1. Field of the Invention
The present invention pertains to an improved design for a sport board, such as exemplified by a skate board, kite board, snow board, snow skate board, ski board, sail board, wave board, snow skis, and like sports and leisure related boards. More particularly, the present invention concerns a shock absorbing system for a gliding type sport board and roller type skate board.
2. Prior Art
In recent years, board-related sport including land sports such as snowboarding, skate boarding, and water or aquatic sports have continued to become increasingly popular sports. These sports have also become more competitive and demanding on both the rider and the equipment. The demand continues in these recreational and competitive land and water sports.
In any form of transportation, there is an inherent element of “shock” that is produced by changing terrain conditions that transfers energy from the terrain ground or water into the vehicle that is speeding across it. In most forms of transportation, the vehicle has been equipped with some form of “shock absorbers” to smooth out the ride and to increase performance of both the equipment and the rider. It has become essential for the vehicle to be equipped with shock absorbers especially in vehicles like snowboards, skateboards, water skis and wakeboards. The present invention, as subsequently detailed, addresses this issue.
In accordance herewith, there is provided a shock absorbing system for a sport board which comprises:
a lower gliding platform or board,
an upper dual binding rocker platform, and
a rocker system associating said rocker platform with said lower gliding platform.
The rocker system or rocker, generally, comprises a pair of spaced apart first and second or lower and upper, respectively, rocking members which are disposed transverse to the longitudinal axis of the sport board. The rocking members are hingedly interconnected through suitable means to enable the rocker platform to rotate or pivot forward and aft.
The first or lower rocking member is integral with or otherwise affixed to the board on the upper surface thereof.
The upper or second rocking member is affixed to the upper rocker platform which is disposed above the lower gliding board such that a space is created between the bottom of the upper rocker platform and the upper surface of the lower gliding board.
The upper rocking member and the lower rocking member include means for interdigitating apertured flanges, cylinders, such as spacers or hinge members and the like which cooperate to define a hinge. A hinge pin, or the like, extends through the apertures of the hinge and interconnects the two rocking members together and defines a pivot or fulcrum about which the platform rotates. The hinge connection forms a seesaw or teeter totter like structure in which the opposite ends of the dual binding rocker platform alternately pivot up and down towards and away from the upper surface of the lower gliding board.
In a first embodiment here, a pair of bladders or other compressible bodies are affixed to the upper surface of the board, one on each side of the hinge, in the space between the board and the platform. Thus, as the platform teeters or pivots between a forward and an aft position on the board, it will encounter one of the two bladders. Each bladder is inflatable and contains the same amount of fluid, such as air.
The bladders and hinge may be encased within a sealed shroud or the like to protect it from the elements.
It is further contemplated in the practice of the present invention that the present invention be part of an original equipment or that it be retrofitted wherein the bladders, rocker members, and platform are disposed on a mounting plate which is secured to a sports board.
According to an important aspect of this invention there is provided a dual binding roller or skate board, said board comprising:
a lower platform having a center section, a forward end section, and a
rearward end section,
a first and a second roller assembly for rollably supporting the platform on the ground, said assemblies secured, respectively, to the forward and rearward end sections of said platform,
a rocker platform having a center section, a forward end section, and a
rearward end section,
a hinge for hingedly connecting the center sections together, wherein the forward and rearward end sections alternately move towards and away from one another, and wherein a first and second space is defined between the platforms and on opposite sides of the hinge connection, and
a first and a second compressible member disposed, respectively, in said first space and said second space, said compressible members resisting movement of the end sections towards one another.
In the above-noted dual binding roller or skate board the upper rocker platform associated with the skate board or roller board may be provided with binding structure for securing the foot of a rider atop the rocker platform. Typically, two separate foot bindings are provided, one and the other located on opposite sides of the fulcrum, one binding for the left foot and the other binding for the right foot.
The platforms are generally oblong, have a central longitudinal axis, parallel lateral sides extending longitudinally, and top and bottom surfaces. When hingedly connected, the forward and rearward end sections and lateral sides are generally in juxtaposed relation with one another.
In a skate board, as in the first described gliding board, the compressible member may be an air bladder, a compressible body of foam, or compressible body of a suitable elastomeric material, such as rubber. The compressible member may be affixed to the upper surface of the lower platform. Thus, as the rocker platform teeters or pivots between a forward and an aft position above the lower platform or board, the forward or rearward end section thereof, depending on the direction of rotation, will move toward and encounter one of the two compressible members, which member will elastically compress and absorb shock.
According to an important feature of the present invention, the lower platform forms a compound curve wherein the center section is concave down, so as to form a resilient bow-like or spring structure between the roller assemblies that absorbs and distributes vertical landing loads, and the front and rear end sections are concave up. The upper platform is generally planar and the front and rear end sections are concave up.
