A variety of inflatable sport balls, such as a soccer ball, conventionally exhibit a layered structure that includes a casing, an intermediate layer, and a bladder. The casing forms an exterior portion of the sport ball and is generally formed from a plurality of durable and wear-resistant panels joined together along abutting edges (e.g., with stitching or adhesives). Although panel configurations may vary significantly, the casing of a traditional soccer ball includes thirty-two panels, twelve of which have a pentagonal shape and twenty of which have a hexagonal shape.
The intermediate layer forms a middle portion of the sport ball and is positioned between the casing and the bladder. Among other purposes, the intermediate layer may provide a softened feel to the sport ball, impart energy return, and restrict expansion of the bladder. In some configurations, the intermediate layer or portions of the intermediate layer may be bonded, joined, or otherwise incorporated into the casing as a backing material.
The bladder, which has an inflatable configuration, is located within the intermediate layer to provide an interior portion of the sport ball. In order to facilitate inflation (i.e., with pressurized air), the bladder generally includes a valved opening that extends through each of the intermediate layer and casing, thereby being accessible from an exterior of the sport ball.
In order to facilitate joining of the panels that make up the casing, the casings of many balls are assembled inside-out, thus providing access to flanges at the edges of the panels that typically project inward and are sewn, glued, or welded to flanges of adjacent panels. Once assembly of the inside-out casing is nearly complete, the casing is turned right-side-out, and the final unclosed portions of the casing are joined to complete closure of the casing. For example, in some cases, one or two seams of a casing are left unclosed, providing an opening for the casing to be turned right-side-out through. Once the casing is turned right-side-out, a bladder, restriction layer, and/or other layers may be inserted through the opening before the last seams are joined, providing the final closure of the casing.
In one aspect, the present disclosure is directed to a sport ball. The ball may include a casing that forms an exterior surface of the sport ball. The casing may incorporate a plurality of joined panels, including a closure panel. In addition, the ball may include a backing layer located radially inward of the closure panel, the backing layer extending beyond a peripheral boundary of the closure panel and at least partially overlapping with one or more panels adjacent to the closure panel. The backing layer may also include an opening located radially inward of the closure panel, the opening being smaller than the surface area of the closure panel. Also, the ball may include a bladder located radially inward of the backing layer, the bladder including a valve for introducing fluid into the ball, the valve extending through the opening and through the closure panel.
In another aspect, the present disclosure is directed to a sport ball. The ball may include a casing having an inner surface and an outer surface, the outer surface forming an exterior surface of the sport ball. The casing may incorporate a plurality of joined panels, including a closure panel. In addition, the ball may include a backing layer located radially inward of the closure panel, the backing layer extending beyond a peripheral boundary of the closure panel and at least partially overlapping with one or more panels adjacent to the closure panel. The backing layer may include an opening located radially inward of the closure panel, the opening being smaller than the surface area of the closure panel. Also, the backing layer may line the entire inner surface of the casing except for the area where the opening in the backing layer is located.
In another aspect, the present disclosure is directed to a method of making a sport ball. The method may include forming a partially assembled casing by joining a plurality of panels, leaving open one area configured to receive a closure panel, wherein the partially assembled casing is formed inside-out. In addition, the method may include placing a backing layer over at least a portion of the inside-out, partially assembled casing. Further, the method may include locating an opening in the backing layer over the open area of the partially assembled casing configured to receive a closure panel, the opening in the backing layer being smaller than the open area of the partially assembled casing. The method may also include turning the partially assembled casing and backing layer right-side-out through the opening in the backing layer and the open area of the partially assembled backing layer, and installing a closure panel in the open area against the backing layer.
In another aspect, the present disclosure is directed to a method of making a sport ball. The method may include forming a partially assembled casing by joining a plurality of panels, the partially assembled casing including an open area. The method may also include securing a backing layer to an interior surface of the partially assembled casing, the backing layer including an opening located within the open area. In addition, the method may include positioning a bladder within the partially assembled casing through the opening of the backing layer. Further, the method may include locating a closure panel in the open area, and securing the closure panel to the backing layer.
The advantages and features of novelty characterizing aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying figures that describe and illustrate various configurations and concepts related to the invention.
The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the accompanying figures.
The following discussion and accompanying figures disclose various sport ball configurations and methods relating to manufacturing of the sport balls. Although the sport ball is discussed and depicted in relation to a soccer ball, concepts associated with the configurations and methods may be applied to various types of inflatable sport balls. In addition to soccer balls, therefore, concepts discussed herein may be incorporated into basketballs, footballs (for either American football or rugby), volleyballs, and water polo balls, for example. A variety of non-inflatable sport balls, such as baseballs and softballs, may also incorporate concepts discussed herein.
