIHEGDSHELNQLGKKNTWIKFNN




LSFKSLKKAFKNYQFCIYIDKPIYNDRFLKGIYIEPGEKGFLGDKEQPEKPFIVDFSRDLNCIIGGRGVGKSTILSI




LETAFTLEVTNINQLEYISRHNLIYIVFNYKNMDYILNFIPQITESGYSGNNYFLRKAFSETTETESGTRRLSQN




WINLYRVSQVESSNGYKFQELNYNETTTIIESVYKKSYSINNIVELSNTGRISEFIRDIVLNGERLNGSKIVLSKL




NKLHKNNYRKYLRENIQSVLVNIKKREENVKMAIEEFNRLNNKLIQIVYSPKLKDPTFYLKELELRYDPIFDRE




KGKRVLNTYLTWDDIDEFVYEATKKFGYLEFLELILNKEHKQIENELSLNNFISGTITGEYENVSIKNMVRVYN




KIEERIFRNIEKVTNSFKLLFEIIDEFSLKFNINSKETIRTEKVVMKDIDELSLGQKVVAILTLIFNYGEHSVDSTPL




VIDQPEDNLDNLYIYQNLVKSLRKIKNKRQVIIATHSATIVTNADAEQVIILESDNKRGWLSKKGYPDDEVVL




KHIVSILEGGRESFIHKKETYMTVLDI





SEQ. ID.
ABP10654
MTQSPIFLTPVFKEKIWGGTALRDRFGYSIPSETTGECWAISAHPKGPSTVANGPYKGKTLIELWEEHREVF


NO. 7.

GGVEGDRFPLLTKLLDVKEDTSIKVHPDDYYAGENEEGELGKTECWYIIDCKENAEIIYGHTARSKTELVTMI




NSGDWEGLLRRIKIKPGDFYYVPSGTLHALCKGALVLETQQNSDATYRVYDYDRLDSNGSPRELHFAKAVN




AATVPHVDGYIDESTESRKGITIKTFVQGEYFSVYKWDINGEAEMAQDESFLICSVIEGSGLLMYEDKTCLLK




KGDHFILPAQMPDFTIKGTCTLIVSHI





SEQ. ID.
ABP10655
MKKRLIAPMLLSAASLAFFAMSGSAQAAAYTDYSLYKVEPSNTFSTESQASQAVAKLEKDTGWDASYQAS


NO. 8.

GTTTTYQISASGIHSESEAKAILSGLAKQTSITGTSSPVGSKQPYVTISSGAISGEKQANTILAKLKQETGVAGA




VKAYGAAQPYMNVMTSDIADETKVKALIQSLAKQTGIKSSYQPITHTVSVTTIQSGTIVGDSRAAQIKNAFQ




KESGLQASLKETVKGQAYYTFTTAAISGEANAKTLLQQLKQSTGITGSYKSINQKTTVESYNVQSAYFKGLNT




VKDAISQIKKNTGVSGSYQQVGKSTSYTVNMKGITKQQLQKIDTFFKKKKWHYTSSSVKKTTTSAAYQITTA




KILGEQQANKAAAFFAQKKVKATKTTAGTTAENQYQLISEETSDQSKVTKGLNILKKNQLSASAKSVKKQIA




DTFKITTESLLDQTKVNQALTFFKSNHISAASQKTGQTAASSYQITTEAIISQEEIDRVLTFFKQNKIAVTTSKT




GQTAYTQYKIVTAQLSSKTALNNGLTYLKSQGLTPSYTTKSNTLYKISVNEQFTGNDTAAAASSKLKQLYGW




ASSIVKVKNGPQIMKTNYNLSLRDMVQKQMTVSPQTDGAAYVSLTYINTATSTVTADALNIRSTPEVSPTN




VIGQFKKGDKVKIIGQTNGWAKINLGWRNASSDEVVQYVDPNNFSRDSKYYFQFLKLSQTAGLNATEVN




QKVLAGKGILTGKAKAFIDAANKYGINELYLISHALLETGNGTSDLANGLTYNGKTVYNMYGIGAYDSNPNY




YGAKYAYEQGWFTPEAAIIGGAKFIGSSYIHNTAYNQDTLYKMRWSATATHQYATDIGWAYKQVNRMYS




LYSLLDGYTLYFDVPEFK





SEQ. ID.
ABP10656
MYYLEIMIKMLKEIRKEPKKFDIIFVSSPPFLLLLSG


NO. 9.







SEQ. ID.
ABP10657
MKGVKVFHHPIIVESFRILEKLLYKKADHIVINSEGFLHYLNEHSPLVKEKVTFIPNSAREKELLISSNDAKTALK


NO. 10.

IIYVGNIGLAQNVHIIRNLAEKLHEHQIEFLIVGYGVEKKELLNYIREKNLMNVKIVNPMTRKECLELMSGCDI




GIVTLKDSTVFETVLPGRIIDYITCGIPIVGSIAGYSKTIIEQEGVGLVTSNSSSEEMLANIMKIYNDPGLLKKM




QKNCHKLIRENFMWETNIEKLINVIEDTR





SEQ. ID.
ABP10658
MRKKVCMFVWNHFTNDARVLRECTALSDKYYDVDLICIHDPNNPDLDLIQKYNDHFTVYRVKRSPLLFYIQ


NO. 11.

FIYKLFKNKWSILFFLLIWICLLRMFPLLTIGFSLFAVIVLKTKLKTMLVRGSIIMRMILKGYSKKYDIYHSNDLN




TLPQGFICSKFRFKKRKLIYDSHEVQTSRTGYDSPFYSKMEAYLIRKIDIIMIVENHTRAAYNKELYGFYPKVLH




NYPFLLEETKEQIDIHHMLGLPKNEKILLYQGGIQVGRGLDKLIKAMPFINEGTLLFIGDGRIKKDLENMVNN




MELQHRVRFLPKVPLSELPKYTRSAYLGFQVLNNVCFNHYSASSNKLFEYIMAGVPVIGCDFPEIKKVIQGE




KVGLVVDSHDHLSIAKGVNTLLENADLHYEFHKNCDKAKRKYNWETEKSQLLSLYN





SEQ. ID.
ABP10659
MQIKKNQKNQELADKYNDLKIKYHKSLEVQEDLITLCQELIREKEYIEARYNNLKESKLGRLTVWMWKRRR


NO. 12.

RNK





SEQ. ID.
ABP10660
MKQSKDIKTLLSKQLEKVRREKEILIGLKEKEVSITGFDDFFFDTPMRILAEYNKQTLEVDAEKVYLSLFERTTN


NO. 13.

FSIPSNKEIYKLTGDRIIIDPFITLSGSVKGQIYIAFYKNNELYSTKIFEAPFDKISADVPENTTSYRFALRLEGKGY




LQLNKLKIKQVFKEQIASKNIGVNRSITISKASKIQQFIDSIEAETQNYKNEKKELRIAAILDEFSYECFKHDAEIL




RLSNTDWDNEILEFNPHFVFVESCWQGNQGHWQYEVANLHKNKHRTALKKLTEYCKSKNIKTVFWDKE




GYENFEFFKTAASYFDYVMTADENTVKKFKETSSINNVGILPFAAQPRIHNPINKNLHHLGGIAFAGSYYNN




KHESRKRDIEEIIKPALDFGIDIYDRYYNVPAAKKVNNTWPEEYQRHIVGSLNYSQMNVAYKNYNMFVNV




NSVQNSKHMFARRVFELLASKTMVISGPSKGVQEYFGDLVPVACSKEETVNILKTFLYNPVYREMYEKKGH




RLVLNSHTYKNRLQEICDHIGIDINLLEKPRISIISSTQRTEYMENLYNNARHQTYQNLELIIILNKNSMDAEE




WKQKFSSLHFPVTILQVDENVSLGHCLNKAVQRSTGEIIAKFDDDDYYAPHYLEDMLHSMEYSGADIVGKS




AHYVYLEERELLILKTVGSGAERYSDFISGATLVFKKEVFVSLGGFSDKNRGEDSDFLKRAKENGNIIYSNDS




WNFCLVRRANRNSHTWNITADDLLRNSTVHSMCKDYKKPITI





SEQ. ID.
ABP10661
MKVCVIGLGYIGLPTSVMFAKYGVDVIGVDVQPHVVDSLNNGEAHLEEPGLQEFLDEALANGNFKAQLVP


NO. 14.

EPADAFIIAVPTPNNINDNMSCDLTYVLQAVDNIIPYIRKGSTIIVESTIAPRSIEDYVQPLLEQNGFTIGEDIYL




VHCPERVMPGNIFHELANNMRIVGGITPSCSEAGEKVYRTFVKSKIVKTDAKTAEMSKLMENTYRDVNIAL




ANELTKICNDLHINALDVIEMANMHPRVNIHSPGPGVGGHCLAVDPYFIVAKAPETADLISRSRSINSSMPI




YIVEKVREIMEMVNGRTITIGGLAYKGDIDDLRESPALEILEMLKSEKKYEVRAYDPYVNHSENAQNLTEAL




GGSDLFLILTDHSLFKTINDEDTNRMSNKVIFDTRNIVRNVPEDCECINLGSIHNFLNNAVLNV





SEQ. ID.
ABP10662
MRKYLCLFSFVILFFLTLSFYGERVLAYTDTSTYKVTIKDEFTSEDKVKGISNKINNETGWDANYKLTGNTTRA


NO. 15.

FKIITGGFYGEDKVKDVLNDFEQNTGINGSYSENGNVQTIYQITTGGFTGESKVKQVLDILQSQTGVKGTYT




STGEKQYYYRIVSGGFQSEQRIKEVLSKFENETSIKGSYEPIGNSKITYTVLSGGFSTEDNVKKAAAETKSQTGI




EASYEKIPDSESYRLVISNITESELTGIESFFGKKNWWYVKKEVKNQSYRLISEPILDDQIIDKGLSFFESNKW




WASKQKTDQLGENKFRITTEKISDETKLLKALNFFESNKWWAVSQKTTIKGYRITSEVINSEAVLNKGLDFFK




SKNLWATYSNLSKDTYIINLNEEFTGIENATSAVNKLSNVYGLNAEVVKIKDGPQIMNTNYNLTLSDMISKQ




MNANPQTDSAAYVSLSYINTSTSTVTADYLNVRSTPEVKSDNIIGQVQKSDKVTIISKEGNWAKINMGWR




KASREEVTYYINPENFSISSKYYFQFLKLSQYAGLTATEVNNKILKGKGILEGKGESFIKAAESNNINELYLIAHS




LLETGNGSSELANGVMYNGKKVYNMYGIGAYDGDAVTKGAQYAYNQGWFTPEAAILGGAKFIGSSYIHN




ATYHQDTLYKMRWEPTVSHQYATDIGWAYKQVNRMYSLYTLLDNYTLYYDIPKYK





SEQ. ID.
ABP10663
MEINQLRKETIKFIDLKEYKIRIEEPYLLCVTTEDGVPFEFLINIRLNQNKLLILSSGAYDNVKLKPPIFQRYTW


NO. 16.

MTEFNHSVVYFNDPTLYINQKLSIGWGQGTKNHFYLATITNVIRELAYKIKVNTKDIFFYGSSAGGFMSLILA




SFLRANAIVNNPQTDVCTFYQSHVDRLFETLYPNEDKHEVIKQFRYRLNVCAFFQKLKQVPKIFYYQNYACS




FDVETQLIPFLNSIKSEKTLAHLTADKEIELHLYYDAELGHNPLNKQKTMEIIHKAMFGS





SEQ. ID.
ABP10664
MRYKVKLARKIKNRLFRSKKKTQKENAAVIVHPADNRVFSLFDKTKRIEENQQVPVRKISEFSWNGSILKIA


NO. 17.

GYMYIKGLPLQKEDQVRKRLLLVNNGVLFTAVSLRDVPVDKLSIDTSNVPGAYKWAGFSQQINFSKLMND




KPLPQGEYKLFLEIEAVDDQNVKHQEVHTVGNVSNFLSNDVYATKMEFHSAKKLMKFNLIVNYDEGEKTI




NLSCNKLQEIDPSLLELDTGKEANRFLRKLNTSLFHFAYDVFRLLPIKSNKIVFASDSRLDMTGNFEFVYEELL




KREENFDFKFFLKSSIRDRKSLSELMSMAYHFATSKIIFIDDFYPIIYPLKIRKNADLVQLWHAVGAFKTFGYSR




IGLPGGPSPHSKNHRNYTKVIVSSENIRKHYAEGFGVDIENVIATGVPRTDFFFDEAKKAFVKERLYTEYPFLK




DKKVILFAPTFRGNGQQSAHYPFEVLDFDRLYRELKDEYIFLFKIHPFVRNDANIPYQYSDFFYDFSSFREINE




LLLVTDILITDYSSVCFEYALLNKPMIFFSYDVDDYIRKRDFYYDYFDFIPGPLAKTSEQMISIIKEEKYNFEQIDS




FVHYFFDDLDGKASERVVDQIVFPQEEEPSEDKVLKR





SEQ. ID.
ABP10665
MKTFLTRIVKGVFGTAYKLLSALLPVQHNKIVIASYREDHLSDNFKGVYEKLKQDPSLRITLLFRKMDKGLIGR


NO. 18.

VAYLLHLFSSLYHLATCRVLLLDDYYFPLYVVPKRKETVAIQLWHACGAFKKFGYSIVNKPFGPSSDYLKIVPV




HSNYDYAIVSAPAAVPHFAEAFQMEQKQILPLGIPRTDYFYHKEHIRTVLDEFHRVYPELKHKKKLLYAPTFR




GSGHHQEGDAIPLDLLQLKSALSHKDYVVILHLHPYMRKHAHTEEDDFVLDLTDSYSLYDLMAISDGLITDY




SSVIFEYSLLKRPMYFYCPDLEDYLEERDFYYPFESFVPGPISKDVPSLVHDIESDHEADTKRIEDFSQAFITHQ




DGKSSGRVADFISSFLTSGAD





SEQ. ID.
ABP10666
MTLLLKKKYPDSKVFIFGKTPYKLDHFSFVDAAYQINDIPEDVRIDHAFECVGGRGSESAIEQIIAHVHPEAC


NO. 19.

VALLGVSEYPVEIETRMVLEKGITLIGSSRSGREDFARTVDFLAQYPEVVDYLETLVGGRFPVRSIEEITNAFE




ADLTSSWGKTVIEWEI





SEQ. ID.
ABP10667
MINQTYRLVSARQFEVTYKDKVVHSDKVVVRPTHLSICAADQRYYTGSRGKEAMDKKLPMALIHEGIGKV


NO. 20.

MFDPTGTFKVGTRVVMVPNTPVEEHEVIAENYLRSSRFRSSGYDGFMQDYMFMAPDRLVELPDSINPHV




AAFTELITIAVHALSRFERMAHKKRDTFGVWGTEISDLS





SEQ. ID.
ABP10668
MIYAEILAGGKGSRMGNVNMPKQFLPLNKRPIIIHTIEKFLLNDRFDKILIVSPKEWINHTKDILKKFIGQDDR


NO. 21.

LIVVEGGSDRNESIMSGIRYIEKEFGIQDDDVIITHDSVRPFLTHRIIDENIDAVLQYGAVDTVISAIDTIIASED




QEFISDIPVRDNMYQGQTPQSFRISKLVELYNKLSDEQKAVLTDACKICSLAGEKVKLVRGEVFNIKVTTPYD




LKVANAILQERISQ





SEQ. ID.
ABP10669
MTLLVSFPDNARAILKEYQMGHYSFPIHVLLTQHAKSLETEFPELTVSVINEKHPLHIYKAVFSMLSSKAVIV


NO. 22.

DNYFVLTTVLTCRPDIECIQVWHANGAFKRFGLKDINTQNRSRADVRRFRKVYASFDRIVVGSEHMADIFK




EFFDIKGDKFLRFGVPLTDAYYEVQENSNDLKNKYHLPADKKIILYAPTFRDHQFESFSLPFSEKQLQHDLKG




EYLLAVKLHPVMKQSAELPGDSAWIKDVSDLPLADLLKMSDLLISDYSSVPFEFALLDKPILFYTYDMEAYNR




TRGLIRNYSEVIPGVPCCDSRALLDQLKVMDNLQSEFERFSREWNLYSRGNASKQLLSYINEKSI





SEQ. ID.
ABP10670
MTSRFDPKQQCADDFDEQIVKKRKPGFQSVISSKRLPRIVGRHSERFMHFITYHSSFKAHYRWRD


NO. 23.







SEQ. ID.
ABP10671
MQTKPINQLDFVDGELTSFVSHLETSFLDQNKGAFIVTANPEIGFEAMQNPRYEAVLSSADFILPDGIGVVL


NO. 24.

VSKLIGKPLQSRIAGYDLFTSLLEKADQKKKRVFFYGAAKHVIAQTIERIERDYPGIEIAGYSDGYVKNQREVA




DKIAATNPDMVFVALGYPNQEFFIHKYRHLFPQAVSVGLGGSFDVFSGNVKRAPSFFIRFHLEWMYRLITN




PARWRRMLSIPKYVTAVLKHERTSAKPQYTGQVKDQSRHL





SEQ. ID.
ABP10672
MKKVITYGTFDLFHYGHMKLLERARCLGDYLIVGLSTDDFNLQKQKKSHHSYEHRKLILETIDFVNLVIPEKS


NO. 25.

WEQKITDIKKYGVDTFVIGDDWKGKFDYLNEYCKVIYLPRTEGISSTKIKKEISDLS





SEQ. ID.
ABP10673
MNALVRIVKEQVTSFPLILRLASYETKSQYQMNYLGVLWQFLNPLIQMLAYWFVFGMGIRNSKPVLTGAG


NO. 26.

EVPFIVWMLAGLIPWFFISPTILDGSNSVFKRINMVAKMNFPISSLPSVVIASNLFSYFVMMGIYVIVLFASG




VYPSMHWIQYIYYLICMIAFMFSFSLFNSTISVLVRDYQFLLQAVTRLLFFLLPIFWNISEQLGKNHPNLLPVL




KLNPIFYLIEGFRNSFLDGKWFFQDMKYTLYFWLFTFLLLLVGSILHMKFRDKFVDFL





SEQ. ID.
ABP10674
MKLKVSFRNVSKQYHLYKKQSDKIKGLFFPAKDNGFFAVRNVSFDVYEGETIGFVGINGSGKSTMSNLLAKI


NO. 27.

