The present disclosure relates to moisture management apparel for wear during exertion. Specifically, the present disclosure relates to a molded cup used in a sport bra that has moisture-transporting properties.
Sweat evaporation from a person's skin is an important cooling mechanism during exertion. Oftentimes however, athletic apparel fails to effectively move sweat away from the person's skin which impairs the body's cooling mechanism and results in uncomfortable, sweat-saturated garments next to the person's skin.
One problem of particular note for females is the lack of a sport bra with a flexible, molded cup that effectively moves sweat away from the female's body. Sport bras are typically composed of some type of elasticized fabric; the fabric is elasticized in an attempt to provide some degree of support. The elasticized fabric may have moisture management characteristics, but the lack of a molded cup has its disadvantages. For example, unmolded bras provide less support than bras with molded cups. Further, unmolded bras generally have less modesty coverage than bras with molded cups. When molded cups are used in sport bras, the material used for the cups commonly lacks moisture-transporting properties, which means that sweat is not effectively moved away from the skin of the person wearing the sport bra.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The present invention is defined by the claims.
At a high level, the present invention is directed toward a sport bra having moisture-transporting molded cups. The molded cups may be comprised of different materials having moisture-transporting properties. For example, the molded cups may comprise a foam having different zones, each zone having a different average cell size. The zones are arranged to facilitate movement of moisture away from the wearer's skin to the exterior surface of the sport bra. In another example, the molded cups may comprise moldable, non-woven fibers. Fibers having a larger average diameter or denier per filament are arranged closer to the wearer's skin, and fibers having a smaller average denier per filament are arranged closer to the exterior of the sport bra. This arrangement facilitates movement of sweat away from the wearer's skin.
In yet another example, the molded cups may comprise a water-permeable injection-molded material that, after injection molding, is treated with a hydrophilic material on the external surface of the cup. This creates a hydrophilic gradient across the cup from inside to outside that causes moisture to be transported away from the skin. In another aspect, the molded cups may comprise different layers of injection-molded materials with each layer having a different hydrophilicity. The layers are structured so that the less hydrophilic layer is closest to the wearer's skin and the more hydrophilic layer is located on the exterior surface of the cup. Like above, this creates a hydrophilic gradient that moves sweat away from the wearer's skin.
In an additional example, the molded cups may comprise a plurality of yarns, including tie-yarns that extend from an internal-facing fabric layer to an external-facing fabric layer, that create a hydrophilic gradient across the cup from the inside to the outside that causes moisture to be transported away from the skin. Continuing, another example includes molded cups that may comprise a spacer fabric made up of man-made and/or natural fibers. The different materials discussed above (foams, moldable fibers, yarns, spacer fabric, hydrophilic layers, and injection-molded materials) may be combined in multiple, different ways to create molded cups having different properties but all configured to transport moisture away from the wearer's skin.
Examples are described in detail below with reference to the attached drawing figures, wherein:
The subject matter of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventors have contemplated that the claimed subject matter might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the terms “step” and/or “block” might be used herein to connote different elements of methods employed, the terms should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly stated.
At a high level, the present invention is directed toward a sport bra having moisture-transporting molded cups. The molded cups may be comprised of different materials having moisture-transporting properties. For example, the molded cups may comprise a foam having different zones, each zone having a different average cell size. The zones are arranged to facilitate movement of moisture away from the wearer's skin to the exterior surface of the sport bra. In another example, the molded cups may comprise moldable, non-woven fibers. Fibers having a larger average diameter (e.g., thicker fibers) are arranged closer to the wearer's skin, and fibers having a smaller average diameter (e.g., thinner fibers) are arranged closer to the exterior of the sport bra. The thickness or thinness of a fiber may be defined by a measure of fiber fineness such as, for example, denier per filament (DPF) where a larger DPF (e.g., a DPF greater than 1.04) is associated with a thicker fiber and a smaller DPF (e.g., a DPF less than 1.04) is associated with a thinner fiber. This arrangement facilitates movement of sweat away from the wearer's skin.
In yet another example, the molded cups may comprise a water-permeable injection-molded material that, after injection molding, is treated with a hydrophilic material on the external surface of the cup. This creates a hydrophilic gradient across the cup from inside to outside that causes moisture to be transported away from the skin. In another aspect, the molded cups may comprise different layers of injection-molded materials with each layer having a different hydrophilicity. The layers are structured so that the less hydrophilic layer is closest to the wearer's skin and the more hydrophilic layer is located on the exterior surface of the cup. Like above, this creates a hydrophilic gradient that moves sweat away from the wearer's skin.