General Sport Ball Configuration
A sport ball 10 having the general configuration of a soccer ball is depicted in
Casing 20 is formed from various panels 21 that are joined together along abutting sides or edges to form a plurality of seams 22. Although panels 21 are depicted as having the shapes of twelve equilateral pentagons, panels 21 may have non-equilateral shapes, concave or convex edges, or a variety of other shapes (e.g., triangular, square, rectangular, hexagonal, trapezoidal, round, oval, non-geometrical) that combine in a tessellation-type manner to form casing 20. In some configurations, sport ball 10 may have twelve pentagonal panels 21 and twenty hexagonal panels 21 to impart the general configuration of a traditional soccer ball. Selected panels 21 may also be formed of unitary (i.e., one piece) construction with adjacent panels 21 to form bridged panels that reduce the number of seams 22. Accordingly, the configuration of casing 20 may vary significantly.
Panels 21 may be joined to form seams 22 in any suitable manner. For example, in some configurations, panels 21 may be joined with stitching (e.g., hand or machine stitching), in a conventional or alternative manner. In some configurations, a welding process may be utilized in the manufacture of sport ball 10 to join panels 21 and form seams 22. More particularly, panels 21 may be at least partially formed from a polymer material, which may be a thermoplastic polymer material, and edges of panels 21 may be heated and bonded to each other to form seams 22. An example of the configuration of seams 22 is depicted in the cross-section of
One advantage of utilizing a welding process to form seams 22 relates to the overall mass of sport ball 10. Whereas approximately ten to fifteen percent of the mass of a conventional sport ball may be from the seams between panels, welding panels 21 may reduce the mass at seams 22. By eliminating stitched seams in casing 20, the mass that would otherwise be imparted by the stitched seams may be utilized for other structural elements that enhance the performance properties (e.g., energy return, sphericity, mass distribution, durability, aerodynamics) of sport ball 10. Another advantage relates to manufacturing efficiency. Stitching each of the seams of a conventional sport ball is a relatively time-consuming process, particularly when hand stitching is utilized. By welding panels 21 together at seams 22, the time necessary for forming casing 20 may be deceased, thereby increasing the overall manufacturing efficiency.
Intermediate layer 30 is positioned between casing 20 and bladder 40 and may be formed to include one or more of a compressible foam layer that provides a softened feel to the sport ball, a rubber layer that imparts energy return, and a restriction layer to restrict expansion of bladder 40. The overall structure of intermediate layer 30 may vary significantly. As an example, the restriction layer may be formed from (a) a thread, yarn, or filament that is repeatedly wound around bladder 40 in various directions to form a mesh that covers substantially all of bladder 40, (b) a plurality of generally flat or planar textile elements stitched together to form a structure that extends around bladder 40, or (c) a plurality of generally flat or planar textile strips that are impregnated with latex and placed in an overlapping configuration around bladder 40 The restriction layer may also be a substantially seamless spherically-shaped textile, as disclosed in U.S. patent application Ser. No. 12/147,799, filed in the U.S. Patent and Trademark Office on Jun. 27, 2008. In some configurations of sport ball 10, intermediate layer 30 or portions of intermediate layer 30 may also be bonded, joined, or otherwise incorporated into casing 20 as a backing material, or intermediate layer 30 may be absent from sport ball 10. Accordingly, the structure of intermediate layer 30 may vary significantly to include a variety of configurations and materials.
Bladder 40 has an inflatable configuration and is located within intermediate layer 30 to provide an inner portion of sport ball 10. When inflated, bladder 40 exhibits a rounded or generally spherical shape. In order to facilitate inflation, bladder 40 may include a valved opening (not depicted) that extends through intermediate layer 30 and casing 20, thereby being accessible from an exterior of sport ball 10, or bladder 40 may have a valveless structure that is semi-permanently inflated. Bladder 40 may be formed from a rubber or carbon latex material that substantially prevents air or other fluids within bladder 40 from diffusing to the exterior of sport ball 10. In addition to rubber and carbon latex, a variety of other elastomeric or otherwise stretchable materials may be utilized for bladder 40. In some configurations, bladder 40 may also have a structure formed from a plurality of joined panels, as disclosed in U.S. patent application Ser. No. 12/147,943, filed in the U.S. Patent and Trademark Office on Jun. 27, 2008.