Additionally, according to another important feature, shock absorbing bumpers are provided on the curled up forward and rearward ends of the rocker platform.
In all other respects, such as the hinged connection, bladder securement, retrofitting, interconnection, and the like are the same as that described for the gliding sport board.
For a more complete understanding of the present invention, references made to the following detailed description and accompanying drawings. In the drawings, like reference characters refer to like parts throughout the several views in which:
According to the present invention, and with reference to the drawings, there are depicted leisure related gliding and roller boards used in various ground and aquatic sports, the boards being provided with a shock absorbing system. Depending on the sport, these boards are called a ski board, skate board, wake board, water board, water ski(s), kite board, snow board, sail board, wave board, snow ski(s), and ski, and comprise a category of sporting equipment having a platform upon which a rider stands or kneels with both feet, the platform having a strong, resilient, flexible and substantially flat structure conventionally made of one or materials including wood, plastic and fiber glass or carbon fiber. The present invention is contemplated for use in connection with and conjointly with any one of such dual footing boards.
In
The board or sports board 16 hereof has an upper surface 11 and a lower surface 13. Disposed on the board 16 is a shock absorbing system or shock absorber defined by a rocker system or rocker, generally, denoted at 12 (
The rocker system hereof, generally, comprises:
a first or lower rocker member 19 which is disposed atop the board 16, and
an upper or second rocker member 31 which interdigitates with and is hingedly connected to the lower rocker member via means for hingedly interconnecting such as a pin or hinge pin 22.
In a first embodiment hereof, the lower rocker member or fulcrum 19 is secured to the upper surface 11 of the board 16 by any suitable means and, preferably, is molded integrally with the board. The lower rocker member 19, generally, comprises an elongated body disposed on the upper surface 11 of the sport board 16 that extends across the width thereof. The lower rocker member 19 further includes:
a pair of spaced apart flanges 19′, 19″, each having an aperture 22a formed therein for receiving and passing the hinge pin 22, and
a plurality of hollow cylindrical sleeves 26 which are mounted onto the transverse rocker member or fulcrum 19 or is integrally formed therewith.
The sleeves 26, as noted, are cylindrical and have a hollow interior or passageway 22a for passing the hinge pin 22. The apertures of the sleeves 26 are co-axial with themselves and the apertures of the flanges 19′ and 19″. A plurality of toroidal or donut shaped spacers 27, as shown in
Disposed on either side of the fulcrum are compressible members 23 and 23′. Each compressible member is similar. The compressible members 23 and 23′ can comprise any suitable article such as a section of compressible foam, an inflatable bladder, or the like. Each of the bladders is independently inflatable with a suitable fluid such as water, air or the like. A valve member 24 associated with each bladder may be used to inflate and deflate its associated bladder, as desired. Preferably, in the practice of the present invention, each of the bladders contains the same amount of fluid so that they are substantially equal. Preferably, the bladders are air bladders. Optimally, the bladders or compressible members are toroidal (i.e., donut shaped and having a central hole or opening) although other shapes can be used. The toroidal shape is not shown as the term is understood by those skilled in the art.
The compressible members are secured to the upper surface of the board by any suitable means such as through an anchor 30. Alternatively, the bladders may be secured to the upper surface 11 with a nylon hook and fastener (Velcro), gluing, or the like. Alternatively, air pressure, alone, within the compressible members may be used to retain the compressible members to the upper surface of the board by sandwiching the members between the board and the platform.
As shown, a first sealing element or rim seal 20 is circumferentially disposed about the lower rocker member 19. The rim seal 20 is used to attach a lower portion of a shroud 33 to encase the lower rocker 19 and to protect it from the elements, as explained herein below. The rim seal 20 secures a lower seal 28 associated with the shroud 33 thereto. Sealing is accomplished by snap-fitting the lower seal 28 into the lower rim seal 20.
As noted, the upper rocker member 31 is constructed similar to the lower rocker member 19 and includes apertured flanges 31′ and 31″. The upper rocker member 31 is secured to a rocker platform 17. The rocker platform 17 has an upper surface 17′ and a lower surface 17″. As shown, the upper rocker member 31 is integral with or otherwise affixed to the lower surface 17″. As shown in
The upper rocker member 31 also includes a plurality of co-axial cylindrical sleeves 26′. The sleeves 26′ are constructed similarly to the sleeves 26 disposed on the lower rocker member 19 and each includes a central passage 22a for passing the hinge pin 22. Further, the sleeves 26 and 26′ are spaced in a manner such that the sleeves 26′ will interdigitate with the sleeves 26, as shown in
It is readily appreciated that the platform pivots about the pin 22 both fore and aft in the directions of the arrow A (
It should be noted that the intermediate sleeves 26 and 26′ are optional since it is only necessary that the apertures 22a of the flanges 19 and 19″ and 31′ and 31″ of the lower and upper rocker members 19 and 31 align with one another so that the hinge pin 22 may project therethrough and hingedly interconnect the upper rocker to the lower rocker. Thus, only the apertured flanges 19′ and 19″ and 31′ and 31″ are necessary for hinged interconnection. Optionally, a plurality of toroidal wear rings or spacers 27 may be disposed between the sleeves 26′ to prevent wear or the like. In this regard, because the sleeves 26 and 26′ are dimensioned to form interdigitating hinge members, the spacer sleeve 27 is disposed between adjacent of the hinge sleeves 26 and 26′ to prevent wear therebetween arising from the up-and-down pivoting of the platform 17 relative to the platform 16.