IPPTSGEIEMNGQPSLIAIAAGLNNQLTGRDNVRLKCLMMGLTNKEIDDMYDSIVEFAEIGDFINQPVKNY




SSGMKSRLGFAISVHIDPDILIIDEALSVGDQTFYQKCVDRINEFKKQGKTIFFVSHSIGQIEKMCDRVAWM




HYGELRMFDETKTVVKEYKAFIDWFNKLSKKEKETYKKEQTEERKKEDPEAFARFRQKKKKPKSLANAVQIA




ILSILTVFMAGTMFFNAPLRTIASFGAIPQNEVKNHHGNAKGKSEERLTAVNKQGFIANEKAAAYKDQGLK




QKADVTLPFGTEVTVAAKGKQAAKIKFDGHSYYVKKSAVAANMKHAELHAAAFTSYVSQNAASSYEYFLK




FLGDSRTSIQSKLNGYTEGDTADGRKTLDFDYEKISYVLENDKATELIFHNISPITPASLSLSDSDVLYDSSKKR




FLVNTADQVFAVDNEEHTLTLMLK





SEQ. ID.
ABP10675
MKLKKVRKAIIPAAGLGTRFLPATKAMPKEMLPIVDKPTIQYIIEEAVEAGIEDIIIVTGKSKRAIEDHFDYSPE


NO. 28.

LERNLEEKGKTELLEKVKKASNLADIHYIRQKEPKGLGHAVWCARNFIGDEPFAVLLGDDIVQAETPGLRQL




MDEYEKTLSSIIGVQQVPEEETHRYGIIDPLTSEGRRYQVKNFVEKPPKGTAPSNLAILGRYVFTPEIFMYLEE




QQVGAGGEIQLTDAIQKLNEIQRVFAYDFEGKRYDVGEKLGFITTTLEFAMQDKELRDQLVPFMEGLLNKE




EI





SEQ. ID.
ABP10676
MKTVFMVVYTIDVNKGGMTTAMLNRSKMLVHNGYKSDLVTFDYNPYYENITSELRQIGKLDPDVNILNV


NO. 29.

NDYYRDLNTEGNVDPSYYEDEAKTEQEGYFIQDSEYDTKQYIRYFKQGSYVKYKKWTEDGYLSHIDFFNEN




RQRIKREEFHKNKYKHREISFDPSNNKMNYEKYYTPDGFCYLIRWYNSETEKQQQVFLFNRNSNKVLMFK




NNAEFHTYWLNEIAAAENEKPIFICDGPGSSGKVRGMKKELAHRIYMVHINHFETPYTYGSKVKQDHIDFL




SNIDKLDALVVLTNDQKKDIEKQFGEHGNIFIIPNSMPYTDLPDIKKDNKKVSMFVRYHKQKAIDEAIKAFV




RVIKKVPDARLEIFGHGAEKSRLECILIIELNLQQNVFIKGYAKNVREEMGSSLITLLTSNYEAFGLSITESFMN




GTPVISYDCNYGPRDVISDGIDGYIVPQKDQKALANQIIKLLNNPDLAKEMGLKGREKVLTEYTNEVVLNK




WLQLFNVLEKK





SEQ. ID.
ABP10677
MYDFLNVPQPDYSWIEHPIEEAGLTYIKVPEKPVYRYYGKYVKYQRFSSSVNWLYQVILMTAQAKVQKRRV


NO. 30.

RKTRTQRI





SEQ. ID.
ABP10678
MFLTYTNGEGYEHYQYLINELSLIIFEGIFGKISIILSGGAWHFIQNNKASALSFVNHFLS


NO. 31.







SEQ. ID.
ABP10825
MAWFLLVIAGIEEIIAAIAMKYIDGTRKKWPIIVMTVGFGLSFYCLSQAMIVLPAGVAYAVWTGIGSIGVSA


NO. 32.

VGFIWFKERFQLSQVISLCLILAGVIGLRLTSSS





SEQ. ID.
ABP10826
MNWVLVFIAGLLEVVWASSLKHADSLLDWIIIFILIAVSFILLIRSYQKIPMAAAYTVFVGIGTVGTYLTGIVLG


NO. 33.

ESFSAAQMFFLALLLAGILGMKLFTKESKSQPGGEQ





SEQ. ID.
ABP10827
MPKQTSGKYEKILQAAIEVISEKGLDKASISDIVKKAGTAQGTFYLYFSSKNALIPAIAENLLTHTLDQIKGRLH


NO. 34.

GDEDFWTVLDILIDETFLITERHKDIIVLCYSGLAIDHSMEKWETIYQPYYSWLEKIINKAIANLEVTEEINSKW




TARTIINLVENTAERFYIGFEQDENVEVYKKEIFSFLKRSLGTA





SEQ. ID.
ABP10828
MSKQGNFQKSMSLFDLILIGMGAIFGSAWLFAVSNVASKAGPSGAFSWILGGAIILLIGLVYAELGAALPRT


NO. 35.

GGIIRYPVYSHGHLVGYLISFVTIVAYTSLISIEVTAVRQYVAYWFPGLTIKGSDSPTISGWILQFALLCLFFLLN




YWSVKTFAKANFIISIFKYIVPITIIIVLIFHFQPENLSVQGFAPFGFTGIQAAISTGGVMFAYLGLHPIVSVAGE




VQNPKRNIPIALIICIIVSTIIYTVLQVTFIGAIPTETLKHGWPAIGREFSLPFKDIAVMLGLGWLATLVILDAILS




PGGNGNIFMNTTSRLVYAWARNGTLFGIFSKVNKDTGTPRASLWLSFALSIFWTLPFPSWNALVNVCSVA




LILSYAIAPISSAALRVNAKDLNRPFYLKGMSIIGPLSFIFTAFIVYWSGWKTVSWLLGSQLVMFLIYLCFSKYT




PKEDVSLAQQLKSAWWLIGFYIMMLIFSYIGSFGHGLGIISNPVDLILVAIGSLAIYYWAKYTGLPKAAIDYDK





SEQ. ID.
ABP10829
MNYIKAGKWLTVFLTFLGILLFIDLFPKEEHDQKTKSKQKPDYRAAYHFTTPDKWKNDPQKPIYFDGKYHYF


NO. 36.

YLYNRDYPKGNGTEWRHAVSEDLVHWTDEGVAIPKYTNPDGDIWTGSVVVDKENTAGFGKNALVAIVT




QPSAKDKKQEQYLWYSTDKGKSFKFYSGNPVMPNPGTDDFRDPKVIWDDQDNKWVMVMAEGSKIGFY




ESDNLKDWHYTSGFFPEQAGMVECPDLYMMRASDGANKWVLGASANGKPWGKPNTYAYWTGSFDG




KEFKADQTEAQWLDYGFDWYGGVTFEDSKSTDPLEKRYALAWMNNWDYANNTPTMKNGFNGTDSVI




RELRLKEQDGTYSLVSQPIEALEQLTVSTEEIEDQDVNGSKTLSITGDTYQLDTDLSWSELKNAGVRLRESED




QKRHIDVGIFAEGGYSYVNRAATNQPDKSNTYVESKAPYDVSKRKVHLKILVDKTTIEVFVGDGKTIFSNEV




FPKPEDKGITLFSDGGTASFKNITVKHFDSIHK





SEQ. ID.
ABP10830
MNIKKFAKQATVLTFTTALLAGGATQAFAKETNQKPYKETYGISHITRHDMLQIPEQQKNEKYQVPEFDSS


NO. 37.

TIKNISSAKGLDVWDSWPLQNADGTVANYHGYHIVFALAGDPKNADDTSIYMFYQKVGETSIDSWKNAG




RVFKDSDKFDANDSILKDQTQEWSGSATYTSDGKIRLFYTDFSGKHYGKQTLTTAQVNVSASDSSLNINGV




EDYKSIFDGDGKTYQNVQQFIDEGNYSSGDNHTLRDPHYVEDKGHKYLVFEANTGTEDGYQGEESLFNKA




YYGKSTSFFRQESQKLLQSDKKRTAELANGALGMIELNDDYTLKKVMKPLIASNTVTDEIERANVFKMNGK




WYLFTDSRGSKMTIDGITSNDIYMLGYVSNSLTGPYKPLNKTGLVLKMDLDPNDVTFTYSHFAVPQAKGN




NVVITSYMTNRGFYADKQSTFAPSFLLNIKGKKTSVVKDSILEQGQLTVNK





SEQ. ID.
ABP10831
MKQNKRKNLQTLFETLGEKHQFNGTVLAAEGGDILYHHSFGYAEMTEKRPLKTNSLFELASLSKPFTALGIIL


NO. 38.

LEEKGILGYEDKVDRWLPGFPYQGVTIRHLLNHTSGLPDYMGWFFANWDPHKIAVNQDIVDMLMNEGL




SGYFEPNEGWMYSNTGYVLLAVIIEKASGMSYADFMKTSIFLPAGMNETRVYNRRLSPERIDHYAYGYVY




DVHSETYVLPDELEETNYVVYLDGIQGDGTVNSVTSDLFRFDQALYQDDFISKASKESAFSPVRLNNGETID




YGFGWVLQNSPEKGRIVSHSGGWPGYSTLMIRYIDHRKTLIYLSNKEEDTEYEQAILKAAEHILFGQPYEVP




ERPADKKKKAIDTAIYSRYVGSYLLQDGTAAQVTAENERLYLEIAGQLRLELFPSSETRFFLRALSVEVEFTLG




VDAAKSFILYEDGSEEEAVRTK





SEQ. ID.
ABP10832
MIGILAGMGPKSTSPFIDKVIDYCQKLYGASNDIDYPHMMIYSCPTPFYADRPIDHDEMKKAIIDGAVKLEK


NO. 39.

TGVDFIALPCNTAHVYYEEIQQALSVPMLHIVEETIKEIPHLAKKAVVLGTEPTIQSAIYQKVLKGNGQEVIHK




DHWQQAVNQLIAAIKQPNHMQHTQALWQTLYEEISQHADIIISACTDLNAVLDHIQSEIPIIDSSACLAKST




VSTYLAYQS





SEQ. ID.
ABP10833
MKKPVLKPFASLEIKVDPPITIGETSLGLRRFIPIRSGTITGEVKGRILPGGADSQMIRANGRTDLSARYVIETA


NO. 40.

DHELIYIENNGIRQVSEPFRKQAAAGEIIEPEHVYFRTVPTFETGSEVYQWLHDRLFIGSAERTPDYVLLDIYE




VQ





SEQ. ID.
ABP10834
MENFIGSHMIYTYENGWEYEIYIKNDHTIDYRIHSGMVAGRWVRDQEVNIVKLTEGVYKVSWTEPTGTDV


NO. 41.

SLNFMPNEKRMHGIIFFPKWVHEHPEITVCYQNDHIDLMKESREKYETYPKYVVPEFAEITFLKNEGVDNE




EVISKAPYEGMTDDIRAGRL





SEQ. ID.
ABP10835
MGKTGYIGAAIVVAACIIILSAVVCLRDTVYYQPMRWTGIILFFAGIVMVPAYSAKRKPGKEK


NO. 42.







SEQ. ID.
ABP10836
MTHQIVTTQYGKVKGTTENGVHKWKGIPYAKPPLGQWRFKAPEPPEVWEDVLDATAYGPICPQPSDLLS


NO. 43.

LSYTELPRQSEDCLYVNVFAPDTPSQNLPVMVWIHGGAFYLGAGSEPLYDGSKLAAQGEVIVVTLNYRLGP




FGFLHLSSFDEAYSDNLGLLDQAAALKWVRENISAFGGDPDNVTVFGESAGGMSIAALLAMPAAKGLFQK




AIMESGASRTMTKEQAASTSAAFLQVLGINEGQLDKLHTVSAEDLLKAADQLRIAEKENIFQLFFQPALDPK




TLPEEPEKAIAEGAASGIPLLIGTTRDEGYLFFTPDSDVHSQETLDAALEYLLGKPLAEKVADLYPRSLESQIH




MMTDLLFWRPAVAYASAQSHYAPVWMYRFDWHPKKPPYNKAFHALELPFVFGNLDGLERMAKAEITD




EVKQLSHTIQSAWITFAKTGNPSTEAVNWPAYHEETRETLILDSEITIENDPESEKRQKLFPSKGE





SEQ. ID.
ABP10837
MIGRIIRLYRKRKGYSINQLAVESGVSKSYLSKIERGVHTNPSVQFLKKVSATLEVELTELFDAETMMYEKISG


NO. 44.

GEEEWRVHLVQAVQAGMEKEELFTFTNRLKKEQPETASYRNRKLTESNIEEWKALMAEAREIGLSVHEVK




SFLKTMGR





SEQ. ID.
ABP10838
MNENMSFKELYAIVRHRFVLILLITIGVTLMMGFVQFKVISPTYQASTQVLVHESDGEENSNLSDIQRNLQY


NO. 45.

SSTFQSIMKSTALMEEVKAELHLSESASSLKGKVITSSENESEIINVAVQDHDPAKAAEIANTLVNKFEKEVD




ERMNVQGVHILSEAKASESPMIKPARLRNMVMAFGAAVMGGITLAFFLHFLDDTCKSARQLSERTGLPCL




GSVPDVHKGRNRGIKHFGE





SEQ. ID.
ABP10839
MIFRKKKARRGLAQISVLHNKSVVAEQYRTIRTNIEFSSVQTNLRSILVTSSVPGEGKSFSAANLAAVFAQQ


NO. 46.

QEKKVLLVDADLRKPTINQTFQVDNVTGLTNVLVGNASLSETVQKTPIDNLYVLTSGPTPPNPAELLSSKA




MGDLISEIYEQFSLVIFDSPPLLAVADAQILANQTDGSVLVVLSGKTKTDTVLKAKDALEQSNAKLLGALLNK




KKMKKSEHYSY





SEQ. ID.
ABP10840
MIIALDTYLVLNSVIAGYQFLKDSYQFYDSGALLLTAVSLLLSYHVCAFLFNQYKQVWTYTGLGELIVLLKGIT


NO. 47.

LSAAVTGIIQYAVYHTMFFRLLTACWVLQLLSIGGTRILSRVLNESIRKKRCASSRALIIGAGSGGTLMVRQLL




SKDEPDIIPVAFIDDDQTKHKLEIMGLPVIGGKESIMPAVQKLKINFIIIAIPSLRTHELQVLYKECVRTGVSIKI




MPHFDEMLLGTRTAGQIRDVKAEDLLGRKPVTLDTSEISNRIKGKTVLVTGAGGSIGSEICRQISAFQPKEIIL




LGHGENSIHSIYTELNGRFGKHIVFHTEIADVQDRDKMFTLMKKYEPHVVYHAAAHKHVPLMEHNPEEAV




KNNIIGTKNVAEAADMSGTETFVLISSDKAVNPANVMGATKRFAEMIIMNLGKVSRTKFVAVRFGNVLGS




RGSVIPIFKKQIEKGGPVTVTHPAMTRYFMTIPEASRLVIQAGALAKGRQIFVLDMGEPVKIVDLAKNLIHLS




GYTTEQVPIEFTGIRPGEKMYEELLNKNEVHAEQIFPKIHIGKAVDGDWPVLMRFIEDFHELSEADLRARLF




AAINTSDKMTAASVH





SEQ. ID.
ABP10841
MTKKILFCATVDYHFKAFHLPYFKWFKQRGWEVHVAANGQTKLPYVDEKFSIPIRRSPFDPQNLAVYRQLK


NO. 48.

KVIDTYEYDIVHCHTPVGGVLARLAARQARRHGTKVLYTAHGFHFCKGAPMKNWLLYYPVEKWLSAYTD




CLITINEEDYKRAKGLQRPGGRTQKIHGIGVNTERFRPVSPIEQQRLREKHGFREDDFILVYPAELNLNKNQK




QLIEAAALLKEKIPSLRLVFAGEGAMEQTYQMLAEKLGASANVCFYGFCSDIHELIQLADVSVASSIREGLG




MNVLEGMAAEKPAIATDNRGHREIIRDGENGFLIKIGDSAAFARRIEQLYHKPEICRKLGQEGRKTALRFSE




ARTVEEMADIYSAYMDMDTKEKSV





SEQ. ID.
ABP10842
MNSGPKVSVIMGIYNCERTLAESIESILSQSYKNWELILCDDASTDGTLRIAKQYAAHYSDRIKLIQNKTNKR


NO. 49.

LAASLNHCLSHATGDYIARQDGDDLSFPRRLEKQVAFLEKHRHYQVVGTGMLVFDEFGVRGTRILPSVPEP




GIMAKGTPFCHGTIMMRASAYRTLKGYRSVRRTRRMEDIDLWLRFFEEGFRGYNLQEALYKVREDSDAFK




RRSFTYSIDNAILVYQACRRLKLPLSDYIYIAKPLIRAFMPAAVMNRYHKKRVMNQKEGLVKHE





SEQ. ID.
ABP10843
MNSSQKRVLHVLSGMNRGGAETMVMNLYRKMDKSKVQFDFLTYRNDPCAYDEEILSLGGRLFYVPSIGQ


NO. 50.

SNPLTFVRNVRNAIKENGPFSAVHAHTDFQTGFIALAARLAGVPVRVCHSHNTSWKTGFNWKDRLQLLVF




RRLILANATALCACGEDAGRFLFGQSNMERERVHLLPNGIDLELFAPNGQAADEEKAARGIAADRLIIGHV




ARFHEVKNHAFLLKLAAHLKERGIRFQLVLAGDGPLRGEIEEEARQQNLLSDVLFLGTEERIHELMRTFDVF




VMPSLYEGLPVVLVEAQASGLPCIISDSITEKVDAGLGLVTRLSLSEPISVWAETIARAAAAGRPKREFIKETL




AQLGYDAQQNVGALLNVYNISTEKDHNR





SEQ. ID.
ABP10844
MIVYAVNMGIVFIWSWFAKMCGGRDDSLATGYRPNKLLIWIPLASLVLVSGLRYRVGTDFQTYTLLYELAG


NO. 51.

DYQNVWQIFGFGTAKTATDPGFTALLWLMNFITEDPQIMYFTVAVVTYSFIMKTLADYGRPFELSVFLFLG




TFHYYASFNGIRQYMVAAVLFWAIRYIISGNWKRYFLIVLVSSLFHSSALIMIPVYFIVRRKAWSPAIFGLSAL




FLGMTFLYQKFISVFVVVLENSSYSHYEKWLMTNTNGMNVIKIAVLVLPLFLAFCYKERLRSLWPQIDIVVN




LCLLGFLFGLLATKDVIFARFNIYFGLYQMILVPYFVRIFDEKSNALIYIAIVVCYFLYSYLLMPVDSSVLPYRTIF




SR





SEQ. ID.
ABP10845
METPAVSLLVAVYNTETYIRTCLESLRNQTMDNIEIIIVNDGSADASPDIAEEYAKMDNRFKVIHQENQGLG


NO. 52.