Manufacturing Process
The panels of conventional sport balls, as discussed above, may be joined with stitching (e.g., hand or machine stitching). Panels 21 are, however, at least partially formed from a polymer material, which may be a thermoplastic polymer material, that can be joined through the welding process. Referring to
Panel areas 23 of the various panels 21 form a majority, or all of, the portion of casing 20 that is visible on the exterior of sport ball 10. Flange areas 24, however, form portions of panels 21 that are bonded together to join panels 21 to each other. Referring to
Panels 21 are discussed above as including a polymer material, which may be utilized to secure panels 21 to each other. Examples of suitable polymer materials for panels 21 include thermoplastic and/or thermoset polyurethane, polyamide, polyester, polypropylene, and polyolefin. In some configurations, panels 21 may incorporate filaments or fibers that reinforce or strengthen casing 20. In further configurations, panels 21 may have a layered structure that includes an outer layer of the polymer material and an inner layer formed from a textile, polymer foam, or other material that is bonded with the polymer material. Panels 21 may also incorporate multiple joined layers formed from a variety of materials.
When exposed to sufficient heat, the polymer materials within panels 21 transition from a solid state to either a softened state or a liquid state, particularly when a thermoplastic polymer material is utilized. When sufficiently cooled, the polymer materials then transition back from the softened state or the liquid state to the solid state. Based upon these properties of polymer materials, welding processes may be utilized to form a weld that joins portions of panels 21 (i.e., flange areas 24) to each other. As utilized herein, the term “welding” or variants thereof is defined as a securing technique between two elements that involves a softening or melting of a polymer material within at least one of the elements such that the materials of the elements are secured to each other when cooled. Similarly, the term “weld” or variants thereof is defined as the bond, link, or structure that joins two elements through a process that involves a softening or melting of a polymer material within at least one of the elements such that the materials of the elements are secured to each other when cooled. As examples, welding may involve (a) the melting or softening of two panels 21 that include polymer materials such that the polymer materials from each panel 21 intermingle with each other (e.g., diffuse across a boundary layer between the polymer materials) and are secured together when cooled and (b) the melting or softening a polymer material in a first panel 21 such that the polymer material extends into or infiltrates the structure of a second panel 21 (e.g., infiltrates crevices or cavities formed in the second panel 21 or extends around or bonds with filaments or fibers in the second panel 21) to secure the panels 21 together when cooled. Welding may occur when only one panel 21 includes a polymer material or when both panels 21 include polymer materials. Additionally, welding does not generally involve the use of stitching or adhesives, but involves directly bonding panels 21 to each other with heat. In some situations, however, stitching or adhesives may be utilized to supplement the weld or the joining of panels 21 through welding.
A variety of techniques may be utilized to weld flange areas 24 to each other, including conduction heating, radiant heating, radio frequency heating, ultrasonic heating, and laser heating. An example of a welding die 50 that may be utilized to form seams 22 by bonding two flange areas 24 is depicted in
A general process for joining panels 21 with welding die 50 will now be discussed with reference to
A variety of trimming processes may be utilized to remove the excess portions of flange areas 24. As examples, the trimming processes may include the use of a cutting apparatus, a grinding wheel, or an etching process. As another example, welding die 50 may incorporate cutting edges 53, as depicted in
The general process of welding flange areas 24 to form seams 22 between panels 21 was generally discussed above relative to
As shown in
Following placement of backing layer 30, casing 20 may be reversed or turned right-side-out through opening 32 and open area 28 to impart the configuration depicted in
As shown in
As can be seen from the view shown in
To install closure assembly 60, bladder 40 may be inserted through opening 32, and closure panel 61 may be attached to ball 10 in any suitable manner. For example, in some configurations, installing closure panel 61 may include attaching closure panel 61 to backing layer 30 with adhesive. In some configurations, installing closure panel 61 may attaching closure panel 61 to panels 21 adjacent to closure panel 61 by welding.
Exemplary Closure Assembly Configurations
In some configurations, the peripheral edges of closure panel 61 may be rounded slightly, as shown in
In some configurations, casing 20 may include multiple layers. For example, as shown in
As also shown in
In some configurations, backing layer 30 may line the entire inner surface of casing 20 except for the area where opening 32 is located. Although truncated for purposes of illustration,
As also shown in
As further shown in
As shown in
As an alternative, or in addition to, adhesive, welding may be used to install closure panel 61.