Alternatively, and as shown in
Additionally, in addition to providing a teeter-totter like rocker connection between the rocker platform 17 and sport board 16, wherein the fore and aft sections of the platform alternately pivot towards and away from the upper surface of the board 16, the axial slot 70 provides further cushioning movement of the platform. The vertical axial slots 70 enable the axis of the hinge pin 22 (and thus the platform 17) to move vertically up and down in generally parallel relation to the upper surface 11 of the board 16. Further, the laterally opposed slots enable the axis of the hinge pin (and thus the plane of the platform) to tilt and be at an acute angle with the upper surface 11. That is, one end of the hinge pin 22 in the apertured flanges 19′ and 31′ on one lateral side of the platform 17 may be vertically higher (or lower) above the board 16 than the other end of the hinge pin in the apertured flanges 19″ and 31″ on the other lateral side of the platform. These three positions (i.e., pivoting, up/down parallel movement, and tilting) of the platform 17 relative to the board 16 may be substantially simultaneous to provide cushioning control upon hard landings.
As shown in
In order to maintain the rocker system sealed off from the elements and to maintain the integrity and pressure within the bladders, valve ports 25 are provided in the seal or shroud 33. The valves 24 extend from each of the bladders and protrude through the ports 25 to enable them to be connected to a suitable source of compressed air or other fluid (not shown). A pressure gauge or the like (not shown) can be operatively affixed to the valves to measure and control the pressures within the bladders.
When the outer containment housing or shroud 33 is placed around the rocker assembly, the upper seal 29 and the lower seal 28 are snapped into the upper rim seal 32 and the lower rim seal 20, respectively, to form a seal that will protect all the components inside from water, snow, ice, etc. The outer containment housing is a continuous piece made of rubber or other suitable material. The outer containment housing includes a bead that snaps into the rim seals all the way around the shock absorbing assembly to protect it from the elements. The shroud 33, being attached at both its top and bottom, has a sufficient extension capability to allow full range of motion of the most forward part and most aft part of the platform.
It should be noted that the shroud is not essential to the practice of the present invention. When not present, the valves extend, preferably, from the compressible members and project therefrom to a suitable accessible place, such as through the platform, as shown and discussed with reference to
With the board and the platform joined together, there is defined a unitary shock absorbing assembly. The board and the platform are free moving parts, able to teeter in opposite directions from one another.
The user, when deploying the present invention as a snowboard is positioned on the platform, toes pointing to one lateral edge, and heals pointing to the other or opposite lateral edge, one foot forward of the fulcrum, and one foot aft of the fulcrum, and the feet at about a 3°-35° angle to the length and the width of the platform. Referring to
When used as water ski, the user has one foot forward of the fulcrum, centered on the platform and toes pointing toward the tip of the board and the other foot centered on the platform after of the fulcrum and toes pointing toward the tip of the board.
As a wakeboard, the user is in the standing position; as a kneeboard, the user is in the kneeling position.
The present invention can be used to retrofit an existing sport board. Thus, and shown in
It is to be appreciated that there has been described herein a sports board which enables the user to ride on a “cushion of air” or other suitable fluid thereby softening the ride while at the same time providing a “teeter-totter” effect.
Turning to
The rolling or skate board 34 comprises a board or lower platform 36, an upper board or rocker platform 38, a hinge arrangement 40 for connecting the rocker platform 38 to the lower platform 36, and two pairs of rollers or wheels 42 and 44 connected to the lower platform 36. The lower platform or board 36 is generally oblong shaped, viewed in plan, symmetrically centered about a longitudinal axis “A”, has parallel lateral sides 36a and 36b, a top surface 46, a bottom surface 48, and a compound curve shape. That is, the lower platform 36 is curvilinear from end to end and is concave down relative to the center or midsection 50 of the platform and concave up at the forward and rearward end sections 52 and 54. The compound curvature forms a resilient bow-like or spring structure between the roller assemblies 42 and 44 that absorbs and distributes vertical landing loads, strengthens the board, and gives the rider more control of the board.