In an additional example, the molded cups may comprise a plurality of yarns, including tie-yarns that extend from an internal-facing fabric layer to an external-facing fabric layer, that create a hydrophilic gradient across the cup from inside to outside that causes moisture to be transported away from the skin. Continuing, another example includes molded cups that may comprise a spacer fabric made up of man-made and/or natural fibers. The different materials discussed above (foams, moldable fibers, yarns, spacer fabric, hydrophilic layers, and injection-molded materials) may be combined in multiple, different ways to create molded cups having different properties but all configured to transport moisture away from the wearer's skin.
Although
Turning to
The foam material in the middle layer 312 may comprise hydrophilic polyurethane and may be processed using manufacturing techniques common to foams (e.g., forming gas bubbles in a plastic mixture using a blowing agent). Altering the molecular structure, amount, and reaction temperature of the various foam components or blowing agents determines the characteristics of the resulting foam. In one aspect, the foam material of the middle layer 312 comprises different zones, each zone having a predetermined average cell or bubble size. As used throughout this application, cell size may refer to a diameter, surface area, and/or circumference of the cell. Cells may be spherical, ellipsoid, or irregular in shape.
The foam material may comprise a first zone 316 having a first cell size or first average cell size, where the first zone 316 is adjacent to the first fabric layer 310. The foam material may also comprise a second zone 318 located adjacent to the first zone 316 and adjacent to the second fabric layer 314. The second zone 318 has a second cell size or second average cell size that is greater than the first average cell size of the first zone 316. The effect of having a smaller average cell size adjacent to the skin of the wearer and a larger average cell size facing the exterior of the sport bra is to create a diffusion gradient that wicks sweat away from the skin 306 to the exterior of the sport bra.
The demarcation between the first zone 316 and the second zone 318 may be gradual or abrupt. Further, the zones 316 and 318 may be part of a unitary or single layer of foam material used for the middle layer 312. The different zones in the single layer of foam material may be made by varying the molecular structure, amount, and reaction temperature of the components used to make the zones 316 and 318. In another aspect, the first zone 316 may be associated with a first layer of foam material, and the second zone 318 may be associated with a second layer of foam material. The different layers of the foam material may be joined together using, for example, adhesives, spot welding, stitching, ultrasound, light, heat, mechanical retention in a pocket of fabric, and the like. The different layers of foam material may be joined in such a way as to not impede the passage of the sweat from the skin 300 to the exterior of the sport bra. For example, adhesive may be applied only in selected areas or spot fusing may only be applied in selected areas. Although only two layers of foam material are discussed, it is contemplated that the middle layer 312 may be comprised of multiple layers of foam material, each layer having a different cell size with the smallest cell size layer closest to the skin 300 progressing to the largest cell size layer adjacent to the exterior face of the sport bra.
Turning to
The non-woven, moldable fibers that make up the middle layer 412 may comprise natural or cellulosic fibers and/or man-made fibers. Exemplary natural fibers may comprise cotton, silk, wool, flax, and/or hemp. Exemplary man-made fibers may comprise polyester, nylon, rayon, spandex, and/or rubber. The non-woven moldable fibers may be heat molded to form the molded cup. Prior to heat molding, the fibers may be arranged so that thicker fibers are situated in a thick fiber zone 416 that is adjacent to the first fabric layer 410 and the skin 400, and thinner fibers are situated in a thin fiber zone 418 that is adjacent to the second fabric layer 414. When fibers are thin, there is a greater amount of surface area associated with a group of fibers within a predetermined area (e.g., thin fiber zone 418). Conversely, when fibers are thick, there is a smaller amount of surface area associated with a group of fiber within a predetermined area (e.g., thick fiber zone 416). The arrangement of the zones 416 and 418 is configured to facilitate movement of sweat away from the skin 400 via capillary action. Since the thin fiber zone 418 has a greater amount of surface area, the sweat is effectively transported from the thick fiber zone 416 to the thin fiber zone 418.
Although
Turning to
The injection-molded zone 516 may be comprised of water-permeable polyurethane materials having properties that impart a flexible molded shape to the molded cup subsequent to injection molding the materials. The injection-molded zone may have a first degree of hydrophilicity. Subsequent to injection molding the injection-molded zone 516, a hydrophilic treatment may be applied to the exterior surface of the injection-molded zone 516 to generate the hydrophilic layer 518. The hydrophilic layer 518 has a second degree of hydrophilicity that is greater than the injection-molded zone 516. Sweat is transported along the hydrophilic gradient from the skin 500 through the injection-molded zone 516 and the hydrophilic layer 518 to the second fabric layer 514. In another aspect of the invention, hydrophobic treatments may be utilized in order to achieve a desired hydrophilic gradient.