AVRNKGIEAARGEFIAFIDSDDWIEPDYCEQMLRAAGDETDLVICNYAAEFEDTGKTMDSDIAQTYQDQP




KEHYIKALFEGKVRGFSWNKLYRRSMIDAHRLSFPLRGELEHVEDQFFSFRAHFFARSVSYVKTPLYHYRIHL




SSIVQRYQKKLFESGLALYEANAAFLQENNKLEEYRKELDTFIVLHSSICMLNEWKTSGSRRLFEKLRNVGVI




CADPVFQESLSKTGTAPFDAKRSCLLLMAKYRMIPFVAMASAVYQRVIEYKMRNRG





SEQ. ID.
ABP10846
MSLQSLKINFAEWLLLKVKYPSQYWLGAADQPIKAAAHQKKIILTLLPSHDNLGDHAIAYASKAFLEQEYPD


NO. 53.

FDIVEVDMKDIYKSAKSLIRSRHPEDMVFIIGGGNMGDLYRYEEWTRRFIIKTFHDYRVVQLPATAHFSDTK




KGRKELKRAQKIYNAHPGLLLMARDETTYQFMKQHFHEKTILKQPDMVLYLDRSKPPAEREGVYMCLRED




QESVLQEDQRNRVKAALFEEFGEIKSFTTTIGRRVSRDTREQELEALWSKLQSAEAVVTDRLHGMIFCALTG




TPCVVIRSFDHKVMEGYQWLKDIPFMKLIEHPEPERVTAAVNELLTKETPRAGFPRDVYFKGLRDKISGEA




Q





SEQ. ID.
ABP10847
MTPLVSIIVPMYNVEPFIEECIDSLLCQTLSDIEIIILVNDGTPDRSGEIAEDYAKRDARIRVIHQANGGLSSAR


NO. 54.

NTGIKGARGTYIGFVDGDDYVSSAMFQRLTEEAEQNQLDIVGCGFYKQSSDRRTYVPPQLEANRVLTKPE




MTEQLKHAHETRFIWYVWRYLYRRELFERANLLFDEDIRFAEDSPFNLSAFCEAERVKMLDEGLYIYRENPN




SLTEIPYKPAMDEHLQKQYQAKIAFYNHYGLAGACKEDLNVYICRHQLPMLLANACASQNSPKDIKKKIRQI




LSYDMVRQAVRHTPIQHEKLLRGERLVLALCKWRLTFLIKLFFEQRGTMKGSAKQA





SEQ. ID.
ABP10848
MTPFIVKTLGVEAFGFVHLTQNVINYFSIITVALSSVVVRFFSVAAHRGEREKANAYISNYLAASVLISLLLLLP


NO. 55.

LAGSAFFIDRVMNVPQALLADVRLSILIGSVLFILTFLMAGFGAAPFYANRLYITSSIQAVQMLIRVLSVLLLFA




CFAPKIWQIQLAALAGAVMASVLSFYFFKKLIPWFSFRMKDLSFRTSKELFQAGAWSSVNQIGVLLFLQIDL




LTANLMLGASASGKYAAIIQFPLLLRSLAGTVASLFAPIMTSYYSKGDMDGLMNYANKAVRLNGVLLALPA




ALLGGLAGPFLTIWLGPSFSSIAPLLFIHAGYLVVSLAFMPLFYIWTAFNQQKTPAIVTLLLGAVNVVLAVTLS




GPAHLGLYGITLAGAISLILKNAIFTPLYVSRITGYKKHVFFKGIIGPLSAAVFAWTVCKAIQFIVKIDSWPSLIA




AGVTVSFFYAVFAFMLVCTKEERQLVLKRFRKTKGAVNL





SEQ. ID.
ABP10849
MILKRLFDLTAAIFLLCCTSVIILFTIAVVRLKIGSPVFFKQVRPGLHGKPFTLYKFRTMTDERDGEGNLLPDEV


NO. 56.

RLTKTGRLIRKLSIDELPQLLNVLKGDLSLVGPRPLLMDYLPLYTEKQARRHEVKPGITGWAQINGRNAISW




EKKFELDVWYVDNRSFILDLKILCLTVRKVLVSEGIQQTNHVTAERFTGSGDVSS





SEQ. ID.
ABP10850
MKNVAIVGDGGHGKVIRELINARSDTRLAAVLDDKFKTFEGGKEWYTGPPEAVTELRRLIPDVLFLIAVGN


NO. 57.

NSVRKQLAERLGLRKDDFITLIHPSAIVSRSAVIGEGTVIMAGAIIQADARIGAHCIINTGAVAEHDNQISDYV




HLSPRVTLSGAVSVQEGAHVGTGASAIPQITIGAWSIVGAGSAVIRPIPDRVTAAGAPARIISSIQTSNKG





SEQ. ID.
ABP10851
MHKKIYLSPPHMSGREQHYISEAFRSNWIAPLGPLVNSFEEQLAERVGVKAAAAVSSGTAAIHLALRLLEVK


NO. 58.

EGDSVFCQSFTFVATANPILYEKAVPVFIDSEPDTWNMSPTALERALEEAKRNGTLPKAVIAVNLYGQSAK




MDEIVSLCDAYGVPVIEDAAESLGTVYKGKQSGTFGRFGIFSFNGNKIITTSGGGMLVSNDEAAIEKARFLA




SQAREPAVHYQHSQIGHNYRLSNILAGVGIAQLEVLDERVEKRRTIFTRYKNVLGHIAGVRFMPEYAAGVS




NRWLTTLTLDNGLSPYDVVQCLAEENIEARPLWKPLHTQQLFDPALFYSHEDTGSVCEDLFKRGICLPSGSN




MTEDEQDRVIEVLLHLFQTAEVKKWTASIR





SEQ. ID.
ABP10852
MDSKHSMISLKQKLSGLLDVIPKQSEIIYADYPLYGNVGDLFIMKGTEAFFKEHGIRVRKRWNPDNFPVGR


NO. 59.

KLDPNLIIVCQGGGNFGDLYPYYQGFREKIVQTYPNHKIVILPQSIYFQNKDNLKRTAEIFSKHANLHIMTRE




KASYATAQAYFSKNHIQLLPDMAHQLFPVIPTQQPSNQKLRFIRTDHEANQALQEHTETESYDWRTVLSAS




DRRTIAFLQTLNVLNKKAGNPLPIAYIWGKYSDYIVQKAIRFFSRYESVETSRLHGHILSALLQKENTVIDNSY




GKNANYFHTWMEGVPGTRLIQHASKKENLPAHM





SEQ. ID.
ABP10853
MSELFSVPYFIENLKQHIEMNQSEDKIHAMNSYYRSVVSTLVQDQLTKNAVVLKRIQHLDEAYNKVKRGES


NO. 60.

K





SEQ. ID.
ABP10854
MLTPLSSLYMIEITPYTFMKKELPKKCLNFFPSLILLRI


NO. 61.







SEQ. ID.
ABP10855
MMDMKLQQVQVLKPQLTQELRQAITLLGYHSAELAEYIDELSLENPLIERKETDTPPLSYHKTNKNRMNA


NO. 62.

QEAGLQLSNPQKTLQDALKQQSLDMNLTNTEKKIFNYLIHSLDSNGYLEEDVEEAARRLSVSAKETEAVLAK




LQSLEPAGIGARSLQECILLQLQRLPNRNEQAEMLVSAHFDAFAQKKWKALSVETGIPLHTIQDISDDIAAL




HPRPGLLFARPEQDVYIEPDIFITVKNGHIAAELNTRSFPEIDLHPQYRTLLSSGSCQDTVSYLSAKYQEWRW




LSRALRQRKQTITRIINELITRQKDFFLKGRSAMKPLTLREVADCLSLHESTVSRAIKGKTIQTPYGLFEMKLFF




SAKAEASGEGDASNYAVKMHLEDLINQEDKTKPLSDQKLVDLLYEQHGIQISRRTVAKYRDQMKIPSSAAR




KRYK





SEQ. ID.
ABP10856
MQWTQAYTPIGGNLLLSALAALVPIIFFFWALAIKRMKGYTAGLATLGIALIIAVLVYRMPAEKALMSATQG


NO. 63.

AVYGLLPIGWIIVTSVFLYKITVKTGQFDIIRSSVLSITDDRRLQALLIAFSFGAFLEGAAGFGAPVAISAALLVG




LGFNPLYAAGICLIANTAPVAFGAIGIPITAVEGPTGIPAMEISQMVGRQLPFLSVFIPLYLIIIMSGFRKALEV




WPAILVSGVSFAVVQYLSSNFLGPELPDVLSALVSMAALAVFLKWWKPKTTFRFAGEQESAASIETARTNP




AAPAYSGGQIFKAWSPFLLLTAMISVWGIPSVKSALTGHYEGSAVFLKWLNAVGEKLTFAPGVPFLNNQIV




NADGTPIEAVYKLEVLGSAGTAILIAAVLSKFITAISWKDWGTVFKETVQELKLPILTIASVVGFAYVTNSSGM




STTLGMTLALTGSMFTFFSPVLGWLGVFITGSDTSANLLFGNLQKVTALSVGMDPVLSVAANSSGGVTGK




MISPQSIAVACAAVGLAGKESDLFRFTIKHSLFLLLLVCIITFLQHHVFSWMIP





SEQ. ID.
ABP10857
MKYKQIKTKKIYEEVADALLDMIKNGELKPGDKLDSVQALAESFQVSRSAVREALSALKAMGLVEMKQGE


NO. 64.

GTYLKEFELNQISQPLSAALLMKKEDVKQLLEVRKLLEIGVASLAAEKRTEADLERIQDALKEMGSIEADDEL




GEKADFAFHLALADASQNELLKHLMNHVSSLLLETMRETRKIWLFSKKTSVQRLYEEHERIYNAVAAGNGV




QAEAAMLAHLTNVEDVLSGYFEENVQ





SEQ. ID.
ABP10858
MATIKDIAQEAGFSISTVSRVLNNDESLSVPDETREKIYEAAEKLNYRKKTVRPLVKHIAFLYWLTDKEELEDV


NO. 65.

YFKTMRLEVEKLAKAFNVDMTTYKIADGIESIPEHTEGFIAVGTFSDEELAFLRNLTENGVFIDSTPDPDHFD




SVRPDLAQMTKKTVNILTEKGHKSIGFIGGTYKNPNTNQDEMDIREQTFRSYMREKAMLDERYIFCHRGFS




VENGYRLMSAAIDILGDQLPTAFMIAADPIAVGCLQALNEKGIAIPNRVSIVSINNISFAKYVSPPLTTFHIDI




HELCKNAVQLLLEQVQDKRRTVKTLYVGAELIVRKSMNEG





SEQ. ID.
ABP10859
MKMAKKCSVFMLCAAVSLSLAACGPKESSSAKSSSKGSELVVWEDKEKSIGIKDAVAAFEKEHDVKVKVVE


NO. 66.

KPYAKQIEDLRMDGPAGTGPDVLTMPGDQIGTAVTEGLLKELHVKKDVQSLYTDASIQSQMVDQKLYGL




PKAVETTVLFYNKDLISEKELPKTLEEWYDYSKKTANGSKFGFLALFDQIYYAESVMSGYGGYIFGKAKDGSY




NPSDIGINNEGAVKGAALIQKFYKDGLFPAGIIGEQGINVLESLFTEGKAAAIISGPWNVEAFSKAGINYGITK




LPKLENGKNMSSFIGVKSYNVSAFSKNEELAQELAVFLANEKNSKTRYEETKEVPAVKSLANDPAIMKSGAA




RAVTEQSRFSEPTPNIPEMNEIWTPADSALQTVATGKADPKQALDQAAETAKGQIKAKHSGK





SEQ. ID.
ABP10860
MQHRQVALLLSIIPGLGQFYNKQWIKGIVFLFLGASFFAVFGDLLNMGFWGIFTLGTEVPRDNSVFLLAEGI


NO. 67.

IAVIVTCFGLAVYYVNLRDAFQSGKQRDENKPLSSLKEQYQHIISEGYPYVVSGPSLFILIFAVIFPILFSFALAF




TNYDLYHSPPAKLIDWVGFQTFANIFTVDIWRSTFFDVLAWTVVWTLAASTLQVSLGIFLAIIVNQKDLRFK




RFFRTILILPWAVPGFVTILIFAGLFNDSFGAMNHDILAFFGIDPLPWMTDANWSRLALILMQGWLGFPYIF




LVSTGVLQSIPDDLYEAATIDGASVFSKLRYITLPMVFIAMAPIIITQFTFNFNNFNIIYLFNGGGPAVTGSTA




GGTDILVSWIYKLTMQSSQYSLAAALTILLSVFVISIALWQFRQTKSFKEEA





SEQ. ID.
ABP10886
MRKDKLVSTVFKNNAIEIYTIIILKNPDTLVRIKEIQLFHTKKSLAASAAKL


NO. 68.







SEQ. ID.
ABP10887
MFPEVNDKDELQKIFLNVSGKTIHSLIRDDTNIEQNTNIIDIDRVLDHKKSDFLVRNSEEFLEHNPFFHFFSPF


NO. 69.

LSCKIEEFIVKVRIEDAVDNEDEFVKKVIKHILDLMFEKAFRVLVLEVNIARLEGKLEGTTPEERLNHFLAVSLN




DESFLKSVYKEYEVLTSLLCVTIDDYFTYVMEIIKNTKREISSLNSKFNSDNDLGAITNITTGLGDTHQKGKSVS




TIYFKSGKKIIYKPRDLTLEQGFQEVLYWLDGKNIPGILNFKRVQIHTVNDSGWMEHIDYKSCFNKNEANDF




YTRSGNLLCLLYLLNAVDFHHENLIAHGSFPVLVDLESLFHARLKVDQIDKKSAFVTATELVDNSVQSISLLPT




KISKRVGDKDISLDIGGLGAYKEQLSPHKSLVIENAGTDTIKILRKNTFIKPQLNNPSIKTGSYLYSENYTGQIK




DGFESLYSWVMLNKDEFWDKISQTFKETNSRFIFRPTYLYTQLLRISSHPDFMRDTYRRKIILHRIGIDYIQEY




KDILNSEYKDLLTGDVPFFRSSIEHEHLIDSRGGKIHNILEEPPIKTVKQKIFNLSKEDLKRQIDFIEMSYISNEKR




LKEVTDIKFSKAANLNKIKSENWIDEATQIGEFIVENSVCGINKKQKDRMWIGPSLEGIEEDIWNANVLGFD




IYNGNSGIALFLGYLGEILNRQDFKQAAIETMRPIQKFISEIKEDHPYLIGAFQGISGYFYTLNKLSNLFEDSELR




KTTLENISVLSKLGKFDKVYDLIGGSLGSLAVMLSIIPNITEENNKKEILKISHIHCDHILSVAKNFEEQISWPGK




FSAAYSGFSHGNSGFIAYLYKFFKLTNDEQLLEVIQRALRFERRLYSEDHNNWYTTENKDKLANGWCHGAP




GILLSKLILKDNGFEDEYIEKEISTAIDSSIHNGIGNNPTYCHGDLGVLSILNYASDLTNNINLKNRCLRTYQDLF




ENVLAMKWRKRDLVCTRSYSLMIGLSGIGYSMIKNYAPEIVPNFLWLE





SEQ. ID.
ABP10888
MKKDMVKNASGFIEEDELISLANGENATGGGTPVTAIITALTGTTFTVTLSAASCPTSACTNLCNK


NO. 70.







SEQ. ID.
ABP10889
MDISYENNNFIRDAVINFSSPTNEVEKLRIKNKDYFGNFYTFFLDFYQQRLFNTLENASKENNLKLNKQKIISS


NO. 71.

ALEAFSQELIQLCIRTLIVDINDRKEKGLLEGKDSKLRYKNYNNLIFKSEYVAEILNKYPVLTYLISSRISNKILYLK




EVLENLRKNRQDIYRELRIEFDEVSNIYFSSGDTHNGGKNVLIIETNQGKIVYKPHSLSPDILFNSIVDYVNNS




DKILKKIYKIRTLNYKDYGYQEFIDYKECETSEKLNFYFYRVGVSLSIFHIIGCDDLHHENLIAHGEYPVVIDLETL




IKNNSIYKPRNNNLIDNFHEDINYSVLGTMLLPLNLQTSIFDFDLGGISNDENQTSEIWKSYIIDFEGTDEIQL




TKKSVIMNSTQNRATYNGKAADPKNYIEEILKGFTDCYNFVLENISGFHDLVKKVGSSNLEVRQVLRATSIYA




RFLEASTHPNYLSSFEERKKLFKKINIAEGVTDKFSKKNLYELESLMCNDVPYFSTMYNSLDLICNKSTSIVNFF




RESLLDVVLNKTKSISKASLKKQQYYIRMSLTTTIKDSWKKTNKHNKKYRPKLFGNNNKNYLECATEIGDLFL




ETAIWNNDRSKCTWVAPIISENNKVKLGPLNFDLYEGGGVILFLALLGKENGKKEYFDLALAGMRGIEELFL




SDDKMDDRLSLFTGIGSLSYIYYHLYTHTNDYKYYEKFKKYIKKINEMNISGDIALDIVGGVSSLIVFLLNLYKET




KLDILNSVCCKLGNTLYQCLENDKHNYLTGLSHGYSGFTWALCYLGHITKEEKYTTLGKELLKIENKFFDLHTS




NWKDLRVGEGNSDPVYWCHGAGGIALSRAFLKDLLKNKENVVDKEIDKEVDRDLSSAICKLLSDGFKKTTD




HSLCHGSFGNIDILLKLSEFLNDIDLQEVAFKEAQNAINYIRDKGFIPGLQDHFDLNTFMLGLGGVGYSLLRL




HNPVNPSLLAMEVRSYNE





SEQ. ID.
ABP10890
MIVKKKKRIPIVKQLQQTECGLCCCAMLIRFYNSNETLFELRSFLEAGRDGLTIKQLKNLLVHKGFKADIYKST


NO. 72.