The upper rocker platform 38 is generally planar and defines a “deck” upon which the rider stands in using the skateboard 34 herein. The rocker platform 38 is generally a “mirror image” of the lower platform 36 and is generally oblong shaped, viewed in plan, symmetrically centered about a longitudinal axis “A”, has parallel lateral sides 38a and 38b, a top surface 56, a bottom surface 58, a center section 60, and concave up front and rear end sections 62 and 64.
The platforms may be comprised of wood, aluminum, fiberglass, plastic or carbon fiber, and made by pressing together various layers of these materials, depending on the desired degree of stiffness or flexibility desired. The actual materials and method of constructing the skate board to provide the desired combination of toughness, elasticity, feel and response are known in the art.
The hinge arrangement 40 connects the center sections 50 and 60 of the platforms 36 and 38 together such that the rocker platform 38 is atop the lower platform 38 and the forward and rearward end sections 62 and 64 of the rocker platform 38 move alternately up and down towards and away from the forward and rearward end sections 52 and 54 of the lower platform 36. That is, the upper rocker platform 38 is connected in a “seesaw” manner to the lower platform 36.
The hinge arrangement 40 forms a fulcrum, as described hereinabove, and includes the interdigitating hinge or rocker members 19 and 31 and the pivot pin 22 for interconnecting the hinge members together, the hinge member 19 being centrally connected to the lower platform 36 and projecting upwardly from the upper surface 46 thereof and the hinge member 31 being centrally connected to the upper rocker platform 38 and projecting downwardly from the bottom surface 56 thereof. The hinge arrangement 40 enables the upper rocker plate 38 to pivot and the opposite ends thereof to move up and down in a see-saw manner relative to the lower platform 36.
The wheels 42 and 44 are connected to the lower platform 36 adjacent to the front and rear end sections 52 and 54 by what are referred to as “trucks”, or like known expedients known in the art, wherein to allow the board 34 to turn. The wheels 42 and 44 are preferably made of tough polyurethane plastic, having a durometer of about 85 (soft) and 97 (hard), and sized between 39 and 66 millimeters in diameter. The connection and wheel materials are conventional and will not be described further as known by those skilled in the art.
As shown in
Preferably and according to this invention, the roller or skate board 34 is provided with an arrangement for absorbing shock arising from use. In a manner as described hereinabove, the compressible members 23 and 23′, respectively, are disposed in the channels or spaces 66 and 68. The compressible members 23 and 23′ are generally coextensive with and extend between the opposite lateral sides of the respective platforms 36 and 38 and extend between the pivot arrangement 40 and the concave forward and rearward end sections of the respective platforms 36 and 38.
As described hereinabove, the compressible member 23 and 23′ may comprise a section of compressible foam, a section of elastomeric material, such as a rubber, or an inflatable bladder which may be toroidal or other convenient shape. In the case of the bladder, each bladder is independently inflatable with a suitable fluid such as water, or a suitable gas, such as air and the like. The pressure inside the bladders is set at a pressure (psig) desired by the rider, sufficient for the rider to exert extreme forces for balance, control, and maneuvers on any given terrain conditions.
To further absorb shock, a pair of bumpers 76 are mounted on the rocker platform 38, each bumper including a mounting pin 72 and a body 74 of elastomeric material, such as rubber. As shown in
Although not shown in the drawing, it is possible to affix and emplace bumpers within the ring defined by the toroidal compressible members to limit the downward movement of the upper member in any of the boards hereof.
Furthermore, it is important to note that the sport boards defined herein are of the type where both of the user's feet are disposed thereon. Thus, each board accommodates a pair of feet, dual bindings, etc. What is critical to note is that, in use, both feet of the user are placed on the board. Also, the dual foot board hereof, when used, is stable and enables better banking and cutting.
This is a continuation of U.S. patent application Ser. No. 10/988,035, filed Nov. 13, 2004, now U.S. Pat. No. 7,178,814 which is a continuation-in-part of U.S. patent application Ser. No. 10/310,170, filed Dec. 4, 2002, which issued Dec. 28; 2004 as U.S. Pat. No. 6,834,881 B2, and claims the benefit of U.S. Provisional Patent Application Ser. No. 60/338,772, filed Dec. 4, 2001, the entire disclosures of each incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4979761 | Rohlin | Dec 1990 | A |
5069473 | Erdei | Dec 1991 | A |
5775716 | Harsanyi et al. | Jul 1998 | A |
5901975 | Phipps | May 1999 | A |
5971419 | Knapschafer | Oct 1999 | A |
6328328 | Finiel | Dec 2001 | B1 |
6413197 | McKechnie et al. | Jul 2002 | B2 |
6789806 | Santa Cruz et al. | Sep 2004 | B2 |
20040195795 | Huang | Oct 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070114744 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60338772 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10988035 | Nov 2004 | US |
Child | 11655309 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10310170 | Dec 2002 | US |
Child | 10988035 | US |