Differential injection molding techniques may be used to generate a unitary or single layer middle layer 612 having the different injection-molded zones 616 and 618. For instance, the injection-molded zone 616 may be made using a first type of injection molding material and/or chemical additive to impart a first degree of hydrophilicity to the injection-molded zone 616. The injection-molded zone 618 may be made using a second type of injection molding material and/or chemical additive to impart a second degree of hydrophilicity to the injection-molded zone 618, where the second degree of hydrophilicity is greater than the first degree of hydrophilicity. This creates a hydrophilic gradient that facilitates movement of sweat away from the skin 600 to the second fabric layer 614.
In another aspect, the middle layer 612 may be comprised of multiple, different layers of injection-molded materials with each layer having a different hydrophilicity. Again, the different hydrophilic properties of the different layers may be generated using different injection molding materials, injection-molding settings, and/or chemical additives. The different layers may be attached to each other using the selective application of adhesives, stitching, mechanical retention in a fabric pocket, spot fusing, heat, and the like as described above. The layers may be arranged so that less hydrophilic layers are situated close to the skin 600 and more hydrophilic layers are arranged adjacent to the second fabric layer 614, thus creating a hydrophilic gradient that facilitates movement of sweat away from the skin 600 to the second fabric layer 614.
Turning to
The foam zone 716 may comprise hydrophilic polyurethane and may be generated using manufacturing techniques common to foams (e.g., forming gas bubbles in a plastic mixture using a blowing agent). Manufacturing parameters may be adjusted so that the foam zone 716 has a first cell size or first average cell size imparting a first degree of hydrophilicity. The injection-molded zone 718 may be comprised of water-permeable polyurethane materials having a second degree of hydrophilicity that is greater than the first degree of hydrophilicity. This creates a hydrophilic gradient between the foam zone 716 and the injection-molded zone 718. Sweat is wicked away from the skin 700 by moving along the hydrophilic gradient. The foam zone 716 is attached to the injection-molded zone 718 by applying heat, ultrasound, adhesives, etc. to selected portions of the interface between the foam zone 716 and the injection-molded zone 718.
Although
Turning to
As mentioned, the middle layer 812 comprises the foam zone 816, the injection-molded zone 818, and the hydrophilic layer 820. The properties of the materials used to generate the foam zone 816, the injection-molded zone 818, and the hydrophilic layer 820 are adjusted so that a hydrophilic gradient is created between the first fabric layer 810 and the second fabric layer 814 (i.e., the hydrophilic layer 820 has a higher degree of hydrophilicity than the injection-molded zone 818, which, in turn, has a higher degree of hydrophilicity than the foam zone 816). Additionally, a hydrophobic layer may additionally be used to create the hydrophilic gradient.
The spacer fabric that makes up the middle layer 1316 may be knitted or woven separately from the first fabric layer 1310 and the second fabric layer 1314. Alternatively, the spacer fabric that makes up the middle layer 1316 may be integrally knitted or woven with the first fabric layer 1310 and/or the second fabric layer 1314. The first fabric layer 1310 may be constructed of yarns and/or fibers having a larger DPF (e.g., DPF greater than 1.04), and the second fabric layer 1314 may be constructed of yarns and/or fibers having a smaller DPF (e.g., DPF less than 1.04). The DPF of the fibers that make up the spacer fabric are selected so as not to impede the moisture flow from the first fabric layer 1310 to the second fabric layer 1314. As well, the type of fiber selected for the middle layer 1316 along with the compactness of the weave are selected so as not to impede the moisture flow from the first fabric layer 1310 to the second fabric layer 1314.
Although not shown, it is also contemplated that the middle layer of the molded cup may comprise yarns made up of either man-made and/or natural materials. In one aspect, the yarns may comprise tie-yarns that extend from an internal-facing first fabric layer to an external-facing second fabric layer.
Turning now to
Subsequent to injection molding the molded bra cup, the exterior face of the molded bra cup is treated with a hydrophilic material at a step 912. The hydrophilic material has a second degree of hydrophilicity that is greater than the first degree of hydrophilicity. This creates a hydrophilic gradient that facilitates movement of sweat/water away from the skin surface to the exterior of the sport bra. Hydrophilic material may also be used to treat the molded bra cup (either on an internal face or an external face) so long as a hydrophilic gradient is created.