IPGLKKINVPFIAYWNNEHFIVVEKTKKNFYYIIDPANGRRKLTEEEFRKGFSSYILYAVPSENFTPNKRKDKN




VWFGVLKNITNYKLLFSIIVFLSLISYLLTLYVPILVQKLIDTSIEHNNLNSISNIVWITFLISILYGMFVLFRGLKM




ISLNIFLSKNLVVDTFAHLLKLPFKFFDLRSPGDLLFRLNSMNGFRELLSTQLISGLIDLGAVVFILAYMFFKSIP




LTLITILIFAINTIFMFLTRPAVAQAIDDEVAEQSKSQAIQIESIFSIAAIKISGMENEIFSTWNNSFNDVIKRFKK




RSILQNIVNTVTQVFQTIAPLVILILELLLFFDNKFTMGEVIAYHSLSVTFFGLTTSLFGTYTQFILATSYLERVKD




ITETECEKNFENAVNLKLRGNVKLENVSFSYTKHSPKVLKNISLEIREGQKIAIVGSSGSGKSTLSKLIMGLYDP




TEGQICFDSIPLEKLDKKQLYKQMGIVPQDITLFNSSILKNITLNNKNTSIEKVRKVAKAAQIDKEIESMPMKY




NTPISEMGMNLSGGQRQRIVLARALLNDPKILILDEATSSLDLVNETLISKYLSEMGCTRVVIAHRLSTIMDS




DFIIVLDKGEVVEIGKHEELIALEGVYSNLYRSQMKR





SEQ. ID.
ABP10891
MKNYKGDGAVFLVIGFCLGLFMGVVFDILPYGLSLGILIGSLIDFYFYARYKNNKK


NO. 73.







SEQ. ID.
ABP10892
MSMSRKETPDDNAFIESFHSSLKSKTLYLNSIERTSTIIVERNVKDYIYYNNIPYSNETKQPITDKLSAIGCLKG


NO. 74.

VLIPVSKTG





SEQ. ID.
ABP10981
MIDVIRVSGGYGRKDVLQDISFAVKPGEFLGILGPNGSGKTTLLKMLSGSITPRSGEVLLECRSVGSYKTKEL


NO. 75.

ARKVAALPQKTEQAFSFTVEETVQFGRYAYQSGLFRQLTGEDHDIVKRVMKQTDILRFAKKSIHELSGGEQ




QRVYVAQALAQEPRYLLLDEPTSFLDLSFQKSLLDLIKQETVASKLAVIGVFHDVNIASLYCDRLLLLKDGKAE




VLDRPEAALCADRIERVYHTDITALDHPERANPQFTIKAKTIPEKAEPLFLKERIEQYLPRGITFSADRPMRVL




SSEEGFAWRRKLVFDSGNNSGWPHDLSTVEQEALFIQHDCKLTACHIVSESNDLCIIGMKDAKGRFIMWV




VVSGCLHDGQFVKVISATAKAAAQHRVFCSDVLIAATHSGRLPDQTILLTQIQDQTAACVKALKN





SEQ. ID.
ABP10982
MKVEGIIPAILTPITKEQDFHPGVAEKLVNHLIDSGVHGIFALGTNGEFHLFSQEEKLQIAETVVKAVNKRVP


NO. 76.

VFIGAGENSTEATISLSNQMADIGADVLSIITPYFVAPSQKELYQHFRTISENVALPVLLYNIPSRTGVSLEPET




VERLAALPNIIGIKDSSGSFDNIKAYLERTKDQSFSVLAGTDSLILDTLKAGGTGAVAATANVLPQTVVSIYES




YKQGNIEESEQYQKQLDPLRATFSLGSLPAPLKKATELAGIDVGPPKHPIAELSGEGLQKVKKMLEGYGIETK




LVKEQ





SEQ. ID.
ABP10983
MKTLYHFQTAARIEAGAHSLNFLGDHLDQTSGWNQIRSVFILTQPSIVSLGYADQIKEVLAEKGISSEINTDI


NO. 77.

QPEPTEQNIEEVFQLFSAGSHDAILGIGGGSVLDAAKILSVLKTNKKPISELVGTNLVEKPGVPLVLIPTTSGT




GSEVTPNAIVTFPEKELKIGMVSPYLLPSLVILDPVLTIGLPKAITAATGMDAFTHALESYISNKANPFSDMFA




LESMRLISSSIQEAYHHGDKLEAREKMLIGAMYGGMALTSAGTAAVHAMAYPLGGKYKMSHGVANSML




LPHVTAFNADHVTDRLSDVAGVIGIEQKGSKASQAERVIQKIEEWTADLNIPQNLKAFGVSKEDVPTLAEA




AADVKRLMDNNPKPMSVAEIEAVYLKLLEV





SEQ. ID.
ABP10984
MDVLSGSVITFILAVIVVYILFTTWLTMRFRSKSSAEFNNAAKTLPAIVVGILLMSEFIGTKSTIGTAESAYTHG


NO. 78.

LAASWSIVTVSIAFFIFSYFLVGKFYKTGQYTISGIISDKFGRSTKLVVSTIMIVALLLVNLGNYLSGSAAISSILG




LPLMTCAIITAIVSTFYFTFGGMKGVAWVTILHSLVKYVGVLITLGVALYLTKGWEPMTQQLPEHFFTWDG




SIGWGTIGAWFIGNMGAIFATQFIIQAITSSKSEKEAKRSTLYAALLCLPLAIAIGVIGVAARHLYPDIDAIYAF




PVFMQQMNPVLSAIVATSLVASIFVGVSTVALATTTLIMDDFYVPKAKPTPEQRMKVTRYASIIIGFIPLLGV




ALAPELLTLSFFTRALRTSIAVVAAMGFYLPYFNSNRGATIGLVLSGMATTVWYLLDNPFGIDNMYIAIIVPF




VVLVLDRLISSPAKKESNVKEEF





SEQ. ID.
ABP10985
MKQSEVSLLIDGRIRKNETDEARKDAFLPTDCPQNHAANLLELDNGDLLCVWFGGTQEGIADISIYMSRLA


NO. 79.

KGSSEWTQIEKLSDDPSRSEQNPVLFQEPSGRLWLMYTAQMSGNQDTAIIRYRTSDDRGHTWSGIDTLFG




EAGTFIRQPLVVLDNGDWLLPVFYCITLADVKWTGNRDISAVKISSDKGKTWEEVKVPSSMGCVHMNIEK




LHDGTLLALFRSRFADSIYASRSIDNGRTWSEPEPTELPNNNSSIQFTALQDGTLALVYNHMKANETTERRA




SLYDEIEDEDDTRTGVDTEARPAFWGAPRAPMTLALSHDGGVTWPVKRNIEVGDGYAMTNNSKDKLNR




EFSYPSIKQGKDGDLHIAFTYYRQAIKYVRVPQMWASADQE





SEQ. ID.
ABP10986
MKIKVLGIAPYKGLGDLLTELAKEEQDIQFQLEVGDLRSGVAIAEQAVSQGIDIMMSRGGTASLIQKHVRIP


NO. 80.

VVDIPVSGYDLLRALTLIKDYQGKAAVVGFENITQGVRTISELFGIEVDLYTIKEEMEVWDLLRDIQQQGTQI




VLGDVITDKAAKELGMQSMLITSGRESVKEAFHTAKQMYRLFKEASEEQRMFRDMIDQEEKGMLVIDDN




SRVRFVNKMVKKWMKEGLLEPIAPAAAVNEWWDELAFAVQSIREGKLSGYFQLETGEVVWHMKGSFLS




KGELLIAIEQSSSSRDDRNHPVWSFAAPVHSLHPFSSFTQQSSSMRDTVQQAQAFSQTHKPILLYGEEGTG




KSDLALAIHQMSPRRQHTFMTIHCSKVKETSLLKALPAVQNGTIFLRYVEHLPLEVQHDLALQWMKPDQQ




IRWLASSSADLCEEMKAGRFDPDLYSCLQGLTLYVPSLSERVEDMEDMSRLFIAEFNSVYGTQVVGLAPEV




MDAFRNRTFRENVRQFKRVLEELALTVKSGYITLAEAAPQLDRLSNEKKEESLKGYTEGTLEDIERRIIQAVL




QEENMNQSKAAKRLNINRTTLWRKLKE





SEQ. ID.
ABP10987
MTNIRCKKGANISRKILIVADDLTGANDTGVQFVKAGMSAAVLFDRSGANPGDIKEDVMILDTDTRGVSP


NO. 81.

SEAYKEVSSASHPFARLESHLFLKKIDSTLRGNIGIEIKALMDLGRFDVAVIAPAFPDARRITVDGMHYVNGL




PVHETEAAVDPKTPVAESRIADLLFGQTNIQPKTIGTKQLHKPDEQIQQDLRAWKTQGHEWFVCDAETNE




DLRRIVQVFMNSGQSVLWVGAAGLAGALAQHVRKRALQTGKRNEPVMIVSGSASNTTNRQLAYVREQR




DLLDVRINPLNVLNGCEAWEHKRAIDQVVVHQGKDVLLYTDAKPETVQRIIAFGRKQGLDRQAVGEKLSL




FLGAVTSEIVKLTGLKRLVLTGGDTARAICNELGADGIQLLGEIEAGIPLGKLLNADIYAVTKAGAYGQTDSVL




RAVEVLRNVEEEDRWQNQSLR





SEQ. ID.
ABP10988
MAKPIIALTMGDAAGVGPEIIIKAFEQTNLHENGTLFVIGDYSILNRAKTFIGSDVDIVKINEPEEAADVKPG


NO. 82.

VIPCLDLQLLTDELRVGEVSAEAGNAAFRYLEKAIALANENQIDGICTAPLNKEALHKAGHMYPGHTEILAEL




TQTKDYAMMLAAPNLKVVHVTTHVGLLDAIHLIDAKRVYTTIQLAHDTLIRAGIPQPKIAVCGINPHAGEN




GLFGHGEEEEKIVPAVERAQSEGIQAFGPLPADTLFFRAVRGDFDMVVAMYHDQGHGPIKVLGLEAGVNI




TVGLPIIRTSVDHGTAFDIAGTGKADPASLEEAVRQAIMLSGTRNRHA





SEQ. ID.
ABP10989
MEFYKKTAIITGASRGIGRAIAETLADKGANVVINGTNEELLKSMCTELNTERKCASYVAGDASLPETASLLI


NO. 83.

AEAKQQFGQIDILVNNAGINLRKTTVDTSLEEWKRVIDLNLTGIFLMCQAVIPEMTAQGGGKIVNMSSTTS




KTPHHNASPAYGASKAGINYLTMHLAKELAAHRIHVNAVCPGPIETDMSKQWSEEYRAAVVERIPLKMIG




SPEHVANIVAFLASDKSDFMTGETININGGTYMN





SEQ. ID.
ABP11306
MSPPNEAPIIPLDCGSLVTFQFSSISGMNWFVCQTHSLMELAFYYLRDRIP


NO. 84.







SEQ. ID.
ABP11307
MKKLIENTENPRTTQSIKKDLEGLGLNKGMTVLVHSSLSSIGWVNGGAIAVIQALMDIVTEEGNIVMPSQS


NO. 85.

VDLSDPSEWHYPSVPEKWWDTIRESMPAYNAQYTPTTGMGKIVEVFRSYPEVKRSCHPNYSFIAWGKDK




NKILNKQSLNFGLGEQSPLGNLYMDNSYVLLLGTDFDSNTCFHLAEYRIPFQKVVIKGAPVLINGKTVWKKY




KDLEFREDLFEEIGKSFEIESDMKSGKVGSANCRLFSLKEAVDFAEKWFIEYDCKMNSRG





SEQ. ID.
ABP11308
MSNYRDYILKGKDVAVFEIDTDPISLDPAKCDDYIGQIISQAMFEPLFIRDIETEQWVCGAAENFEVSSDGLT


NO. 86.

YIFNLRKDRFWSDGISVVAQDFVFAFQRLFHPKINSPIGQILSFIKNGEEILNGVLPVTELGVEALGPRKLKISL




TECLPFLPSILGSPNTSPFPYRTEQVSWTDERLNITNGAYVLKEYKSGQFVRLERNPFYPNSSSNHVKDVLFV




INRELDYSLQNYEKGNIDVTCNTYFPFEEIKRFKQRDDFYMFPSGILFFLQFGNRNDLFKKKQARQALYYIVN




KSQIAQTLHGGIIPWDHFASIGVSEKLFDDQSNYCYHPEKAVKLWKQEERENQALSILYADFFPNGEICHSI




KSEMEKHLGITLTLEGCSFEDFVIRHEQREYDLCLALLSPLYNDPFNYFQYFLSELSEEDEDEFIDILQKALGDE




KENHCTYYKKANDYLLEKLPSIPLFNGQSIFLKNPFLKGYKIFKDGSISIQNLSWGTEEKPKL





SEQ. ID.
ABP11309
MYKLADRIQIVSLHNGRIFLIDDEITELEGSPQHTEKALKLLEKGCMEEELNRIMPLEDTQKLLEFLKEEELLRE


NO. 87.

NWENEYLDTIVEKQLYYLDDFSIDSNQLQSNLKSAKVVILGVGGVGSVLIQHLIGAGIENFILIDNDVVNIHN




LNRQFLYTQEDFGKPKVKAAENFMRKVNPSVKVTSYQTTIDSIKSLDFLASHSIDIFINAADYPKHLDKIVDE




YCFERKIPWVGSGVGRHQGFWGPLFVPGKTCCLNCFIAEEEKEMKEIEKIIRERSNSIIQASFAPTNTIVSAFL




AMDVIHFLAQINQIHSYLTRCQIDFTTLKLNRFTIDEPKLCNCGGE





SEQ. ID.
ABP11310
MLSKNYSFSLSISHLKSKSDNHQRVQEIFGVTDTQLNNRLIFKNITFLMHDVTYITGFSGSGKSTLVNLIKKDF


NO. 88.

PDAVIPTPPAKQDIPIIDLLDLELQESMKILGWVGLGEAYLYLTPYSALSEGQKTRFLLAMALSRNPSIIIVDEF




LSNLDRITAKVVAYSFQKICRKQEIHLIVASAHNDLIEALAPDILIDLDLNGTHRITNRPIEKPFVPDISGVQVES




GTIKDYEELKRFHYFGDEDLFVDNEFETEIFTIRLKEKCIGVSVMKSPYPKDWEEIDYFKDINDRIRCLVRLIIH




PSFRTIGLSKLLMRPKFLDVPYIETRSALGLYMPIYLSGGYSRTELPDNKLSPLRQKLWNNLSFMGLSDVHLL




RDDIYCENFVQNLSGKQKEALRYLALNVYVEMMVNNYIYFRSISKMIPLLPKEMDELKEMFLDVSDEIPVTV




LLQETSLFKMQGFVVQHKQ





SEQ. ID.
ABP11311
MPLFSTNKNVSFIYLTSCFGNGFFERGIWMLFLIEKGFSLFQIGLLQAFVNGTMFLFEIPGGMLADRYGRKV


NO. 89.

SLLIGRFMIMSYLLIIMIADSFESLALSFCLLGLGMTFISGSEESLLVDSVKEQTGENNFSRFLGRYMAIITVALS




LAMMIGGFLKEISWSLVFAVSFIFQMVAFFGCFFLKETKYKKGSQRESFTLIFKDTFNFLKTNNTSRTLIFGIA




LFTGIGSIFYMFAQELFNQLGIKVYLISIFFGLESFLAAILADRAYILEKKFSSRGVMMVCVYLCGISFLLIYINFN




WLILSFFIISAFYNLFTTISYSVINQDIPSKQRATLLSIISFISSLVMFISIPIFGYLSDKFGTAYLLSFTGVISMVLVA




LSILSFYKNRKDSVEKHKLLKVQEK





SEQ. ID.
ABP11312
MEKKLSHHPIDRRVDLTYDEFMKEYGLPGKPVIISNAINNWEAKKLWTLDFFREKYGHIIVPIFESGKRYELY


NO. 90.

ETTLGEYIDYILKEEQEDGIFNLADWEFSRDCPELREHYQVPNYFQSWLEDAPISLLPALRWIYINQKNTGSG




LHIDYGHTASWNAVISGKKKWILLNQNESENIYNGAVDAFNPDFKKFPLYTHSQTFYGEQSEGDIMYIPSG




WWHQVHNEELTIAVTENFINETNYKNCLWPLVSNIVEYQLEISKTPEKVQKV





SEQ. ID.
ABP11821
MGGGLYGHRNIEDERLKEWIKTWKAENYIHFFCNYYGVGMNAEFNDSLAKQVELVIQESSSITVSKDRYLF


NO. 91.

DEVMKYMTPEMFYCYFRYDSSTAYCGNYYEVLIEFADELTKKKLIKGYDYVQTGGITLEKNGEVIGHIGQMS




DLFWQTFYDQYIVEDYGAIEHARNNGKDITLQIWNDKVFENTEQFYKFIEQILFECNVNLGFGFKMSRFEN




ESKLKGHTSNTKLCLSNIELEETPLRYFNFANYTKIPRHKYLAYYQVIEFFFTRAVRKARFPQPNELLIVKYIATN




SITELEVVTWLDDIKSRGKHYTKPSEKYPALFPLEATEIVESVAKRIYLIRCSLVHSKEAPNDVNFIPNLNDEIID




KEISLIKYVAEKVLYKWSNAPE





SEQ. ID.
ABP11822
MLESTYLQITDVIGKIIPADWSKIVLYAEILDGSREVYFFFQTPENDEYIYSHDIPEQFQVSKKIYTELLIDLQEL


NO. 92.

FKQLHNEFKENNPEAWTNLTLNLESNGTFSIDYNYDDVLSSELDDLQRRDVWKC





SEQ. ID.
ABP11823
MENELNALYRSIAETVNEMIPEPWEKFLFYAQVSETGGGTYFFYNSQNEPNHFKYSLEIPFEFDIDENEFDQ


NO. 93.

YEMELFKLSEKMRDVFKDHDQELFYSFTLSLERSGKLTVNFDYTDWFKTDYSFSDQUIWKFKYLGEEPKDP




SLQKLIKKYLEEYPENPI





SEQ. ID.
ABP11824
MKVFEAKTLLSEATDRAKEYKELRTQMVNLRKALKSVADLSDSEFSGKGASNIKAFYHDHVGVTDQWIDYI


NO. 94.

