This application claims priority upon U.S. application Ser. No. 10/743,895 filed Dec. 22, 2003, now U.S. Pat. No. 7,014,582, issued Mar. 21, 2006, which claims priority upon U.S. provisional application Ser. No. 60/435,225 filed Dec. 20, 2002.
The present disclosure relates to sport or game balls that contain mechanisms for inflating or adding pressure to the balls. The inflation mechanisms additionally utilize an integral pressure relief assembly, and/or an integral pressure indicating device. The inflation mechanisms include a pressure sensor and indicator assembly that measures the internal pressure of the ball and provides an indication of the measured pressure.
Conventional inflatable sport balls, such as basketballs, footballs, soccer balls, volleyballs and playground balls, are inflated through a traditional inflation valve using a separate inflation needle that is inserted into and through a self-sealing inflation valve on the ball. A separate pump, such as a traditional bicycle pump, is connected to the inflation needle and the ball is inflated using the pump. The inflation needle is then withdrawn from the inflation valve which then self-seals to maintain the air pressure within the ball. This system works fine until the ball needs inflation or a pressure increase and a needle and/or pump are not readily available.
Additionally, the amount of air pressure present in conventional inflatable sports balls is generally determined by “feel” of the ball to the player. For example, the surface of the ball may be pushed inwardly by the player or “bounced” against a hard surface. Additional air pressure can be added until a general desired “feel” is obtained. However, such a range of feel can vary from player to player. Moreover, it is important in some balls not to exceed the maximum air pressure limitations set forth by the manufacturer.
More recently, inflatable sport balls have been developed that have built-in integral pumps. For example, the present assignee has filed a number of patent applications and at present, has received several patents directed to various aspects of that subject matter. Although the recently developed sport balls with self-contained inflation mechanisms have received praise and acclaim in the industry, a need remains for an improved sport ball.
In this regard, one problem associated with inflatable sport balls, relates to determining or confirming, the pressure inside the ball. Inserting a pressure gauge into the inflation valve on a ball to obtain a measurement of the ball's pressure invariably results in leakage of air from the ball. Such leakage in turn further reduces the ball pressure, and may require another pumping or filling operation to add additional air to the ball.
It is also desirable to accurately determine the pressure rather than relying upon the “feel” or “bounce” of the ball. Additionally, since the feel or bounce of a ball is subjective, people often have different views as to whether a ball is sufficiently pressurized.
An inflatable sport ball having an on-board pressure indicator is known and described in U.S. Pat. No. 5,755,634 to Huang, herein incorporated by reference. Although that ball and pressure display may be satisfactory, in order to inflate the ball, a separate pump or inflation mechanism is required. Hence, a need remains for an improved ball having an integral pressure indicator, particularly for inflatable sport balls having self-contained inflation mechanisms.
Accordingly, it would be desirable to produce an inflatable sports ball with an integral pressure sensor, pressure indicator, and a self-contained inflation mechanism.
An object of the present disclosure is to inflate or add pressure to a sport ball without the need for separate inflation equipment such as a separate inflation needle and pump, and to be able to reduce or relieve the pressure of the ball if necessary.
Another object of the present development is to easily determine the pressure of a sport ball, without the use of a separate pressure indicating or measuring device.
Another object of the disclosure is to determine the pressure of a sport ball without significant loss of air from the pressurized interior of the ball.
The present development provides a sport ball comprising a self-contained inflation mechanism with an optional integral pressure relief device. The development also provides a sport ball comprising multiple self-contained inflation mechanisms in which at least one of the inflation mechanisms includes an integral pressure relief device. Specifically, the disclosure relates to a sport ball that has at least one self-contained pump device which is operable from outside the ball and which pumps ambient air into the ball to achieve the desired pressure. The pump also comprises an assembly for reducing or relieving the pressure of the ball. Additionally, the pump may have an integral pressure sensor and indicator assembly to determine the relative pressure of the ball.
Since the pressure in a sport ball can be too high through overinflation or a temperature increase, or too low through underinflation or air loss, it is beneficial to have a pressure relief mechanism, and optionally, a pressure-indicating device that is integral with an on-board pump. If the pressure is too low, additional air may be added using the self-contained pump of the development. If the pressure is too high, the pressure may be relieved by bleeding pressure from the ball with the pressure relief mechanism described herein. Once the pressure has been relieved, the pressure-indicating device, if present, may then be used to determine if the ball is correctly inflated. If too much air is removed, additional air may be added using the pump.