At a step 1012, a second zone of the molded bra cup is created using injection-molding techniques. Again, water-permeable materials such as water-permeable polyurethane may be used to create the second zone. The second zone has a second degree of hydrophilicity that is greater than the first zone. This may be because of the type of injection-molding material used, injection-molding settings, and/or chemical additives applied to the injection-molding material. The second zone comprises an exterior face of the molded sport bra cup.
The second zone may be further treated with a hydrophilic overlay having a third degree of hyrdrophilicity as compared to the first and second degrees of hydrophilicity. The first and second zones may be part of a unitary piece of material and may be created using differential injection-molding techniques. In another aspect, the first zone may comprise a first layer of material, and the second zone may comprise a second layer of material. The layers may be selectively attached to one another using heat, stitching, mechanical retention in a pocket, adhesives, ultrasound, and the like. The layers are attached in such a way so as not to impede the flow of sweat/water from the skin to the exterior surface of the bra.
At a step 1114, the first plurality of fibers and the second plurality of fibers are molded to form the moisture-transporting molded bra cup. Heat may be used to mold the bra cup. Other ways of molding the bra cup may also be used such as pressure, chemicals, light, and the like.
The first and second foam layers may comprise polyurethane materials having water-permeable properties. Molecular structure, amounts, and reaction temperatures of the foam components may be altered to create the different cell sizes or different average cell sizes of the first zone and the second zone.
The first and second foam zones may be formed from a single piece of material. Alternatively, the first foam zone may be formed from a first piece of material, and the second foam zone may be formed from a second piece of material. Further, the first and second pieces of materials may be selectively attached to one another so as not to impede water/sweat transport from the skin surface to the exterior of the sport bra.
The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from its scope. Certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims.
This application entitled “Sport Bra with Moisture-Transporting Molded Cups” and having attorney docket number NIKE.254411/120250US03CON is a Continuation Application of pending U.S. application Ser. No. 13/833,683, entitled “Sport Bra with Moisture-Transporting Molded Cups,” and filed Mar. 15, 2013, which claims the benefit of priority of U.S. Prov. App. No. 61/651,663, filed May 25, 2012 and entitled “Sport Bra With Moisture-Transporting Molded Cups.” The entirety of the aforementioned applications is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3301798 | Waterman et al. | Jan 1967 | A |
3348549 | Brodmann et al. | Oct 1967 | A |
5269720 | Moretz et al. | Dec 1993 | A |
5873768 | Fleischman et al. | Feb 1999 | A |
5967877 | Howard | Oct 1999 | A |
7154017 | Sigurjonsson | Dec 2006 | B2 |
8143472 | Bragd et al. | Mar 2012 | B1 |
20020050667 | Swartz et al. | May 2002 | A1 |
20040097151 | McMurray | May 2004 | A1 |
20040168479 | McMurray | Sep 2004 | A1 |
20040224603 | Kaye | Nov 2004 | A1 |
20050023718 | Wood | Feb 2005 | A1 |
20050188470 | Li et al. | Sep 2005 | A1 |
20050255789 | Gaudet et al. | Nov 2005 | A1 |
20060025041 | Falla | Feb 2006 | A1 |
20060052034 | Falla | Mar 2006 | A1 |
20060094333 | Wood | May 2006 | A1 |
20070097151 | Rosenberg | May 2007 | A1 |
20070238392 | Starbuck | Oct 2007 | A1 |
20080261490 | Scheininger | Oct 2008 | A1 |
20080261491 | Scheininger | Oct 2008 | A1 |
20090233523 | Pardo | Sep 2009 | A1 |
20110111674 | Padula | May 2011 | A1 |
20140120337 | Liyanage | May 2014 | A1 |
Number | Date | Country |
---|---|---|
201995600 | Oct 2011 | CN |
1721720 | Nov 2006 | EP |
2245949 | Nov 2010 | EP |
Entry |
---|
European Extended Search Report dated Dec. 12, 2016 for European Patent Application No. 16184931.0, 6 pages. |
International Search Report with Written Opinion dated Oct. 9, 2013 in PCT Patent Application No. PCT/US2013/42346. |
Tsang: A Study of Foam Yellowing Performance for Bra Cup Moulding and End Uses. Institute of Textiles and Clothing, The Hong Kong Polytechnic University 2010. Retrieved from the Internet on Oct. 7, 2015 at: http://scholar.googleusercontent.com/scholar?q=cache:Ei-8sijIPJ4J:scholar.google.com/&h. |
International Preliminary Report on Patentability dated Nov. 25, 2014 in Application No. PCT/US2013/042346, 14 pages. |
European Search Report dated Dec. 4, 2015 in Application No. 13794361.9, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20160227845 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
61651663 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13833683 | Mar 2013 | US |
Child | 15134742 | US |