DMKIAFFNSIAGAAEDKALSDAYIEESFLEHELANANKKSKSIMSEQKKAMKDILNDIDDILPLDLFSTETFKD




ELADANDKRKKTLEKLDALDEDLKTEYALSEPNEQFIKSDFQKLQEATGKGKNATPIHYNAKAYRESDIHKK




KGDIETRTEAYLKIKKEEAKEREIEKLKERLKNYDYADADEFYEMAKTIGYENLTAEQQRYFTQIENTRELEAG




FKGVAVGLYDSGKDAVVGLWDMVTDPGGTVEAITGAMAHPIKTYEAISAAIEESYQKDMVNGDTYSRAR




WVSYAVGTVVTSIVGTKGVGAVSKTGTAAKVTTKVKTAASKSATAQKAITVSKQTVDHIKQKVNTGIEVSK




KHVKTKLNQIGDLTLADILPYHPRHDLVPAGVPYNAVNGVTLKEGLQKFAKVILPKPYGTSSSGRRTPAPHV




PPVTVKYGEHYAKWSRKKVLKPNVEYKTKEGYTYNTDNYGRITKVEADLQLGEAKRNQYAQSNAGKPQD




RLPDDDGGHLIGSQFRGSGELDNLVAQNSQINRSGGEWYKMETEWAAALKEEPPRKVSVRIRPKYLGDSL




RPDSFEVIYRIEGKGLFKKFIKNQAGG





SEQ. ID.
ABP11825
MDKDFLIIKIKDIQKGDTLTNRACGNWDMKLSRAKECKRAIVVRSGVILNVYKIVDAWESDEPAKITKTNN


NO. 95.

RVRFQLAECRDYSYLIGGTLKTKTQNPVSSLSLETLMELVK





SEQ. ID.
ABP11826
MYLYKVNNQNQIEDIREKPFKKEKEIQDLCEANLQQMLGLGFVKSEFRISNFRIDTLAFDAETKSFVIIEYKN


NO. 96.

TKNFSVVDQGYAYLAAMLNHKADFILEYNENHDLPLKRDDVDWSQSKVIFISPVFTVYQKQSIHFKDLPIEL




WEVKRYENDLIQLNQMKADGVSESIKTISQQSETIQEVSKEIKVFSEEDHLADKPFDIIELYQQLKEFIFNLDD




HISIKPTKLYIAFTSNKRNFTDILLLKSGLKLWVNMKKGELHDPEERMRDVSETGHWGNGDYEIFIKDEENIE




YIMGLIKQSYEKNK





SEQ. ID.
ABP11827
MKKRFILLGLFASVFMLAVYISFQNKNTHPVQSPVIHPEEDRIFFIYSNLFIKESVLLSTSTGERFNRRTFKVAD


NO. 97.

VPYIQMKSYKSTDLVLLAEHEPFYYTLEKDAIKEHPLSDPFAFWHEGKDVSVKAYNVDTTGNEIRINDKKMK




KEYTLTLPSLVTMGASDENYIYIIQSMAIYVIDRKTEEMIETLSLASYADQFADSKEFIVASSEHELTVIEKGTW




KATYIAYPEDLEYADTVYYDKESGSFYVTYEDKKGEANLLEYGKEFSFHTYSLNFPYMEAKFKGNLLYIVAQE




EHKKGIGGYVGVFDIHSKKMLYQFDLPEEQVKVQDFVVVD





SEQ. ID.
ABP11828
MGGSYLSDLCSMYQKDKFFTGFVPDELLTYACELFPLSEKETVTALLNCSMGNKAKSFVMFTSKGLYWKRF


NO. 98.

GEQEGCVTWEAFTDIQSIKSTDDYEIWFEGEEVFDVGFSSYPADLLAELLRMIQQFLSENGSDLLTEAWRD




HVSVSASELKEISTLFQNSHDKMFGLTNGLLVGNEISEKREVRLRKRLHIPKDQEMISFWSTFPVKQTDGITL




TDKGIYFSDPFLRLFYPWHVFKETPVMLKDQELIVGKENVIQLLENLMPAEDVFAFIEQVKRRISAVTS





SEQ. ID.
ABP11889
MLRKKGQETKDYKTQQVESWGLRLIGKNEKIEKKSNISIAILDSGIDSNHEDLKGVVKKEYNALEPSKGVIED


NO. 99.

KFGHGTAVAGIIASNDNKIGTLGIAPYADIYSVKVLDDKGRGSVESIVKGIEWSIDNNVDIVNISVGLKKSDQ




KLKRVIDEANEKGVIVVAAAGNNYGLNADYPARYQNVISVGAINKKMKRAKYSARGKIDFVAPGEDILTTS




PKDNYINVSGTSMATPFVSGVIANIIMQEPVKYSKTKSRFTSIYKTLKKYSTPYLSEKSDMKSLGNGLISLKKE




TNNEKIN





SEQ. ID.
ABP11890
MKKSIKFIAISLIFAIIVSIIPEKNVASAGAETPVEITNEDLQRALVENGDIVDPDSVEIVKNNEDTIKAEVDVQT


NO. 100.

DDFGIDQDLDGSDSESLIDEDLDESSSETVTAEVDKEDATAIVTSVEKDEDGKDIEKKYEVDIEEADGDDIVA




TFKDLDTNQVYDVNTKEAQASFAFLVPIAVVVGGALVEHLVAASLAIVIAGVTYTVATKVRSKLKKKKKYYY




YAATLNKNKTNMYIGPALSKKQAVSRLRKGDVWSVSKSKAKNVAQTAGGGRKPVGPEIHNKKDGKIKKG




TYYYHYHTYNRKGGHSFY





SEQ. ID.
ABP11891
MWESIQNGKRVNKIFESKDGNYISNFTVQGNVEKIEKELVFIRGILEKEKNN


NO. 101.







SEQ. ID.
ABP12521
MKLIYPYGADKIYLGNPVELFRDQDTGDYIIPKNATDIPPELNGEGMWRPMFNEEKQTWIETADQAYKKS


NO. 102.

LLEDVPSESNPTNDQLSALGKQLTEEKLARIQADQAQKALGMQLTEEVIARKEAEALSQSLGKQIAALKLDL




LNLKGGMTSES





SEQ. ID.
ABP12522
MSLNFWVYALFYKWATTSMVREAMMFHDCSVDDLKEGVSEKYVTLAQFKEITDQTYEETMKAN


NO. 103.







SEQ. ID.
ABP12523
MSELSEVPDMNLLEKEITEIKTEQKTLEQRVSVLERSSDRQDQQIMTLNEKLNKIEENTTWIKRTITGAIITAV


NO. 104.

STGIIGGAIAIMYSLLQH





SEQ. ID.
ABP12651
MKLEQQEINILHSDSGPYGIAISPEGKVWFTQHKANKISCLDRTGQIQEYIVPTPDAGVMCLTVSSEGDIWF


NO. 105.

TENRANKIGKLTAKRQFIEYPLPHQHSAPYGITEGPDGDIWFTEMNGNRIGKLTSEGKIHEYELPNEGSYPS




FITLGSDHSLWFTENQNNAIGKITESGELTEFPIPTPAAGPVGITKGHDDALWFVEIVGNKIGKITVSGDITEY




DIPTPNARPHAIAAGVKSDLWFTEWGGIKSEG





SEQ. ID.
ABP12652
MVYRMGGNKIGRLTSDQTIEEYTINTPHAEPHGIGCDNDGTVWFALECNKIGKLKLTK


NO. 106.







SEQ. ID.
ABP12653
MKVKEKRIVVNKFPSQPDEEDCRNLTLLGWGSGGFFLFLHTFR


NO. 107.







SEQ. ID.
ABP13703
MKQRKRIIQKDRRKLLKYFNAKFTAEERAMESLFCEKTSQSSSNVLLND


NO. 108.







SEQ. ID.
ABP13704
MKTKSEPKVILEPAKESDLPEFQKKLQEAFAIAVIETFGDCEDGPIPSDNDVQESFNAPGAVVYHILQDGKN


NO. 109.

VGGAVVRINSQTNHNSLDLFYVSPEYHSQGIGLSAWKAIEAQYPDTVLWETVTPYFEKRNINFYVNKCGFH




IVEFYNEHHSDPHIHRNGRVDDKPLPDNDDFFRFVKIMKKKD





SEQ. ID.
ABP13705
MPLTLIWRNFEFSEKFLGTYADNVLKVLQEAQEELEDEFKIIVE


NO. 110.







SEQ. ID.
ABP13706
MSLEEQLQSKEEELTKLVSTFAAKEGTNETSISGLEFIRSAKPLMPVHTMHEPALCIVLQGRKVISIIGEDFFY


NO. 111.

GKGEYLVVAVDLPVIGEILKASEREPYLCLRLNFNLMQIAEVSKEYQQHSTNHNAAGRGIFVDQTDGVILDA




LIRLVKLLHTPEDTEILAPLIIKEILYRIMQGKHGHTVKSLVAKGSKLSEVAAALDYLRNHFSQEIKIDALAKKV




NLSPSALYHHFKQVTMMTPIQYQRALRLHEARRLIFGKDMRVADAAFQVGYESPSYFNREYRKMFGKPP




GKDRKENLNLYYV





SEQ. ID.
ABP13707
MEKNNHSYGGLWVTKDRYIRHELLSNGRYVEARGNVECAYTGNYQITGDRIEYQDDAGFTADGDFINGIL


NO. 112.

YHAGMVLHRDRS





SEQ. ID.
ABP13708
MSIKNKVVLVTGGSSGIGAATVDLLAENGATVIAAARRTDRLETLVTTLQQKGYHADYKQLDVTDFGQMQ


NO. 113.

QTVQEVTDAYGKIDVIVNNAGVMPLSKLDSLKIAEWNRMIDVNIRGVLHGIGAVLPVMKEQNSGHIVNIA




SIGAYEVTPTAAVYCATKYAVRAITEGLRQEATHNIRTTLIAPGVTESELADHITDKQASEAMIEYRRQALPA




SAIAHAILYAISQPIEIDVSELIVRPTLSL





SEQ. ID.
ABP13709
MRRIDFGLTFLICTLIMLFNEIWKLLGNRPEAFKYGSIIYQVIAVFSSIITNVAIGVAGAISFYYIAQLIDKKKNRE


NO. 114.

LYTDLRKHLLFMFYNHLKLLTRLDQFREVNNRERRVADFYDIFDIPVFYDNFKKINSKEEVTRFKKNLYDYFA




TQSEQQIKVFTEAFEKDIKKLKEKSNIRFFKESKDLIDTVCIIYDDDFSMISSIYLSNFEDTQNKSNYIEELVKDY




YDFLNATVILYEELEEFLESMDKNRWVVFIKMLD





SEQ. ID.
ABP13710
MENAQEIYELVKEMSKTVKEIDETTKRIENTTKRIAKGYELITEELAE


NO. 115.







SEQ. ID.
ABP13711
MTYRVGSMFAGIGGTCLGFIQAGAEIVWANEIDANACITYRNYFGDTYLQEGDITQIDKSTIPELDILIGGFP


NO. 116.

CQAFSIAGYRKGFEDDRGNVFFQILEVLEAQRNVYGRLPQAIMLENVKNLFTHDKGNTFRVIKEALEAYGY




TVKAEVLNSMEYGNVPQNRERIYIVGFQDENQAEMFRFPEPIPLTNQLNDVVDRTRRYDERYYYDETSQY




YEMLREAMVSTDTTYQLRRIYVRENRSNVCPTLTANMGTGGHNVPLVLDYENNIRKLTPEECLLLQGFPA




DYHYPEGMANSHKYKQAGNSVTVPVIRRIATNIINVLNGETNANDEQEHQYAITQ





SEQ. ID.
ABP13712
MIPFLGNRIQNAREARGLKPSQVADKVKVTRSTYSLYESENRTPSLETFIRIAETLNVSADYLLGLKEEMTSL


NO. 117.

NEEEN





SEQ. ID.
ABP13713
MFFTNQPASNRTTYKQMLSSTGSLSNLFSESDSPYLVSRNVENAFCEALGAENLGRSDCSADASKDRVGIG


NO. 118.

IKTFLHGNGHTLQKVAEFNRDSDLYRGKSPKELINIVATLRNERIEFTKRTYGIDTMIYHCVTRKPGKILIFEEP




MDLVQISSITNIKVSNNRNTITFEDGLHEYSFNVTKSTLYKRFITDEPIEEIDVEILENPYQELAKLFGFEIAPIQ




VPEVSSPIENFEYVILPLFSDRGNKRHVPEKSGLNQWNAAGRPRNANEIYIPIPMWIHRKFPEFFPARDKPF




QLRLPDKSLLSAKVCQDNSKALMSNPNSALGEWLLRQVMNLGERELLTYEMLERLSIDSVIVYKHSEQHYSI




DFREIGSYDEFENENN





SEQ. ID.
ABP13714
MTDTFSKEQRRKNMQAIKSRSKLEDKVTKELWNRGIRFRKNVKGLFGKPDIAIKKHKIVIFIDSCFWHACEK


NO. 119.

HGNKPKSNTEYWEKKLQRNKERDREVNKYYEEKGWNIKRIWEHELKEDFDETINRIIAFIEAVKHEQRK





SEQ. ID.
ABP13715
MLKIKKLDFMPFFNRMICFVDVKNPDEADKKALAKDILENNKDQYQGYD


NO. 120.







SEQ. ID.
ABP13716
MKFIELDPALQIKVRQLEANAEEHQDKSHPDVRALWLELQKEDSICGALSEKDGSYKVCLRAPVEERNRCS


NO. 121.

LHGGKTLKGEQMTPAQKLNMMKNLRPRVVEHCWYAEESNFLASLTESEIKYMSFLEKSVKDQYHVNDGL




EELLLEDILQSAIIHMRMVNRGVFEKGSRHTARPLQEVLKTIKELGWTCKEKGGKVQFVSVRNDFMASIFG




NNTEEEEEDKKLN





SEQ. ID.
ABP13717
MSLKEKLAELNKRAGKLEGSLKKASKKASSEADRLKKKRQEREYYDAYEKKFPIDKNF


NO. 122.







SEQ. ID.
ABP13718
MKKDWFSQRLELINKEQKLNEEFNLWKLQQITKRMKEVTKKLDELETERV


NO. 123.







SEQ. ID.
ABP13719
MGLFNKKSEMVKFEEELNVVQGSIREVEAELRDFDTSKKGIELELKLGADSSLTKRLKKVSEKVAETEKCLAE


NO. 124.

LRQREGEINAEKRTAYLNELADKDLASIDKGRRATVIKYELQALMRVVDERDGRWGYSKPENLLKEYGIEIG




HIPAEHLRREEFDSFWKTRKNDAEKRIQNECQEAIETLKKYLGGFDK





SEQ. ID.
ABP13720
MESKVNMLRILEFYMGETGNFKKLVVIQEIYRNNPSKMKGCELSFLKDNKFVAKGFFEAETIMVRNSFHSY


NO. 125.

NSELPELKEHHFKKMEKRDQDSHYPVSETTVLYLSGYVFAEFKFHKIANDKKIGDKVYLPIKLDDKQKPDSN




EFCKLLVLEEYRDGTFELPELPKRAEMFTCWVRLELAPDSKNDSGVKVSEREFNKARMGEIKGNIA





SEQ. ID.
ABP13721
MSEDVKKYFTTGEFSKLCRVKKQTLFHYDEIGLFSPEIKKENGYRYYSYHQFEIFQVISLFKELGVPLKEIKCLIK


NO. 126.

GKTPDKILHVLKEKSIEIDKKINELKQLQTILQTKVTLTEQALETDFSSISFEYLNEETFMLSRKTLNLPERKYVA




AISELIHEVQQYELDEGYPIGGIFAREQILEKDFYNYSYFYIKVKDGAENINYHVRPKGLYAVGYEIGGKTEEA




YRRIIEFIERNGMQIGENAYEEYMLDEMVVDGYENTYAKILLQVKEV





SEQ. ID.
ABP22957
MREKKLGPVLLSGLIVGPILGSGIILLPPIIYGKTGDYAILAWFIMMIISFLFASLFGKLSVLFPNESGVAHTVEL


NO. 127.

AFGQHIKQLTSVFFIIAGSVGPVAVLMTASQYLKALFKSNGWSLETYGIILMMICLFVLLSNISSVGKVSFMF




STVSTVVLLSGGISSIPFMRDKAFIKTPFHLDDFGYSILLLFWALVGWEIIGNYSLDVKNRKRTIPQAIVISSVVI




TTVCIVVAAAYQWIDLHHTHTLTIILIPLLGTSFASPTMAFITTILCMSTYLLVTGGVSRLIASENKKITLISYRSK




TNIPIGAISILTLVHAIVFILLFINIINVEQIVGMANAFFISNAICGILSAYKLLPGKFSKSLSLMLIISFLIILSFSSIWI




LLMIALITTFYLIRHFIWIRQLKKSATNSQDKLRF





SEQ. ID.
ABP22958
MEIRHLKTFITIVEKGGFTKAAEYLGYAQSTITSHIKDIEQEIGGPLFNRFGKKMLLTEVGEYLLPYANEMIRIS


NO. 128.

EKVKQIQSNDEPMGNLVIGAPESLTVYRLPPIIHEFKKLFPKVKITLKSSTCWELKDDLRNGKVDLAFLLEYEQ




EEADLYIEKLITEPMILVFPKQHKLQNTPFDDFYFSSDEVILYTEHGCSYRTYFEEYMKHQGLVSENTFEFWS




VEAIKQCVMCGLGISLLPLITVQKELKENKLSGLIMDETRIITQVAYHKKRWNSLAMAEFINIVKKHAELWK




RTQTL





SEQ. ID.
ABP22959
MNPLLLDVPLQLETERLILRAPHQTGDGKIVNQAIRDSFSELKAWLPFAQELPTVEETEINLRNAHINFLKRE


NO. 129.

SFRFLIFDKDSNDFIGITSLQRIDWNIPKCEIGYWVNTKYSGNGYMTEAVKKLANFGLHNIKFRRIEIRCDST




NLKSRAIPEKLGFVFEGTLRNDDLSADGSKLTDTCFYSIVK





SEQ. ID.
ABP22960
MVDQLWAYFLNLIEEAIETGKSETYFPDQPLLLKMKSISNDMLLFEIDQKQKVLLPKLDFFESLLKNAKSFFE


NO. 130.

TMNFVLEGNCDYEYELNKIDELQTKIKCM





SEQ. ID.
ABP22961
MKVFEAKSLLSEAENRAKDYKELKNQMIKLRKAFKAVADLDDSEFSGKGANNIKAFYHDHVGVTDQWIDL


NO. 131.