In a first aspect, the present disclosure provides an inflatable sport ball having an integral pump, pressure sensor and indicator assembly, and pressure relief mechanism. The ball comprises a flexible carcass including an inflatable bladder having an interior adapted for retaining pressurized air, and an outer layer disposed on the bladder. The ball further comprises a pump cylinder secured to the carcass. The cylinder includes a distal end at which is disposed a valve. The cylinder defines an interior hollow chamber in communication with the interior of the bladder through the valve. The ball also comprises a pump piston disposed in the cylinder. The piston is positionable within the cylinder and includes a distal end at which is disposed an actuating member. The ball also comprises a pressure sensor and pressure indicator assembly incorporated in the ball and adapted to indicate the internal pressure of the ball. The piston and cylinder are configured such that upon selective positioning of the piston, the actuating member engages the valve to selectively provide passage and escape of pressurized air from within the bladder.
In another aspect, the present development provides an inflatable sport ball having an integral pump and pressure indicating assembly. The ball comprises a flexible carcass including an inflatable bladder having an interior adapted for retaining pressurized air, and an outer layer disposed on the bladder. The ball further comprises a pump cylinder secured to the carcass. The cylinder includes a nozzle end. The cylinder defines an interior hollow chamber in communication with the interior of the bladder through the nozzle end. The ball further comprises a pump piston disposed and positionable within the cylinder. The piston includes a distal end, and further includes a pressure sensor and a pressure indicating assembly. The pressure sensor is adapted to sense and measure the pressure of the interior of the bladder, and provide a signal to the pressure indicator representative of the measured pressure. The pressure indicator is adapted to indicate the measured pressure of the ball. Upon engagement between the distal end of the piston and the nozzle end of the cylinder, the pressure sensor is placed in communication with the interior of the ball. This causes the pressure indicator to indicate the pressure within the ball.
In a further aspect, the present disclosure provides an inflatable sport ball having an integral pump, pressure relief mechanism, and pressure indicating assembly. The ball comprises a flexible carcass including an inflatable bladder having an interior adapted for retaining pressurized air, and an outer layer disposed on the bladder. The ball further comprises a pump cylinder secured to the carcass. The cylinder includes a distal end at which is disposed a valve for providing communication with the interior of the bladder. The cylinder defines an interior hollow chamber in communication with the interior of the bladder through the valve. The ball further comprises a pump piston disposed in the cylinder. The piston is positionable within the cylinder. The piston includes a pressure indicating assembly and a distal end at which is disposed an actuating member. The piston and cylinder are configured such that upon selective positioning of the piston, the member engages the valve to selectively provide passage and escape of pressurized air from within the bladder, and the pressure sensor is placed in communication with the interior of the bladder to thereby cause the pressure indicator to indicate the pressure within the ball interior.
In yet a further aspect, the present development provides a pump adapted for incorporation in an inflatable sport ball. The pump comprises a cylinder having a nozzle end, a valve disposed at the nozzle end, an open end opposite from the nozzle end, and a sidewall extending between the nozzle end and the open end. The open end is adapted for engagement with a carcass of the ball. The pump further comprises a piston movably disposed in the cylinder. The piston includes a distal end at which is disposed an actuating member. The pump also comprises a pressure sensor and pressure indicator incorporated in the piston and adapted to indicate the internal pressure of the ball. The piston and the cylinder are configured such that upon selective positioning of the piston within the cylinder, the actuating member engages the valve to selectively open the valve.
Other objects of the development disclosed herein will become apparent from the specification, drawings and claims.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the disclosure and not for the purposes of limiting the same.