The invention is disclosed above and in the accompanying figures with reference to a variety of configurations. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. Further, any of the features of any of the disclosed configurations may be used with any other disclosed configurations. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the configurations described above without departing from the scope of the present invention, as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
414748 | Bentley | Nov 1889 | A |
1517859 | O'Shea | Dec 1924 | A |
1575281 | Rosenberg | Mar 1926 | A |
1853008 | Turner | Apr 1932 | A |
1917535 | Maynard | Jul 1933 | A |
1923890 | Scudder | Aug 1933 | A |
1932226 | Pierce | Oct 1933 | A |
1967908 | Sneary | Jul 1934 | A |
2011562 | Crowley | Aug 1935 | A |
2012376 | Caro | Aug 1935 | A |
2018559 | Homer | Oct 1935 | A |
2080894 | Levinson | May 1937 | A |
2116479 | Reach | May 1938 | A |
2126220 | Scudder | Aug 1938 | A |
2211669 | Reach | Aug 1940 | A |
2300441 | Voit et al. | Nov 1942 | A |
2325073 | Reach | Jul 1943 | A |
2344638 | Reeder | Mar 1944 | A |
2945693 | Way | Jul 1960 | A |
3512777 | Henderson | May 1970 | A |
4154789 | Delacoste | May 1979 | A |
4320776 | Yang | Mar 1982 | A |
4436276 | Donahue | Mar 1984 | A |
4513058 | Martin | Apr 1985 | A |
4610071 | Miller | Sep 1986 | A |
4856781 | Shishido et al. | Aug 1989 | A |
D322105 | Ma | Dec 1991 | S |
5123659 | Williams | Jun 1992 | A |
5181717 | Donntag et al. | Jan 1993 | A |
5250070 | Parodi | Oct 1993 | A |
5494625 | Hu | Feb 1996 | A |
5503699 | Ratner et al. | Apr 1996 | A |
5603497 | Louez | Feb 1997 | A |
5752890 | Shishido et al. | May 1998 | A |
5772545 | Ou | Jun 1998 | A |
5779578 | Calandro | Jul 1998 | A |
5888157 | Guenther et al. | Mar 1999 | A |
6012997 | Mason | Jan 2000 | A |
6142897 | Lees | Nov 2000 | A |
6261400 | Kennedy, III | Jul 2001 | B1 |
6302815 | Shishido et al. | Oct 2001 | B1 |
6331151 | Calandro | Dec 2001 | B2 |
6461461 | Kennedy, III | Oct 2002 | B2 |
6503162 | Shishido et al. | Jan 2003 | B1 |
6629902 | Murphy et al. | Oct 2003 | B2 |
6645099 | Gaff et al. | Nov 2003 | B2 |
6685585 | Shishido et al. | Feb 2004 | B2 |
6726582 | Kuo et al. | Apr 2004 | B1 |
6971965 | Shishido | Dec 2005 | B1 |
6991569 | Dobrounig | Jan 2006 | B2 |
7005025 | Summers | Feb 2006 | B2 |
7018311 | Ou | Mar 2006 | B2 |
7029407 | Lee et al. | Apr 2006 | B2 |
7066853 | Chang | Jun 2006 | B2 |
7427246 | Taniguchi et al. | Sep 2008 | B2 |
2073766 | Suzuki | Oct 2008 | A1 |
7517294 | Tsai | Apr 2009 | B2 |
7645203 | Tang et al. | Jan 2010 | B2 |
7749116 | Tang et al. | Jul 2010 | B2 |
7753813 | Taniguchi et al. | Jul 2010 | B2 |
8192311 | Raynak | Jun 2012 | B2 |
8210973 | Rapaport | Jul 2012 | B2 |
8540595 | Lin | Sep 2013 | B1 |
20010002378 | Calandro | May 2001 | A1 |
20020086749 | Ou | Jul 2002 | A1 |
20030203780 | Guenther et al. | Oct 2003 | A1 |
20040077288 | Krysiak et al. | Apr 2004 | A1 |
20040144477 | Taniguchi et al. | Jul 2004 | A1 |
20040229722 | Liu | Nov 2004 | A1 |
20050081982 | Chen | Apr 2005 | A1 |
20050229985 | Saxenfelt | Oct 2005 | A1 |
20060063622 | Nurnberg et al. | Mar 2006 | A1 |
20060229149 | Goedoen | Oct 2006 | A1 |
20060293132 | Laliberty et al. | Dec 2006 | A1 |
20070049434 | Maziarz et al. | Mar 2007 | A1 |
20070225094 | Nix | Sep 2007 | A1 |
20090105019 | Keppler et al. | Apr 2009 | A1 |
20090325747 | Ou | Dec 2009 | A1 |
20130053193 | Lo | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
0598542 | May 1994 | EP |
2572674 | May 1986 | FR |
10337341 | Dec 1998 | JP |
0183047 | Nov 2001 | WO |
2004056424 | Jul 2004 | WO |
2009158103 | Dec 2009 | WO |
2013148950 | Oct 2013 | WO |
Entry |
---|
International Search Report and Written Opinion mailed Jul. 31, 2013 in PCT Application No. PCT/US2013/034280. |
International Search Report and Written Opinion in PCT Application No. PCT/US2010/058904, mailed on Jun. 10, 2011. |
International Preliminary Report on Patentability (including Written Opinion of the ISA) mailed Oct. 9, 2014 in PCT/US2013/034280. |
Number | Date | Country | |
---|---|---|---|
20130260928 A1 | Oct 2013 | US |