IEMKIAFLTSISGVLEDASLSDAYIEESFLEHELTNAYKKSKSIMSEQKKAMKDILNDIDDILTLDLFSTETFKDE




LSSAENKRKKTVDKIGDVDENLKTEYAITEPNEQFIKADFQKLQESTGKGKNATPLHYNAKAYRESDIHKKK




GDIEKQSEAYLKIKKEEANKCEIKDLKKQLVKVTDPDEYLKIAKKIGYENLEPEQQVYFRQLEELQQKAEIGKG




IAMGMYEAGKDTVMGLYQLARHPIESLSGTVNAALHPIDTYKIIAKDIEDTFQREMINGDSHSRAKWVSYV




GSTVVLAIVGPKGIDKVSKVAKAGSKVAALKTLEVSKTGIKKGIEYVKIPSVFEQQFAMAGGSGTFPFNVLD




GENYKNSALEIFKNSSTVQGLKKAKPHEVVNELKTFQSRKYTFGGQSFLIDKRGMKHILERHHPNLWDGSI




KSQQSFLNKEMTVNDVADAIESIMKQNREELTKKGTKFSYQIRGSYEGQQYVVGFQKGRVGQFYPEK





SEQ. ID.
ABP22962
MVQEVMVMKKDFGDSISNKVYEYRVLARLSQQELAKKVGVSKQTIFVMEKGNYVPTLLLAFRIAEFFKVD


NO. 132.

VNEIFTYEKGNDQK





SEQ. ID.
ABP22963
MNNKKNIFDIVMYIIFGVLSLFLVAKTDYGTGVLVFVAILYLAVIAYKIKQVFSNSDS


NO. 133.







SEQ. ID.
ABP22964
MRKKRVITCVMAASLTLGSLLPAGYASAKEDSKTTPSYEELALHYKMKSEKISSNGKLVEIEYVSGNETHKV


NO. 134.

QMNGNNHTVKVDGIEQKGLNFEYDENVAKRTNYENNNLKSNEFTTQAAKPKKGYHYVGTLSGHTKAAK




NALSVTMSLVGIVPGLGWGSKAATILFSYWAKEQIPDAYYKYDLYEKGAMTDSWYQYATVQFLKIKLIKRK




WANLGQVLLQK





SEQ. ID.
ABP23145
MKNFDKGTVVRTVLLLIALINQTMLMFGKSPLDITDVQVNQLADALYTAGSLIFTIGTTLAAWFKNNYVTA


NO. 135.

KGHKQKAILKQNNLTK





SEQ. ID.
ABP23146
MTIAVKKNLVSEAKYALKCPNPMTAEYITIHNTYNDASAANEVSYMIGNTSSTSFHFAVDDKEVRQGIPTD


NO. 136.

RNAWHTGDGTNGPGNRKSIGVEICYSKSGGAKYYAAEKLAIKFVAQLLKERGWGIDRVRKHQDWSGKYC




PHRILSEGRWNEVKAAIDAELKALGGKSSSKKTTSSKAVKKPSSSKKKSSFNLPSGIFKVKSPLMHSAAVEQI




QTALAALHFYPDKKAKNFGIDSYYGPKTADAVRRFQLMNGLKADGIYGPATKAKLEALLK





SEQ. ID.
ABP23147
MKRKQTFIFSMILLSVASIGLRSFWTNPFTTGVMIFVLALTIYAIIKDLRRR


NO. 137.







SEQ. ID.
ABP23148
MEYHLKSRQEVEDFIRHEVLTTKEAAELLGVNRQRVSQLISSGKLNPIKKLSGISLFLRTDLEEKKKELEAGRK


NO. 138.

KYRPYDE





SEQ. ID.
ABP23149
MDEGTYNIDIVGFHGTSLESAQKIITEQNFTSGDIRNDHWLGQGAYFFREDPEQAKIWAKNKIKGSETAVI


NO. 139.

KTIVSLDNNSFLNLDTRSGLNYFNRYIKTEVKRKILEEKAEIELTTDDHSKIKHIYRCFFCNELPTNIKAIQRTFF




VQSTLNEDETFKKMDVFVQGVQVCIRDLSVIDFTKTGINNVINMHTFRRRKKTKQKENYRKDVMKMRRE




FNNPELIKDAENLGIKITLNSSEPGVFANVNGERYRINIDDLFSECDDDLYYHEDFKLDDFSITRDSNQHKVEI




IKEEKNFYKNELVEAA





SEQ. ID.
ABP23150
MKSFFQFDDYNIIDVNYKFNNNFEGDEAVLSPIFDFELEFEDETKDEADLILGIELGIRI


NO. 140.







SEQ. ID.
ABP23151
MTDFERKVYQIIVNMHLYGKNPTLDDLKRKTGKSKEDIRTAVKSLLMEGELKWDKQQKKWII


NO. 141.







SEQ. ID.
ABP23223
MTDSWQNGFIEKINRNGNNGGLRKPQYGALSAIRAHWTISSKPATIVLPTGTGKTETMLATILSEQIESVLII


NO. 142.






VPSNLLRDQTFEKAKSFGILPDLKMVGKNILYPNTVLYKTRIKDETEVWEWFSEANVIVSTVNAVNGLSTSIL




NKLVEKVDVLMIDEAHHIAAGGWSSLREKFLNKRILQFTATPFRADGKKIDGDIIYNYSLSLAQKDGYFKPID




FYPIEEFNEELGDIQIAEKAVELLNKDLEDKYMHQLLVRANSKKRAEELYNKIYSIYKKFNPVLIISGQSKKNKE




NLKKLREGIAKIVVCVDMFGEGIDIPNLKIAAIHDKYKSLPITLQFIGRFARSKSGIGNARIVTNIANDDLKDAL




QSLYSQDADWNQLLSMHSSDAIQTEISHRKFINQFYSNDNINIDISQIKMRISTRVFYLGGVHWNRKGWR




SVLNVDKTEFFINEESSVMILIESIESQVDWSDQKDISKYNYDVFIIYVDKKNKLIFINETNASKGNQLIKYMFS




EANQISGERVFRVLDGINQLMIGTLGLKEQPSGRISFRMFAGTNIKDGINQVARASTTKSNLFATGYKDNN




KISIGCSYKGKVWMRWVDSVVFWRKWCQKIGSQILDSSINTDYILENSLQSEEITEYPRGIPYKIQMPVEFE




LSNSELKAFYIPNEDKEIPFYLCEFNNPRLDGKQLLFELWINERKYTFSQTLKERGFVINRILGKDIKIKKSRNM




ITVEEYLQDNLPQVTFFNEDGSLSIVEGNLVVNKKPLAEVLFPKEKLHIVDWKKLKVDITIESQGLTKLNNSIQ




YASIKNIVPVDSLIIFDDDNSGEIADIVCISTNEEHRKITVQLYHCKYSHGTNPGARLLDLYEVCGQAERSITW




NDSMVELLKRMRFRENKRINENKTSRFEKGNLSDLKTIENQIRSGFETEMKISIVQPGVSISNISQQMNQLL




LATDTYLKETYGIDLNCYFSK





SEQ. ID.
ABP23238
MSQAIPSSRVGVKINEWYKMIRQFSVPDAEILKAEVEQDIQQMEEDQDLLIYYSLMCFRHQLMLDYLEPG


NO. 143.

KTYGNRPTVTELLETIETPQKKLTGLLKYYSLFFRGMYEFDQKEYVEAIGYYREAEKELPFVSDDIEKAEFHFK




VAEAYYHMKQTHVSMYHILQALDIYQNHPLYSIRTIQSLFVIAGNYDDFKHYDKALPHLEAALELAMDIQN




DRFIAISLLNIANSYDRSGDDQMAVEHFQKAAKVSREKVPDLLPKVLFGLCWTLCKAGQTQKAFQFIEEGL




DHITARSHKFYKELFLFLQAVYKETVDERKIHDLLSYFEKKNLHAYIEACARSAAAVFESSCHFEQAAAFYRKV




LKAQEDILKGECLYAY





SEQ. ID.
ABP23224
MSKIPPEKYYEACITYHLVNYFEFTLEKKIYPFSISQIEEKKEGYDFGYKMSEKSFFIQYKRPYKVIPKDTYHWKI


NO. 144.

EIEQLKTINRKANNINTYYALPSFGDSMGWYEALDNTFFVNSRSLEYQIKQINRGRNIKTTFISPEKILLDKFY




RISCNIVGDLHSVAVSQKNINSKIGNITNYIKGLNEDVKSSTWLYILEED





SEQ. ID.
ABP23225
MKYENVEVLGSYSVREGGSINFSMGKNLELGTEINTYIHELFHMHLTNYSSLGFLLLLFEKECNLSLEYQDEL


NO. 145.

HYNQIKELSTIIFNRTVDVQEVYANNQELLWLENNINSEFKEKSFKLKPKKYQEYCNKLNIITNDMRLNNEEK




RYWIDRVCFYALNIQIFSDKFIEALKSRQKLSEYLSRNHPNKRLDEALVKYSKNEKFDGVVEIRIQDILSKIKKIN




IIKYFNEILSQLEPNATNFKIGDYLCENDIKKFIELNQKRMDERVKLFDFYNLDVIKVDDISNHLNFGIFAIKNY




ESTINKENFYYITEALINLTPSYISEEVSYDFLNNPKIKVIGIPSQEFDIAKMKPNYIEVKDTPIVVLIDSYNTAKKI




LKVLLNGELYVGDLYEQTVKNFSTILFFRERTEPKIIYIFPTLKKMSIRLVKELGIEDILVYSKDTRFKKILSIFNCE




VEMLKFIKWIFSFIMKSSCIFTSIGDPATKMSFNLTRSLFDDVMKIKIPNYYIHWAALPTKKTIGEPFYSLMEF




ENGENIGSFKATNQNTIIFFLNKNDAVNYRKKIFTTDSMAHKLEVVGIDRHYWNIIEKYILETGINICICTDVN




NNIGKIMKLKEVDNIITQFSKV





SEQ. ID.
ABP23226
MKFKLTLCAVIALIGVSFISSSLGNEVNVASRNMTSKAANDSTNSLADKAIFDKEMTIAENGTLG


NO. 146.







SEQ. ID.
ABP23227
MRSLGTISSPHVGMKINEWNRHIQKFNVTDAEMLKAEIERDIDIMEEDQDLLIYYQUAFRHQLMIDYVIPT


NO. 147.

EGNQMELSEYLKRIEGSNRKMEKLVEYYYYFFQGMYEFKEGNFLSAITFYQKAENTIPYISDEIERAEFYFKM




AEVFYHMKQTHVSMHYSSQAYNIYKTHDLYSVRRIQCHFVIAGNYDDLESHEKALPHLEQALKGARLLESK




NKRIYGQALFNIGNCYLKMGELTKAAKYMEKSIFQFKKSNFNNLTQAYHDLALIYFLQHKQEQAMDCFRK




GVRFACKFDDDLFKIMFEGLQTLFIKKGEASILLNVFNKLETSQGYPYMEELALLAAKFYTEIGQMDDSVICF




KKMVHARKQIQRGDCLYEI





SEQ. ID.
ABP23228
MTVREELIKRNPTPIMKNILKRYEEAKEFIQHSTKEQFEEDLSRVKNKLDTLTRAYLESANDYMNPMLREMY


NO. 148.

KTEKLLKEYDETASVVITAIQSSKVEIVLPSQNQI





SEQ. ID.
ABP23229
MDLFEECIEALKDPKEILSDELTEQYFETLNNKFPITSWARIDWDKVPQKESIETYDDLYNWLKFQGIVDTTI


NO. 149.

NLLWNPSDVPVVRTTLENALEVLDDVLAVGSDTFMYSDHGFVIEFFHDGEVTIGRSE





SEQ. ID.
ABP23230
MAQLFTAGLFLFQIGLAIMETEKGLLYKKSAEQFNNLLLLNEIRLTYTLKF


NO. 150.







SEQ. ID.
ABP23231
METEKMGQLYQQIAEQLNEMIPSEWTKIVLYAEILDDSSEVYFFFNTPQSEEYIYSHDIPKQFDVSKKIYVSL


NO. 151.

LIELQELFEELREEFKANNQDTWTNLTLKLENTGKFSIDYDYTDVIASDLNGTQRQVVWEYKNLGILPEDKE




DKDFVINYFSL





SEQ. ID.
ABP23232
MVMKVFEAKTLLSEATDRAKEYKELRTQMVNLRKALKGVADLSDSEFSGKGASNIKAFYHDHVGVADQW


NO. 152.

IDYIDMKIAFFNSIAGAAEDKGLSDAYIEESFLEHELANANKKSKSIMSEQKKAMKDILNDIDDILPLDLFSTET




FKDELADANDKRKKTLEKLDALDEDLKTEYALSEPNEQFIKSDFQKLQEATGKGKNATPIHYNAKAYRESDI




HKKKGDIEKRTEAYLKIKKEEAKEREIEKLKERLKNYDYADADEFYEMAKTIGYENLTAEQQRYFTQIENTREL




EAGFKGVAVGLYDSGKDAVVGLWDMVTDPGGTVEAITGAMAHPIKTYEAISAAIEESYQKDMVNGDTYS




RARWVSYAVGTVVTSIVGTKGVGAVSKTGTAAKVTTKVKTAASKSATAQKAITVSKQTVDHIKQKVNTGIE




VSKKHVKTKLNQIGDLTLADILPYHPRHDLVPAGVPYNAVNGVTLKEGLQKFAKVILPKPYGTSSSGRRTPA




PHVPPVTVKYGEHFARWSRKKVLKPNIIYKTKEGYTYTTDNYGRITSVKADLQLGEAKRNQYAQTNAGKPQ




DRKPDDDGGHLIATQFKGSGQFDNIVPMNSQINRSGGKWYEMEQEWAKALKEEPPKRVNVNIESIYKGD




SLRPTKFIIEYTIGNKTKFVTIKNQAGG





SEQ. ID.
ABP23233
MDKDFLIIKIKDIQKGDTLTNRACGNWDMKLSRAKECKRAIVVRSGVILNVYKIVDAWESDEPAKITKTNN


NO. 153.

RVRFQLAECRDYSYLIGGTLKTKTQNPVSSLSLETLMELVK





SEQ. ID.
ABP23234
MYLYKVNNQNQIEDIREKPFKKEKEIQDLCEANLQQMLGLGFVKSEFRISNFRIDTLAFDAETKSFVIIEYKN


NO. 154.

TKNFSVVDQGYAYLAAMLNHKADFILEYNENHDLPLKRDDVDWSQSKVIFISPVFTVYQKQSIHFKDLPIEL




WEIKRYENDLIQLNQMKADGVSESIKTISRQSETIQEVSKEIKVFSEEDHLADKPFDIIELYQQLKEFIFNLDD




HISIKPTKLYIAFTSSKRNFVDILLLKSGLKVWVNMKKGELHDPEEKMRDVSETGHWGNGDYEIFIKDDEHI




EYIMGLIKQSYEKNK





SEQ. ID.
ABP23235
MKKRFILLGLFASVFMLAVYISFQNKNTHPVQSPVIHPEEDRIFFIYSNPFIKESTLLSTSTGERFNRRTFKVAD


NO. 155.

VPFIQTKSYKSTDIVLLAEHEPFYYTLKKDVIKEHPLSDPFAFWYEGKDVSVKAYNVDTTGNEIRINDKKMKK




EYTLTLPSLVTMGASDENYIYIIQSMSIYVIDRKTEEMIETLSLASYADQFADSKEFIVASSEHELTVIEKETWK




ATYIAYPEDLEYADTVYYDKESGSFYVTYEDKEGEANLLEYGKEFFIHIV





SEQ. ID.
ABP23236
MYIVAQEEHKQGIGGYVGVFDIHSKKMLYQFDLPEEQVKVQDFVVVD


NO. 156.







SEQ. ID.
ABP23237
MGGLYLSDLCSMYQKDKFFTGFVPEELLTYAYELFPSSEKETVTALLNCSMGSKAKSFVMFTSKGLYWKRF


NO. 157.

GEQEGCVTWEAFTDIQSIKSTDDYEIWFDGVEVFDVGFSSYPADLLAELLRIIQQSLSENGLDLLTEPRIDHV




SVSASELREISILFQNKHDKMFGLTNGLLVGNEISEKREVRLRKRLHIPKDQEMISFWSTFPVKQTDGITLTD




KGIYFSDPFLRLFYPWHVFKETPVMLKDQELIVGKKNVIQLLENLMPAKDVFAFLEQVKRRISAVTSS





SEQ. ID.
ABP23502
MFVLLLYPKQSLLIHYSSKAEKGRTLFILFLASTLNI


NO. 158.







SEQ. ID.
ABP24563
MFNGKHLKVKACFKSNAFLIIIKESVYIFISPLPDDAFRTP


NO. 159.







SEQ. ID.
ABP24564
MDQREKMDTAGGNTSCKHKKFFRKITIISTFGGLLFGYDTGVINGALPFMAQRDQLDLTPFTEGLITSSLLF


NO. 160.

GAAFGSLAGGRLADRIGRRKTILNLAFLFFIATIGCSFAPNTSVMIICRSLLGLAVGAASVTVPAFLAEMSPAE




QRGKTITQNDLMIILGQLLAFTCNAVIGTSMGEYAHVWRFMLILATLPAIFLWFGMLIVPESPRWLASKGK




VGEAFRVLKHVREENCAKAELTEIKASINRETEINRATLKDLSVPWIRRLVGLGIGIAVVQQITGVNSIMFYG




TQILQKAGFARDAALVANIGNGVISVIACTFGIWIVGKVGRRPLLLTGLAGTTASILLIAICSITLQGTPVLPFIV




IGLTITFLAFQQSAVSVVTWLMISEIFPLRLRGLGMGISVFFLWMMNFLIGLTFPVLLDQLGMSSTFFVFVV




LGASAILYVKKYLPETKGRTLEELENDFRSNQGVRKASSGKGEINM





SEQ. ID.
ABP24565
MINGEKKVDRPIRWAMVGGGRGSQIGYIHRSAALRDHHFQLVAGAFDINPERGKDFGMNLHVTPERCYL


NO. 161.

DFQQMFEEEAKREDGIEAVSIATPNGTHYEICKAALNVGLHVVCEKPLCFTFEEAKELENLAKKKNRVVGIT




YGYSGHQMIEQARQMIANGELGDIRIINMQFAHGFHSDPVEMNNPSTKWRVDPKFAGPSYVLGDLGTH




PLFLSEIMIPELKINKLLCTRQSFVKSRAPLEDNAYTIMEYDNGAVGTVWSSCVNAGSMHGQKIRVIGSKAS




IEWWDEQPNQLRFEIQGKPVQILERGMGYLYPEALQDDRIGGGHPEGLFEAWSNLYSRFAVAMEAADR




GKELEHMWYPGIEAGVGGVRWVENCVRSADKGAVWVDYQ





SEQ. ID.
ABP24566
MSIHIAGAPCCWGVDDPKNPYLPPWERVLQEASQAGYKGIELGPYGYIPMDIERVQAELLKNNLSIIAGTIF


NO. 162.