Referring to
The ball 10 is a typical basketball construction comprising a carcass having a rubber bladder 12 for air retention, a layer 14 composed of layers of nylon or polyester yarn windings wrapped around the bladder 12 and an outer rubber layer 16. As will be understood, the term “carcass” refers to the flexible body of the ball. For a laminated ball, an additional outer layer 18 of leather or a synthetic material may be used. The layer 18 may comprise panels that are applied by adhesive and set by cold molding to layer 16. The windings 14 are randomly oriented and two or three layers thick, and they form a layer that cannot be extended to any significant degree. The windings also restrict the ball 10 from expanding to any significant extent above its regulation size when inflated above its normal playing pressure. This layer 14 for footballs, volleyballs and soccer balls is referred to as a lining layer, and is usually composed of cotton or polyester cloth that is impregnated with a flexible binder resin such as vinyl or latex rubber. The outer layer 18 may be stitched for some sport balls, such as a soccer ball or a volleyball. The outer layer 18 may optionally have a foam layer backing or a separate foam layer.
Other sport ball constructions, such as sport balls produced by a molding process, such as blow molding, may also be used in the disclosure. For an example of a process for molding sport balls, see, for example, U.S. Pat. No. 6,261,400, incorporated herein by reference.
Materials suitable for use as the bladder include, but are not limited to, butyl, latex, urethane, and other rubber materials generally known in the art. Examples of materials suitable for the winding layer include, but are not limited to, nylon, polyester and the like. Examples of materials suitable for use as the outer layer, or cover, include, but are not limited to, polyurethanes, including thermoplastic polyurethanes; polyvinylchloride (PVC); leather; synthetic leather; and composite leather. Materials suitable for use as the optional foam layer include, but are not limited to, neoprene, SBR, TPE, EVA, or any foam capable of high or low energy absorption. Examples of commercially available high or low energy absorbing foams include the CONFOR™ open-celled polyurethane foams available from Aearo EAR Specialty composites, Inc., and NEOPRENE™ (polychloroprene) foams available from Dupont Dow Elastomers.
Referring to
The central opening though the boot 20 is preferably configured with a groove 24 to hold a flange extending from the upper end of a pump cylinder, described in greater detail herein. The pump cylinder can optionally be bonded to the boot 20 using any suitable flexible adhesive (such as epoxy, urethane, cyanoacrylate, or any other flexible adhesive known in the art).
Referring to
Sealingly disposed within the hollow chamber of the cylinder 28 is the piston 30. The piston 30 includes a cap end 58, and a sealing end 35 opposite from the cap end 58. Extending between the cap end 58 and the sealing end 35 is a body component 33. Defined along the sealing end 35 of the piston 30 is a recess 36 extending along the outer periphery of the body 33, for retaining an O-ring 38. As seen in the referenced figures, this recess 36 is dimensioned such that the O-ring 38 can move in the recess 36. The O-ring 38 is forced into the position shown in
The piston 30 further defines an annular recess 32 accessible from the sealing end 35 of the piston 30 that preferably houses a spring 34. The spring is preferably a coil spring and positioned to urge the piston 30 in the cylinder 28 in a direction away from the cylinder exit nozzle 46. This configuration is preferred for pumps having an integral pressure relief mechanism as described herein. In these embodiments, the function of the spring is to maintain separation between the sealing end 35 of the piston 30 and a valve used for releasing air from the ball. This aspect is described in greater detail herein. It will be appreciated that the present disclosure pumps include piston configurations that do not include the noted annular recess 32 or spring 34.
As noted, a feature of the pump of the present development is the provision of an integral pressure relief mechanism. The preferred pump 5a under discussion provides such a mechanism as follows. The piston 30 includes a needle or other suitable device 90 such that upon suitable positioning of the piston 30, the needle 90 forces a valve 68 open to allow air to escape (see
The piston 30 undergoes several functions depending upon its relative position within the cylinder 28. In
In another embodiment of the development (not shown), the piston 30 of the pump 5a includes a button or valve that activates a device, such as a needle, to open the valve 68. The button could be accessible from the exterior of the ball. In one position when the button is pushed, the needle is engaged with the valve 68 to allow air to escape from the ball interior. When the button or valve is released, the needle is retracted and the valve 68 closes and seals. That is, the button or valve may have two positions, in which the first position opens the valve 68 and allows air to escape, and the second position retracts the needle or device and allows the valve 68 to close or seal. A spring or other member can be used to urge the button or valve to a default position.
It is also contemplated to use the piston 30 and its relative position within the cylinder 28 to indicate the pressure of the ball. In this embodiment, the piston 30 is backed by a spring which counters the force exerted upon the displaced piston 30 by the pressurized air from the ball interior. The position of the piston 30 indicates the ball pressure.
Details of the components of an alternative embodiment, i.e., the pump 5b, such as piston 30 and cylinder 28, are as previously described
In another embodiment of the disclosure, shown in
The preferred embodiment sport balls utilize a particular mounting configuration for securing and incorporating the pumps, such as the preferred embodiment pumps 5a, 5b, and 5c, within the interior of the ball.
As shown in
At the upper end of the piston 30, two outwardly extending flanges 48 are provided that cooperate with a cylinder cap 50 shown in
Referring to
In a preferred embodiment, fibers or other reinforcing materials may be incorporated into the rubber compound or thermoplastic material of the button 58 during mixing. Examples of fibers or materials suitable for use include, but are not limited to, polyester, polyamide, polypropylene, Kevlar, cellulistic, glass and combinations thereof. Incorporation of fibers or other reinforcing materials into the button or cap 58 improves the durability of the button and improves the union of the button or cap and the piston 30, thus preventing the button or cap from shearing off during use. Although the pump would still function without the button, it would become very difficult to use.
Preferably, the button or cap 58 is co-injected with the piston 30 as one part. Alternatively, the button or cap 58 may be co-injected with a connecting piece, and the button or cap 58 and connecting piece may then be attached to the upper end of the piston 30 using an adhesive suitable for bonding the two pieces together. Co-injecting the button 58 and the piston 30 as one part, or alternatively, the button 58 and the connecting piece as one part that is mounted to the piston, provides a more durable part that is less likely to break or come apart during routine use of the ball. The button or cap material and the piston material need to be selected such that the two materials will adhere when co-injected. Testing of various combinations has shown that co-injecting or extruding a soft rubber button, such as a button comprising SANTOPRENE™, and a harder piston, such as polycarbonate or polypropylene and the like, provides a durable bond without the need for adhesives.
The piston and the connecting piece may be formed of any suitable material, such as, but not limited to polycarbonate (PC), polystyrene (PS), acrylic (PMMA), acrylonitrile-styrene acrylate (ASA), polyethylene terephthalate (PET), acrylonitrile-butadiene styrene (ABS) copolymer, ABS/PS blends, polypropylene (preferably high impact polypropylene), polyphenylene oxide, nylon, combinations thereof, or any suitable material known in the art. Materials with high impact strength are preferred. The material used for the piston is preferably clear or transparent to allow the pressure-indicating device 72 to be viewed by the user.
As further illustrated in
A pump assembly of the type described and illustrated in the referenced figures is preferably made primarily from plastics such as polystyrene, polyethylene, nylon, polycarbonate and combinations thereof, but it can be made of any appropriate material known in the art. Although the assembly is small and light weight, perhaps only about 5 to about 25 grams, a weight may optionally be added to the ball structure to counterbalance the weight of the pump mechanism. In such an application, the weight, i.e. the counterweight, is positioned on or within the ball, and has a suitable mass, such that the resulting center of mass of the ball coincides with the geometric center of the ball. In lighter weight or smaller balls, such as a soccer ball, the pump assembly may weigh less and/or be smaller (shorter) than a corresponding pump assembly for a heavier ball, such as a basketball.
The description and the drawings referenced herein describe a particular and one preferred pump arrangement. However, other pump arrangements can be used within the scope of the disclosure. Examples of other pump arrangements that may be used with the development are shown in co-pending Application Ser. No. 09/594,980, filed Jun. 15, 2000; Ser. No. 09/594,547, filed Jun. 14, 2000; Ser. No. 09/594,180, filed Jun. 14, 2000; and Ser. No. 09/560,768, filed Apr. 28, 2000, incorporated herein by reference. Additional details and features that may be implemented in conjunction with the balls and pumps described herein are provided in U.S. Application publication No. US 2002/187866, filed as Ser. No. 10/183,337 on Jun. 25, 2002; U.S. Pat. No. 6,491,595, filed as Ser. No. 09/712,116 on Nov. 14, 2000; and U.S. Pat. No. 6,287,225 filed as Ser. No. 09/478,225 on Jan. 6, 2000, all of which are hereby incorporated by reference.