DDLVSESHLGNLLEQVDEICSLITKLPFSFQDKEERFRFSPPYLVLIDWGHDERDYKAGRPDQAKRLSKKEW




NRMMSHIRTIAERAWKQYGVRAVIHPHAGGYIEFEDEIQQLLKDIPYDIAGLCLDTGHLYYSKMDPEQWL




RDYADRVDYIHFKDIDEHVYQQVMGEHIRFFDACAKGVMCPIGQGIIDYEAIYKLLKDIHYHGYITIEQERD




PRNSDTSLRDVSQSLAYLKNVGY





SEQ. ID.
ABP24567
MEKEVFSKMKTTIYDVAEKAGVSISTVSKVINHQPVGMKSKQKVLDAMQELNYKPSVLASALTGKRTSTIG


NO. 163.

FLLPDIANPLIAEMARRVEDRAHEYGFNVVICSTDFKSEKEERYVSLLRQKRVDGFILAGGFRNKQVIHELIS




DNIPVILLSESQPYSSLTTVTVDNFLGGYELTAYLISLGHSRIAVIAEDNASSRERIRGYSQALQESDLDIHEDLI




VVTDSTAESAQSLASSLLQSSNPPTAMICCNDILAIGALLAAREEHVLVPEELSITGFDNTLISKSSDPPLTTVE




VPVQSMCSQAVDLLIDEIEGKASEKQKILVLPKLIVRKSTSRFH





SEQ. ID.
ABP24568
MSLVKNGDSIKVVFVFQKNEQIEEVELNSAQLSALLHSKQV


NO. 164.







SEQ. ID.
ABP24598
MDINDASEHLIQLKQDLIDRSKIEMINKLKRWAFSFLKHLNFEIQTFNYGFV


NO. 165.







SEQ. ID.
ABP24599
MKKRLIGFLVLVPALIMSGIILIEANKKAPVEVLESAWDEFGLFSFQIGKTDPSITIGMDHTKSEAKLREYLEH


NO. 166.

NLSREAKEKYKIYIFKDDIDKLEKEHREYLKANNPNK





SEQ. ID.
ABP24600
MRFTAGGNLSTMDSQVLDVIKKAYNLGMVNKDNMLLRNEAINAYRNSI


NO. 167.







SEQ. ID.
ABP24601
MLPEYRKKTPEEILEEIERLKRGRLKVYIGSAPGVGKTYRMLQEAHELKAEGLDVVIGLIETHNRKETEDLIGD


NO. 168.

LEIVPKKNIDYKGRLLEEMDTEAIIKRAPDLVLIDELAHTNVPFSQRNKRYMDVEEILKSGINVLSAVNIQHLE




SLHDIVQQITGVQVRERIPDSFLHMAHEIILVDVTPEILRKRLSEGKIYHPSKIEQALNNFFTASNLGALRELSL




REVANDVDERVEKANEKNGKNKPSGINEKIMVCVQHGSNAERLIRRGWRIANRLKTELIILHVTNEVSMK




RSTENRKKIQDWKRLAIQFNARFIIEQIKKRHIAKAITDVAKEHDVTQIILGQSARSRWEEIRKGSIVNMIMR




YTTGVDIHIVSDQQPRRK





SEQ. ID.
ABP24602
MLKIIRLALLMIIICGILYPLLMTGLAQAIFPDQANGSILKNKDGQIVGSELIGQQFTKSNYFQGRISSIKYNAV


NO. 169.

GSGSNNYGPTNQEMLERTKSFIRVLEEGNPDLKTKELPIDLITNSGSGLDPDISVKAAKFQVNRVSNATGVS




ESTLNKLIDNTIDGRSLGIFGEPRVNVLKLNMKVQEIISKGN





SEQ. ID.
ABP24603
MNKSNENSEMIKEAITQSFIKLNPLSMMKNPVMFVVEVGTFLVLLMLIMPSAFHSEEGYVYNLIVFLILLFTI


NO. 170.

LFANFAEALAEGRGKAQADSLKKTKKDTVARRINKNGTVTDISSADLKKGDIVLVETGDFIPGDGEIIEGLASI




DESAITGESAPVIKEAGGDFSSVTGGTKVVSDSIKVRITADPGESFLDKMISLVEGAKRQKTPNEIALTILLVTL




TIIFLLVVVTLLPIANYVGVHIELSTLIALLVCLIPTTIGALLSAIGIAGMDRVTQFNVLAMSGKAVEVAGDINTII




LDKTGTITFGNRLAAEFIPVSSTTQEELMQAAVITSLFDETPEGRSVLELAKNNGASWEASAYESAEIIPFTAE




ERMSGLIKDGHHYRKGAVDSIKAFVQEMGGPLPLDLQSKSEEVARQGGTPLAVSYNNRILGLIYLKDTVKP




GMRERFDELRKMGIKTIMCTGDNPLTASTIAKEAGVDDFIAEAKPEDKIRVIREEQEKGKLVAMTGDGTN




DAPALAQADVGLAMNSGTIAAKEAANMVDLDSDPTKIIEVVAIGKQLLMTRGSLTTFSIANDIAKYFAIIPA




MFTVAIPGMQVLNIMRLHSPTTAILSALIFNAIIIPLLIPLAMKGVKYVPMSASKLLSRNILIYGLGGIVVPFIGI




KLIDILVSVFMS





SEQ. ID.
ABP24604
MKGHTRLLIPMSIILTIILVSLKVPQTLSPSIEVTTLEGVKQVISIGPVASLESIKHLGTNGGGFFGANSAHPFE


NO. 171.

NPSPLTNVIEILSMWCIPASLTYTYGRFAKKQKQGWVIFGAMFILFIAFLSLIYVSESHGNPALTALGLDPSQ




GSMEGKEVRFGIAQSALFSSVTTAATTGTVNNMHDTLTPLGQITPLSLMMLNTVFGGDGVGLVNMLMY




AIIGVFICGLMVGRTPEFLGRKIEPKEMKLITVALLAHPLIILAPTALAFLADIGKGSISNPGFHGVSQVLYEFA




SSAANNGSGFEGLADNTPFWNISTGLVMLVGRYISIIALLAVAGSLVQKQPVPETIGTFKTDNLLFIGILVGV




VLIVGALTFFPVIALGPIAEYLSIR





SEQ. ID.
ABP24605
MGILQIIVVIMLMLFMIKPLGTYIYHVFSNEPNKTDKIFNPIEKIIYKICGMKNRLSMTWKQYAGSLLLTNMV


NO. 172.

FIAVGYVILRFQYILPLNPNGENMNSMLSFNTIISFMTNTNLQHYSGETGLSYFSQMAVIMMMMFTSAA




TGIAAAIAFIRGITSKGKTIGNFLKIL





SEQ. ID.
ABP24606
MNNNLGGITLDDVCMLAVIAVIFAVFWAFVKWCDFTIGGGEKQ


NO. 173.







SEQ. ID.
ABP20078
MPKQQTAELKPFFHNKTVLVTGGTGSIGSQIVKRLLMLTPKQVIVFSKDDSKQYVMSQKYAEDKRLLFVLG


NO. 174.

DVRDHRRVNQVMKGVDIVFHAAALKQVPTCEDHPFEAIQTNLIGGQNVVEAALSHRVQHVINISTDKAV




FKDTDYKLIKKKGLF





SEQ. ID.
ABP20079
MPYEEYEELKKKTIKVIQRKNYSIRIIDQKFENDNLDQLYKEVARLLFERALKSSE


NO. 175.







SEQ. ID.
ABP20080
MGANNQGKVFEANIEKSAADQKLFFYRIKDVNPMFLKRGAAVSKNKYDCFLHFNGYLFPFELKSTKDKSIA


NO. 176.

FREKIIKPQQIKYLKEATQYPNIIPGFLFQFREPENKVYFVHIDEFLKYKNIAEKQLKHTYKNKVNKASIPIAICE




EIGTEVRWMKKKVNYTYYLNKLCVELIKKEQSRDKPLHTYNTPVKTGVR





SEQ. ID.
ABP20081
MYVLKSLLKEVYIVKKQWKPVDSRLNELMHEYSVSIEDLVERTGLPKQRINDYVSGFKSNMNIGTAMTFAD


NO. 177.

AIGCSIEELYVWNFKERRQLIK





SEQ. ID.
ABP20082
MKTVKEAIDEKDLQRAHRNLINLADNNEELMQEIRWIKKGTTL


NO. 178.







SEQ. ID.
ABP20083
MNLKNIDENRYKKTYSVQPNDIFFVVRKNGNQTPYLIYKDKNKMLKLINLQSGASNYCADTIDSLVGIYIKE


NO. 179.

NQESPANKVNPIKEYFFAKSHETSIRVHNTFNYNPIK





SEQ. ID.
ABP20084
MKTIKLYELVSEGKKPIIKFNDNVYEWIEESVDTMMMGKIIGASIEYEDSVRFLIDLNPFEAYNRSVARHDW


NO. 180.

RDDEGNCVLTWFDTSFYPKNGIEAIYLPINGRTEIAFDFTEEDSLLNEYAKVPQEISYVEWLENEVKQLISK





SEQ. ID.
ABP20085
MIVTAWILLIMFGLFALSDLNLTEDETKHIKFFMLMKFFSVFIAAIAAGVI


NO. 181.







SEQ. ID.
ABP20086
MKNTEFKKTSFLEEYKRGDEMRRDFIIHEGYTAIEEIIKEVNQRGSLNEADIYYGTPKPQLSFSDVELGYMLT


NO. 182.

SMMEYATNHVGNPVDEECEFENKLAYFEYKDEIVQIFEVYGQGTESWFSKPSDDTIDKLNNTAYGVYLIQF




DDFINYTKNKDSESEKLSPSSTILNDITGGYTVGRGSK





SEQ. ID.
ABP20087
MLELDEYILKSEMDFADPEEIRSCIISFVSSLQQYIDLCKEELNEEYRV


NO. 183.







SEQ. ID.
ABP20088
MVELAKEENMLFFDHYPTEYGGWQTGNRDVWGIWGQRYLLKKVSDGCCEYVSR


NO. 184.







SEQ. ID.
ABP20089
MYGEDVEVTLDGNIKVKVFVFCLPTTCKEEKEKRALLTLKNLIDKRLKNEDLKYLDVQSDFVLIPKMIENGEF


NO. 185.







SEQ. ID.
ABP20090
MRVSSEALKIVIVQHLERDNDLMSEGKIIVLPCRDEKTAKEFEDFYRKKFPSTQLMSIEIVDSNIYG


NO. 186.







SEQ. ID.
ABP20091
METKKYVRIIRNASKYGDMTGQIFPLFGTWEDSYKIDGSDGVVYVRKKDVEVIVTENRRPKVDERVLITEVL


NO. 187.

LSSGHYKIGDIYTVLSVVDIYGTITVKEHSNCVISREYEVIVDEVKKEEADGMENVNQTVINNANTVFEKKDD




KYFGYKSRFGDIVIGGAYSYRFVVQYAKTNQDVVVIPGDENTVTTPVCTTLEERLWQPEKAVKSSPRNLHY





SEQ. ID.
ABP20092
MEVGDKIHNTNEQITALEKKKYQIETTLLEKQRDLLKLETQQNKEKLELLFELSEVLTQLQDEEWVSCMIALR


NO. 188.

IIRRNKRKYLNLFELVNEKAYINKDKFKVLHDEFFDLKQQLNEI





SEQ. ID.
ABP20093
MIYKTFLPYADKVYLTIVDSAQREADSYFPMLDDRWKLTDKRHNKADEKNKYNYSFITFENNYRQK


NO. 189.







SEQ. ID.
ABP20094
MTQFDKQYNSIIKDIINNGISNEEFDVRTKWDSDGTPAHTLSVMSKQMRFDNSEVPILTTKKVAWKTAIKE


NO. 190.

LLWIWQLKSNDVNDLNKMGVHIWDQWKQEDGTIGHAYGFQLGKKNRNLNGEKVDQVDYLLHQLKNN




PSSRRHITMLWNPDELDAMALTPCVYETQWYVKHGKLHLEVRARSNDMALGNPFNVFQYNVLQRMIA




QVTGYELGEYIFNIGDCHVYTRHIDNLKIQMEREQFEAPELWINPEVKDFYDFTIDDFKLINYKHGDKLFFEV




AV





SEQ. ID.
ABP20095
MFKVLDVLDGEKTKQNTYIYWLFVCGNFLFVVFYLADVFL


NO. 191.







SEQ. ID.
ABP20096
MLKDKNKITKSIEKINKLEEGLALFEEGDEEYLSVLVKIQGLYDEIADTALECFKEMTTKIRKTGQKRIGKGIDQ


NO. 192.

LPYTIKENIADQVNELKGSFLDESKY





SEQ. ID.
ABP20119
MDSYPESLKKETEEIKERVRNGNIKEDRIKEIAETTVEFLKSEEKRHKYFSEVAAAMADNLSEFFKSYLKGE


NO. 193.







SEQ. ID.
ABP20120
MKKLRVMSLFSGIGAFEAALRNIGVEYELVGFSEIDKYAIKSYCAIHNVDEQLNYGDVSKIDKKKLPEFDLLV


NO. 194.

GGSPCQSFSVAGYRKGFEDTRGTLFFQYIDTLKEKQPRYFVFENVKGLINHDKGNTLNIMAESFSEVGYRID




LELLNSKFFNVPQNRERIYIIGVREDLIENDEWVVEKGRNDVLSKGKKRLKELNIKSFNFKWSAQDIVGRRLR




EILEEYVDEKYYLSEEKTSKLIEQIEKPKEKDVVFVGGINVGKRWLNNGKTYSRNFKQGNRVYDSNGIATTLT




SQSVGGLGGQTSLYKVEDPIMIGHIDLKGHDAIKRVYSPDGVSPTLTTMGGGHREPKIAVEYVGNINPSGK




GMNDQVYNSNGLSPTLTTNKGEGVKISVPNPEIRPVLTPEREEKRQNGRRFKEDDEPAFTVNTIDRHGVAI




GEYPKYRIRKLTPLECWRLQAFDEEDFEKALSVGISNSQLYKQAGNSITVTVLESIFKELIHTYVNEESE





SEQ. ID.
ABP20121
MDINGKDLNKIHNIDCVQFMRENMGDCSIDLTVTSPPYDDLRKYNGYSFNFEATARELYRVTKDGGVVV




WVIGDKTHNGSESGTSFKQALYFKEIGFNLHDTMIYEKDSISFPDKNRYYQIFEYMFVFSKGKPKTINLISDR





NO. 195.

KNKWYNGKKHIKGHYRKMDGEKVRHNKQNLLKEFGVRFNIWRIPNGHQKSTLDKVAFEHPAIFPERLAE




DHILSWSNEGDIVLDPFMGSGTTAKMAALNNRKYIGTEISKEYCDIANERLRNYIGTI





SEQ. ID.
ABP20122
MKKVIAIDMDQVLADLLSDWVAYINTHDDPFLKEEEILCWDIKKYTNTNNNVYRHLDYDLFRNLDVIEGSQ


NO. 196.

RVVKELMKKYEVYVVTTATNHPESLKAKLEWLTEHFSFIPHSNVVLCGNKSIIKADIMIDDGIHNLESFEGM




KILFDAPHNRNDNRFIRVMNWEEIERKLL





SEQ. ID.
ABP20123
MALIILEGPDCCFKSTVAAKLSKAMKYPIIKGSSFELATSGNQKLFEHFNRLADEDSVIIDRFVYSNLVYAKKF


NO. 197.

KDYSILTEQQLRIIEDKIKLKAKVVYLHADPSVIKERLSIRGDEYIEGKDIDSILELYREVMSNAGLHTYSWDTG




QWSSDEIAKDTIFLVE





SEQ. ID.
ABP20226
MGYKLMAYGGYFLFCLFFLLMDGWRGMGICLIIAGLALLALEPYKIKAQKNIDKLKENAETLKHYESGFNPD


NO. 198.

NFFNTYKTKIAFKESDSLVKIYQLNRNEHIEEYTIPFSNIIESEITLDNQIISKVSKSGIVAGGLLAGGIGAALGGL




SASSIQNEMVKSVTLKITVEDLGKPIHYIDFLPTQEVEGYNTQGYKKDSNIIQQALKNAEYWHGVMDVIIKK




ASKVAQ





SEQ. ID.
ABP20227
MSQNLKIILTPQADTSSKTVEQLNQQIKSLEKKLNSLKLNTNIDSTTLKALQEFSSAVDAYQKNLKSYNQTVR


NO. 199.