Since the pressure in a sport ball can be too high through overinflation or a temperature increase, or too low through underinflation or air loss, it can be beneficial to have a pressure relief device and/or a pressure-indicating device that is integral to the pump. If the pressure is too low, additional air may be added using the self-contained pump of the disclosure. If the pressure is too high, the pressure may be relieved by bleeding pressure from the ball with the conventional inflating needle or other implement that will open the conventional inflation valve to release air. Alternatively, the pump may have a mechanism that allows the pressure to be relieved, either through action of the pump, or through the use of a relief mechanism built into the pump, such as a mechanism to open the one-way valve if desired to allow air to flow out of the interior of the ball. The pressure-indicating device of the present development may then be used to determine if the ball is correctly inflated. If too much air is removed, additional air may be added using the pump.
In a particularly preferred embodiment, a pressure sensor and indicator are incorporated in a sport ball having a self-contained inflation mechanism as described herein.
Specifically, the plunger 210 defines a first end 212 at which is disposed a needle member 220 defining an air flow passage. The needle extends from a base 222 of the plunger 210. The base 222 supports the needle 220 and defines an aperture 225 which provides flow communication to the interior of the plunger 210. The plunger 210 also defines a second end 214, generally opposite from the first end 212. The second end 214 is adapted to receive the pressure sensor and indicator component 250. The plunger 210 is generally hollow and defines an interior volume accessible from the second end 214. An optional adapter component 230 can be utilized to engage or promote receipt of the pressure indicator and sensor component 250.
The cylinder 240 also defines a generally hollow interior region extending between a first end 246 and a second end 244 opposite from the first end 246. Disposed at the first end 246 of the cylinder 240 is a valve component 248 defining an actuation port 242, described in greater detail herein.
The pressure indicator and pressure sensor component 250 includes a member or substrate 252 on which are disposed a pressure sensor 260, a pressure indicator 270 providing a display 275 or other visual indicia representative of the sensed pressure, and one or more batteries 280, 282. The pressure sensor 260 senses, measures, or otherwise determines the pressure of its surroundings, i.e. the internal region of the plunger 210 and transmits that information to the pressure indicator 270. The indicator 270 provides a visual display of the sensed pressure, such as at display 275. The pressure sensor 260 and/or the pressure indicator 270 may be powered by one or more sources of electrical power such as for example low voltage batteries 280, 282.
The assembly 200 can further comprise an optional end cap 290 that engages the end 214 or component 230 of the plunger 210. The end cap 290 also serves to seal the interior hollow region of the plunger 210 from the external environment and thus ensure that the pressure sensor 260 only measures the pressure within that region. This is described in greater detail herein.
In this particular embodiment assembly 200, since the pressure indicator and sensor component 250 is affixed and sealed within the plunger 210, it is preferred that the plunger 210 be formed of a transparent material or at least define a viewing window through which the pressure indicator 270 and specifically the display 275, is observable.
Operation of the preferred assembly 200 is as follows. Referring to
Pressure equalization between regions A and B occurs rapidly as region B is soon at the same pressure as the interior of the ball, i.e. region A. The pressure sensor 260 senses, measures, or otherwise determines this pressure and transmits an electrical signal to the pressure indicator 270 for display.
It will be appreciated that it is generally preferred that the pressure sensor and/or pressure indicator provide a memory function such that a sensed pressure to be displayed is displayed for an extended period of time, such as for example from about 1 to about 10 seconds. After engaging the plunger within the cylinder to allow pressurized air to enter the region within the plunger and enable the pressure sensor to sense the pressure of that air, in order to view the displayed or indicated pressure, the plunger is withdrawn or extended away from the cylinder. That operation disengages the needle from the valve disposed at the base of the cylinder and thereby closes air flow between regions A and B. Depending upon the valving arrangement or configuration (if any) at the needle, the contents of the hollow plunger can escape thereby resulting in a loss of pressure. Without a memory or “temporary hold” of the measured pressure, upon withdrawing the plunger to view the pressure reading, that value would rapidly plummet.
The present disclosure, however, also includes the use of various valving and sealing arrangements to accomplish this pressure hold. These configurations could be used instead of, or in addition to, an electronic memory or pressure hold for the pressure indicator. For example, it is contemplated to use a selectively releasable one-way valve in the needle which allows air flow into the interior of the plunger but not out of the plunger. After reading a measured pressure, a user could selectively release the one-way valve to allow air to travel out of the plunger interior. Alternately, the needle could be configured to allow flow in both directions, and a sealing assembly could be used between the plunger and interior of the cylinder. A representative sealing assembly 226 is shown in
The actuation of a pressure measurement is preferably only performed upon a full engagement or depression of the plunger within the cylinder. That is, in typical pumping operations, the needle 220 is not engaged with the port 242 of the valve member 248.