ETSTVIKNADGSVEKLTQQYKKNGEILQRETKIINNRNTALKQETQEVNKLTQATEKLGQVQKKTVQRNLQ




GQPTKIVQKNRQGFDDIVYTTDPKTNSTSSKTTTNYDQQRRAIEQLKQDLEKLRQQGIVTDTTISSLGRKIN




TAQSAQQIEALQNRIRMLDDKSAAVAKNNELKKTIELYQRQAQVNVQNLNTRYGSSMGSSNRQAVQDY




LNAVNSLNVSTGSNNIRSQIQSLNMQFRELASSAQAAANQASSFGAELTQTFKSMSTYLISGSLFYGAISGL




KEMVSQAVEIDTLMTNIRRVMNEPDYKYNELLQESIDLGDTLSNKITDILQMTGDFGRMGFDESELSTLTK




TAQVLQNVSDLTPDDTVNTLTAAMLNFNIAANDSISIADKLNEVDNNYAVTTLDLANSIRKAGSTASTFGV




ELNDLIGYTTAIASTTRESGNIVGNSLKTIFARIGNNQSSIKALDEIGISVKTASGEAKSASDLISEVAGKWDTL




TDAQKQNTSIGVAGIYQLSRFNAMMNNFSIAQNAAKTAANSTGSAWSEQQKYADSLQARVNKLQNNFT




EFAIAASDAFISDGLIEFTQAAGSLLNASTGVIKSVGFLPPLLAAVSTATLLLSKNTRTLATTLILGTRAMGQET




LATAGLEAGMTRAAVASRVLKTALRGLLVSTLVGGAFAALGWALESLISSFAEAKKAKDDFEQSQQTNVEA




ITTNKDSTDKLIQQYKELQKVKESRSLTSDEEQEYLQVTQQLAQTFPSLVKGYDSQGNAILKTNKELEKAIEN




TKEYLALKKQETRDSAKKTFEDASKEIKKSKDELKQYKQIADYNDKGRPKWDLIADDDDYKVAADKAKQS




MLKAQSDIESGNAKVKDSVLSIANAYSSIDISNTLKASISDVVNKLNLKDNLDPEELEKFSSSLGKLQEKMQK




ALDSGDEKAFDNAKKDIQSLLETYSKSDSSIDVFKMSFDKAQKNIKDGDKSLSSVKSEVGDLGETLAEAGNE




AEDFGKKLKEALDANSVDDIKAAIKEMSDAMQFDSVQDALNGDIFNNTKDQVAPLNDLLEKMAEGKSISA




NEANTLIQKDKELAKAISIENGVVKINRDEVIKQRKVKLDAYNDMVTYSNKLMKTEVNNAIKTLNADTLRID




SLRKLRKERKLDMSEAELSDLEVKSINNVADAKKELKKLEEKMLQPGGYSNSQIEAMQSVKSALESYISASEE




AASTQEMNKQALVEAGTSLENWTDQQEKANEETKTSMYVVDKYKEALEKVNAEIDKYNKQVNDYPKYS




QKYRDAIKKEIKALQQKKKLMQEQAKLLKDQIKSGNIAQYGIVTTTSSPGGTSTSTGGSYSGKYSSYINSAAS




KYNVDPALIAAVIQQESGFNAKARSGVGAMGLMQLMPATAKSLGVNNAYDPYQNVMGGTKYLAQQLE




KFGGNVEKALAAYNAGPGNVIKYGGIPPFKETQNYVKKIMANYSKSLSSATSSIASYYTNNSAFRVSSKYGQ




QESGLRSSPHKGTDFAAKAGTAIKSLQSGKVQIAGYSKTAGNWVVIKQDDGTVAKYMHMLNTPSVKTGQ




SVKAGQTIGKVGSTGNSTGNHLHLQIEQNGKTIDPEKYMQGIGTSISDASQAEAERQQGIAQAKSDLLSLQ




GDIDSVNDQIQELQYELVQSKLDEFDKRIGDFDIRIAKDESMANRYTSDSKEFRKYTSDQKKAVAEQAKIQQ




QKVNWIQKEIKTNKALNSAQRAQLQEELKQAKLDLISVQDQVRELQKQLVQSKVDETLKSIEKSSSKTQGKI




KDVDNKISMTEEDEDKVKYYSKQIKLIQQQQKEAKKYIKQLEEQKKAAKGFPDIQEQITEEIENWKDKQKDF




NLELYNTKKSIKDIYKSLADEVVSIYKEMYEKMRDIELEAHQKATQDKIDEIDKEDEEAKYQKELKEKNQAIQ




ETKDKISKLSMDDSSEAKSQVKDLEKQLQEQQEALDEYIKDRSNTKRKEALQDQLDKDEESINNKYDDLVN




DERAFKKLEDKLMDGKITDIAKQLNEFTKFINENMKSIGKSISNNLIDKLKDAASALNTVTTGNTTGKKVSSF




ASGGYTGTGLGAGKLAFLHDKELILNKTDTENMLEAVKQVRQTSTDNSVKTTSKWGQPGKISDVLSKSISL




VTPAMNAAVASQTSLTKGLIPTLKNFSTPTVTPSTPQGNTSNNQNSFTINVTEASNAKETASLVYKQLANG




LKNTGLNFNIT





SEQ. ID.
ABP20228
MIRQSQYFLFDNEKSIDYGVENVNTESGLVEESFLGSRSVNETYVKGRSEPYTEGVKREAKQFPLNFYVGEN


NO. 200.

YDEKKIRAIKRWLDVDDYKPLAFSENLDIVYYAMPVDTSDLVHNAARHGYVRLTMKCNSPYAYSRNTSTHS




FDISSGMKTIELHNKGDVAIYPTVEILKIGDGDVKIENLSDYTDPFIFSNLKDREIVKVNGDKEIIESSLYGNERY




DDFNDNYIRLDYGKNRLKVTGKCKLRLTFRFKYR





SEQ. ID.
ABP20229
MITIRKDTEIKNIRLSLAKPDKTKIANIDEVLNPTVTLNHGSSVHELSFSIPLKATYDGVIKRNHVVDLLKPWYL


NO. 201.

IKTEFYGLAIWFIITKRTKSFSSEMDTVQVECRSLQHELSRISVLKYEETSKNLQEVVTDCLKNTSWTVGYIDT




LFNVKRRQFDVSSTNKLDFLYSICEKFDAVPVFDTVKETVSFYKESDISKYKGLKLNPRQYMISMDDSDDAD




ELVTRLYATGKDGISINSVNPTGQSYIDDFSYFLFPFQRDEQRNVISHSAYMPDELCHAILDYNDLVNSEGN




AFNKLLTQKNEAETGLTELNNELYTLDLEVQKLLDRIEVAKKAGDDTSQLKAQLAVKQKAVALKKNQIATIE




STISQISASISKLKEKLSFENNFSENQQKLLSRFISTTEWSNDSIYDENELYDDANEELESRNTPPVNVTLDIVN




FFNCISEKHNWDRFSLGDIVRVQQSDLNTDIKAILSAITIDFEQSNISVTVTNGKRVQSDFEKVIKTVYRTNKI




STELNKRKIEWDKVTENFNIRNDRISVQPAPPVIASDGTAITHKVNDNGSVDITIQWNYVDSNEDKYNIDG




FEVYLHGSDDNEEYTFGSVQASENLQNVKYDRRTATFTGLPSNMYYTIGVQAYRRVDADIDINQILLSDIVK




SNHPSENPYLPTPSIEVKGSLSGKVNGLYTISTESKPEEPETGTIWIDPKTNKQELFNGEEWIVSSAGSADSL




NGFTASLTTSPNSIPVRDQSGVISGSIDGNAEMLGGRAASDYALTENIPVPPKFAKGVYTGDGTLSKQIPLA




FTPDLVKITPISPEDSQLVIESQLGGYAYQVTSTGLSLIGGDLSYGALGNNLFITGSDSNCRGNKLNVKYIWE




AYQQN





SEQ. ID.
ABP20230
MGSLPTKLTEVIKLADFAELYNDPILSKKRIGSVEDPYLTYSETLTVYNGRALLTEIPNREFRVEVIGDKKEWR


NO. 202.

EIEDGELEDNYFKVDYLMGVVFFNASNEGKSLTFNYSGEGASFFPASRIWIKRQGNMVIETLQGLIDDAED




TIIRMNERIAECERVTKRCIEITNWCRQATSDYEYVVENTRKIYLPMVYTYQDLMDTYPNPQIGWVVTIRDT




GIEYRWDGFDWINISISDQFDGYNVVSSYIEPYNIRTVWLRTNSPPSKKRVKPSKDAPDGSMVWIRKG





SEQ. ID.
ABP20231
MSDNLIPVNTMGYYDEETKQWVPIDAVALKSENYRFTADDISQKFNKIGDIDAIKATGNTLSEKIINEFNYR


NO. 203.

GINISWLGAKGDGTTDDSSVFSSIESTYQDKVFDLAGKTYVVNSFPNKNKYLNGYFIIDGNKYFSGYVSSFQ




TGNSNIIIGNNAAKNFRPGDQYKGIAGHNIIAIGENALSNASEYTKNTTAIGAGALFNNKYGVYNLAIGLQS




QYYVTGVQGDAFKGTRNTSVGDNSMRFNKDGYSNVAMGRNALQTNEKSLWNTALGAAAMSGYAPLN




LDSKTIINNSPQTAGYQVAVGTNSLYWSNGIGNVGVGVNAGREIKNSQRNVAMGYYAMSQLDSDVSFE




GKQRFFPSIQAGYTWIGQDITLTHIGHTFIVGQNLSLALDGGEKFSTTVKSITVDTFTVSTTQIAQNEISGMA




QVSEYYTTTGTYVWKDNNIQVSMGNHPFQNGYKVLMSVGGREAIYFTVANSTSSGFTVSTDIIGDESGAV




KITEYSDTTPMAVNYDNTAIGVKAAWKMKKGSFNTAIGGLSLENNKGDYNTALGYMALKNNTTGNQNT




ALGYGALRFTTGGDEMKDISNSTGVGFNSRVSGSNQIQLGDGNSTPYSFNALQNRSDLRDKADI RDTVLG




LDFINKVRPVDYKWDIRDEYVEIKEDGTVITHERDGSKKKNRYHHGVIAQEIQKVIEAEGIDFGGFQHHELS




GGEDVMSIGYTEFIAPLIKAVQELSAKVEEQAKEIAALKKA





SEQ. ID.
ABP20232
MTIQARQMLVSPGKYPIKGRYAMTAEYITFHNTANDASANNEISYMRNNNETVSYHFAVDDKEVVQGLP


NO. 204.

TNRSAFHCGDGEYGTGNRKSIGVEVCYSKSGGERYRKAEALAIKFIAQLLKERGWGVERVKKHQEWSGKY




CPHRVLDEGRWNEVKAAIAAELKSLGGKSTTPTKTSTKPTTSSPSSSSAASGSLKSKVDGLRFYSKPSWEDK




NVVGTVNKGIGFPTVVEKVKVGSAYQYKVKNSKGATYYITASDKYVDVTGSVKASSPTPKTTSTSSSSSSIKS




VGKIKIVGVSSAAIVMDKPDRNSSKNIGTVKLGSTVSISGSVKGKNNSKGYWEVIYNGKRGYISGQFGSKI





SEQ. ID.
ABP20233
MTKINWKVRLKKKTFLVAIFSATLLFVQAIASAFGYDLTVFGDNLTEKFNALLTFLTAMGIIVDPTTQGISDSE


NO. 205.

QAMDYDSPR





SEQ. ID.
ABP20234
MLEQMISSSKVGVKINEWYKYIRLFSVPDSEILKAEVEEEIRHMKEDQDLFLYYSLMCFRHQLMLDYLEPKT


NO. 206.

LNEERPKVSDLLEKIESSQTDLKGILEYYFNFFRGMYEFEQYEYLNAISFYKQAERKLSLVADEIERAEFHYKVA




EIYYHMKQTHMSMHHIVQAIDSYKAHENYTVRVIQCSFVIGLNYLDMDYPEKAIPHFKDALDKAREIDMS




RLIGSSLYNLGLCSFAEEAYEKASEYFKEGIRVYQDNGYEHSNRILDILLMLTKTTFKMRNHSEGISWCAHGL




SLSKNLNDEIMAKMFEFIHALYVDNDNEKLNSILNYLELKSMLSDVEDLASDAAKYYNEKEDHKVAVAYYEK




VLYARKQIQRGDCLYET





SEQ. ID.
ABP20235
MKLKHASVFILAIVLIGFVSTYLTNTQKDVQEARRGHTASIGFTDGHSYEIASRGHTS


NO. 207.









The term “comprising” whenever used in this document is intended to indicate the presence of stated features, integers, steps, components, but not to preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.


The disclosure should not be seen in any way restricted to the embodiments described and a person with ordinary skill in the art will foresee many possibilities to modifications thereof.


The above described embodiments are combinable.


The following claims further set out particular embodiments of the disclosure.


REFERENCES



  • 1. Fetissov S O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol. 2016. doi: 10.1038/nrendo.2016.150. PubMed PMID: 27616451.

  • 2. Bäumler A J, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016; 535. doi: 10.1038/nature18849.

  • 3. Ganguly S, Prasad, A. Microflora in fish digestive tract plays significant role in digestion and metabolism. Reviews in Fish Biology and Fisheries. 2012; 22:11-6.

  • 4. Ray A K, Ghosh, K., Ringo, E. Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition. 2012; 18:465-92. doi: 10.1111/j.1365-2095.2012.00943.x.

  • 5. F A O. The state of world fisheries and aquaculture: Opportunities and challenges. Food and agriculture Organization of the United Nations. Rome, Italy. 2014. 243 p.

  • 6. Krogdahl A, Penn, M., Thorsen, J., Refstie, S., Bakke, A. M. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research. 2010; 41:333-44.

  • 7. Sinha A K, Kumar, V., Makkar, H. P. S., De Boeck, G., Becker, K. Non-starch polysaccharides and their role in fish nutrition—A review. Food Chemistry. 2011; 127:1409-26.

  • 8. Joint FAO/WHO Working Group Report on Guidelines for the Evaluation of Probiotics inFood, (2002).

  • 9. Setlow P. Spore Resistance Properties. Microbiol Spectr. 2014; 2(5). doi: 10.1128/microbiolspec.TBS-0003-2012. PubMed PMID: 26104355.

  • 10. Tam N K, Uyen N Q, Hong H A, Duc le H, Hoa T T, Serra C R, et al. The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol. 2006; 188(7):2692-700. doi: 10.1128/JB.188.7.2692-2700.2006. PubMed PMID: 16547057; PubMed Central PMCID: PMCPMC1428398.

  • 11. EFSA-BIOHAZ. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food and feed as notified to EFSA, European Food Safety Authority Panel on Biological Hazards (EFSA-BIOHAZ). EFSA Journal 2017; 15(3):4664. doi: 10.2903/j.efsa.2017.4664

  • 12. Cutting S M. Bacillus probiotics. Food Microbiol. 2011; 28(2):214-20. doi: 10.1016/j.fm.2010.03.007. PubMed PMID: 21315976.

  • 13. Bader J, Albin A, Stahl U. Spore-forming bacteria and their utilisation as probiotics. Benef Microbes. 2012; 3(1):67-75. doi: 10.3920/BM2011.0039. PubMed PMID: 22348911.

  • 14. Kunst F, Ogasawara N, Moszer I, Albertini A M, Alloni G, Azevedo V, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997; 390(6657):249-56. doi: 10.1038/36786. PubMed PMID: 9384377.

  • 15. Harwood C R, Cutting S M. Chemically defined growth media and supplements. In: Harwood C R, Cutting S M, editors. Molecular biological methods for Bacillus. Chichester, U K: John Wiley & Sons Ltd; 1990. p. 548.

  • 16. EFSA-FEEDAP. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance, European Food Safety Authority Panel on Additives and Products or Substances used in Animal Feed (EFSA-FEEDAP). EFSA Journal. 2012; 10(6):2740.

  • 17. Serra C R, Earl A M, Barbosa T M, Kolter R, Henriques A O. Sporulation during growth in a gut isolate of Bacillus subtilis. J Bacteriol. 2014; 196(23):4184-96. doi: 10.1128/J B.01993-14. PubMed PMID: 25225273; PubMed Central PMCID: PMCPMC4248874.

  • 18. Casula G, Cutting S M. Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol. 2002; 68(5):2344-52. PubMed PMID: 11976107; PubMed Central PMCID: PMCPMC127533.

  • 19. Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio. 2015; 6(3):e00022-15. doi: 10.1128/mBio.00022-15. PubMed PMID: 25991678; PubMed Central PMCID: PMCPMC4442137.

  • 20. Zhou Z, Zhou X, Li J, Zhong Z, Li W, Liu X, et al. Transcriptional regulation and adaptation to a high-fiber environment in Bacillus subtilis HH2 isolated from feces of the giant panda. PLoS One. 2015; 10(2):e0116935. doi: 10.1371/journal.pone.0116935. PubMed PMID: 25658435; PubMed Central PMCID: PMCPMC4319723.

  • 21. EFSA-FEEDAP. Guidance for the preparation of dossiers for technological additives, European Food Safety Authority Panel on Additives and Products or Substances used in Animal Feed (EFSA-FEEDAP). EFSA Journal. 2012; 10(1).

  • 22. EFSA-FEEDAP. Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition, European Food Safety Authority Panel on Additives and Products or Substances used in Animal Feed (EFSA-FEEDAP). EFSA Journal 2014; 12(5).

  • 23. Cabello F C, Godfrey H P, Buschmann A H, Dolz H J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis. 2016. doi: 10.1016/S1473-3099(16)00100-6. PubMed PMID: 27083976.


Claims
  • 1. A bacterial strain selected from the group consisting of: ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, and a mixture thereof.
  • 2. A composition for aquatic animal feed comprising a bacterial strain selected from the group consisting of: ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, and a mixture thereof.
  • 3. The composition of claim 2, comprising 1×105-1×1012 of colony forming units of the bacterial strain per gram of the composition.
  • 4. The composition of claim 2, comprising 1×107-1×1010 colony forming units of the bacterial strain per gram of the composition.
  • 5. The composition of claim 2, further comprising a preservative.
  • 6. The composition of claim 2, wherein said composition is in a granulate form, a powdered form, or a pellet.
  • 7. The composition of claim 6, wherein the granulate form comprises a coating, and wherein the coating comprises a salt, wax, a flour, or a combination thereof.
  • 8. A method for feeding an aquatic animal present in an aquaculture comprising the step of feeding the aquatic animal with a composition comprising a bacterial strain selected from the group consisting of: ABP1 with a deposit under the accession number CECT 9675, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, ABP2 with a deposit under the accession number CECT 9676, of Aug. 6, 2018, at Colección Española de Cultivos Tipo, and a mixture thereof.
  • 9. The method of claim 8, wherein the step of feeding the aquatic animal is carried out during the life span of the aquatic animal.
  • 10. The method of claim 8, wherein the aquatic animal is selected from the group consisting of: a shellfish, fish, amberjack, arapaima, barb, bass, bluefish, bocachico, bream, bullhead, cachama, carp, catfish, catla, chanos, char, cichlid, cobia, cod, crappie, dorada, drum, eel, goby, goldfish, gourami, grouper, guapote, halibut, java, labeo, lai, loach, mackerel, milkfish, mojarra, mudfish, mullet, paco, pearlspot, pejerrey, perch, pike, pompano, roach, salmon, Atlantic salmon, sampa, sauger, sea bass, European sea bass, seabream, gilthead seabream, white seabream, shiner, sleeper, snakehead, snapper, snook, sole, spinefoot, sturgeon, sunfish, sweetfish, tench, terror, tilapia, trout, tuna, turbot, vendace, walleye, halibut, whitefish, and shrimp.
  • 11. (canceled)
  • 12. (canceled)
  • 13. (canceled)
  • 14. (canceled)
  • 15. (canceled)
  • 16. (canceled)
  • 17. (canceled)
  • 18. (canceled)
  • 19. (canceled)
Priority Claims (1)
Number Date Country Kind
115101 Oct 2018 PT national
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2019/059131 10/24/2019 WO 00