A wide array of pressure sensors may be used in the preferred embodiment sport balls. It is generally preferred that the sensor be configured to measure gauge pressure, and so, measure the pressure of the ball with respect to atmospheric pressure. However, it is also contemplated to utilize a sensor adapted to provide an absolute pressure measurement.
The term “pressure sensor” is used herein. However, it will be understood that, that term includes both pressure sensors and pressure transducers. A wide array of sensors and transducers may be used, such as, but not limited to piston technology, mechanical deflection, strain gauge, semiconductor piezoresistive, piezoelectric (including dynamic & quasistatic measurement), microelectromechanical systems (MEMS), vibrating elements (silicon resonance, for example), and variable capacitance.
Similarly, a wide variety of strategies, for receiving and displaying data relating to the measured pressure can be used in the preferred embodiment balls. An electrical signal from the pressure sensor or transducer representing the measured pressure is preferred and can be in either analog or digital form.
Similarly, the pressure indicator or display can be in nearly any form. Although a numeric digital readout or display is preferred, the present development includes the use of graphical or pictorial displays to indicate pressure within the interior of the ball. Besides or in addition to a numerical display, it is also contemplated to use an alpha-character display or one in which words or phrases are displayed in response to particular pressure levels detected by the pressure sensor. For example, if the pressure is within a predetermined acceptable range, a designation of “GOOD” or “OK” can be shown. Other words, terms, or phrases are contemplated such as, but not limited to “CORRECT”, “PROPER”, “FINE”, “ALL-RIGHT”, “SUPER”, “COOL” and the like. Alternatively, if the measured pressure is too high or too low, designations of “HIGH” or “LOW” could be shown. Other words, terms, or phrases are contemplated such as for example “EXCESS”, “EXCESSIVE”, “TOO MUCH”, “OVERKILL”; or “TOO LITTLE”, “NOT ENOUGH”, “MORE”, “DEFICIENT”, “NEEDING”, and the like.
The present development can be utilized, wholly or partially, in conjunction with any type of inflatable sport ball or object, such as, but not limited to, basketballs; volleyballs; footballs; soccer balls; rugby balls; exercise balls; water polo balls; net balls; and miscellaneous sport balls; beachballs; other beach inflatable items; toy inflatable baseballs, golfballs, and other replica products; tennis balls; racquet balls; sport seat cushions; inflatable furniture such as chairs, mattresses; miniature inflatables; giant inflatables; inflatable pool products, toys, floatation mats, rafts, mattresses; inflatable wading pools; balloon-based products; inflatable structures and tents; inflatable snow products; and the like.
The foregoing description is, at present, considered to be the preferred embodiments of the present disclosure. However, it is contemplated that various changes and modifications apparent to those skilled in the art may be made without departing from the present development. Therefore, the foregoing description is intended to cover all such changes and modifications encompassed within the spirit and scope of the present disclosure, including all equivalent aspects.
Number | Name | Date | Kind |
---|---|---|---|
602294 | Arnold | Apr 1898 | A |
2698028 | Lee et al. | Dec 1954 | A |
3119617 | Topper | Jan 1964 | A |
5098095 | Weiss | Mar 1992 | A |
5238244 | Cotter et al. | Aug 1993 | A |
5755634 | Huang | May 1998 | A |
6261400 | Kennedy, III | Jul 2001 | B1 |
6287225 | Touhey et al. | Sep 2001 | B1 |
6409618 | Touhey et al. | Jun 2002 | B1 |
6422960 | Touhey et al. | Jul 2002 | B1 |
6450906 | Touhey et al. | Sep 2002 | B1 |
6491595 | Feeney et al. | Dec 2002 | B1 |
6702699 | Touhey et al. | Mar 2004 | B2 |
7014582 | Schomburg et al. | Mar 2006 | B2 |
7033292 | Kennedy et al. | Apr 2006 | B2 |
20020187866 | Touhey et al. | Dec 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050159257 A1 | Jul 2005 | US |