This application claims the benefits of Taiwan application Serial No. 98144317, filed Dec. 22, 2009 and Taiwan application Serial No. 99101114, filed Jan. 15, 2010, the subject matter of which is incorporated herein by reference.
1. Technical Field
The disclosure relates in general to a sport guiding device and a sport guiding method using the same, and more particularly to a sport guiding device adopting a sport frequency curve for control and a sport guiding method using the same.
2. Background
When people are actively participating in athletic pursuits, hereinafter “sports”, what they concern most is how to complete their sport activity smoothly. The largest challenge to people actively participating in racing sports, such as jogging or cycling to find the rhythm and intensity frequency most suitable to their health conditions.
During sports activity, people may feel upset if they are unable to find a sport frequency that suits them most. However, people may find sports more interesting and are more willing to join or continue if they are able to find a frequency and rhythm that make them feel relaxed through a guiding mechanism.
Accordingly, the disclosure is directed to a sport guiding device and a sport guiding method using the same. Through tempo guidance, people are guided to control their sport frequency and rhythm so as to have the best sport effect.
According to an embodiment of the disclosure, a sport guiding device is provided. The sport guiding device includes a supplying unit, a computation unit, a detection unit, a determination unit and a tempo unit. The supplying unit is for providing two of a predetermined sport frequency intensity, a predetermined calorific capacity and a predetermined sport time. The computation unit is for computing a predetermined sport frequency curve according to two of the predetermined sport frequency intensity, the predetermined calorific capacity and the predetermined sport time. The detection unit is for detecting an actual sport frequency curve of a user. The determination unit is for determining whether an actual sport frequency curve deviates from the predetermined sport frequency curve for a predetermined level. If the actual sport frequency curve deviates from the predetermined sport frequency curve for the predetermined level, then the tempo unit outputs a tempo guiding signal.
According to another embodiment of the disclosure, a sport guiding method using a sport guiding device. The sport guiding method includes the following steps. Two of a predetermined sport frequency intensity, a predetermined calorific capacity and a predetermined sport time are provided. A predetermined sport frequency curve is obtained according to two of the predetermined sport frequency intensity, the predetermined calorific capacity and the predetermined sport time. An actual sport frequency curve of a user is detected. If the actual sport frequency curve deviates from the predetermined sport frequency curve for a predetermined level, then a tempo guiding signal is outputted.
The disclosure can be more fully understand by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a through understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing. Moreover, secondary elements are omitted in the embodiments to highlight the characteristics of the disclosure.
Referring to
The operations of various elements of the sport guiding device 100 of the present embodiment of the disclosure are disclosed in a flowchart below. However, anyone who is skilled in the technology of the present embodiment of the disclosure will understand that the operations and procedure sequence of the sport guiding device 100 of the present embodiment of the disclosure are not restricted by the flowchart.
Referring to
Wherein, the input unit 160 of the present embodiment of the disclosure enables the user to select at least two of the predetermined sport frequency intensity S1, the predetermined calorific capacity S2 and the predetermined sport time S3, and the storing unit 170 is for storing a physiological information S4 of the user. The supplying unit 110 is for retrieving the predetermined sport frequency intensity S1, the predetermined calorific capacity S2 and the predetermined sport time S3 that are selected by the user from the input unit 160, and for retrieving the physiological information S4 of the user from the storing unit 170. In an embodiment, the supplying unit 110 could also retrieve the physiological information S4 inputted by the user from the input unit 160.
Then, the method proceeds to step S102, the computation unit 120 obtains a predetermined sport frequency curve C1 through computation according to two of the predetermined sport frequency intensity S1, the predetermined calorific capacity S2 and the predetermined sport time S3.
How the predetermined sport frequency curve C1 is obtained through computation is exemplified by an example below. Referring to
Firstly, as illustrated in
Next, as illustrated in
Then, as illustrated in
Then, the method proceeds to step S103, whether the user has started to do sport is determined by the determination unit 140. If the user has started to do sport, then the method proceeds to step S104. If the user has not yet started to do sport, then the method returns to step S103.
Afterwards, the method proceeds to step S104, an actual sport frequency curve of the user is detected by the detection unit 130. Referring to
Then, the method proceeds to step S105, whether the actual sport frequency curve A1 is deviated from the predetermined sport frequency curve C1 for a predetermined level is determined by the determination unit 140. The predetermined level is such as 10%. If the actual sport frequency curve A1 is deviated from the predetermined sport frequency curve C1 for the predetermined level (such as the part of the actual sport frequency curve A1 corresponding to time T3-T4 as illustrated in
In step S107, whether the actual sport frequency curve A1 is lower or higher than the predetermined sport frequency curve C1 is determined by the determination unit 140. If the actual sport frequency curve A1 is lower than the predetermined sport frequency curve C1, then the method proceeds to step S108. If the actual sport frequency curve A1 is higher than the predetermined sport frequency curve C1, then the method proceeds to step S109. Referring to
In step S108, when the actual sport frequency curve A1 is lower than the predetermined sport frequency curve C1 for the predetermined level (such as the part of the actual sport frequency curve A1 corresponding to time T3-T4 as illustrated in
In step S109, when the actual sport frequency curve A1 is higher than the predetermined sport frequency curve C1 for the predetermined level (such as the part of the actual sport frequency curve A1 corresponding to time T5-T6 as illustrated in
In step S106, when the actual sport frequency curve A1 is not deviated from the predetermined sport frequency curve C1 for the predetermined level (such as the part of the actual sport frequency curve A1 corresponding to time T1-T2 as illustrated in
Then, the method proceeds to step S110, whether the actual calorific capacity of the user has reached the predetermined calorific capacity S2 is determined by the determination unit 140. If the actual calorific capacity of the user has not reached the predetermined calorific capacity S2, then the method proceeds to step S111; if the actual calorific capacity of the user has reached the predetermined calorific capacity S2, then the method proceeds to step S112.
Then, the method proceeds to step S111, whether the actual sport time of the user has reached the predetermined sport time S3 is determined by the determination unit 140. If the actual sport time of the user has reached a predetermined sport time S3, then the method proceeds to step S112. If the actual sport time of the user has not reached a predetermined sport time S3, then the method returns to step S105.
In step S112, a prompt signal W5 is outputted by the prompt unit 180. Through the determination in steps S110˜S112, when the user reaches the predetermined calorific capacity S2 or the predetermined sport time S3, the control unit 190 controls the prompt unit 180 to immediately output the prompt signal W5 to remind the user to finish sport. In an embodiment, the prompt unit 180 is such as a speaker or a headset. The prompt signal W5 provided by the prompt unit 180 is an audio prompt signal W5a with warning function. In another embodiment, the prompt unit 180 is such as a film electrode pastor, a beater or a vibrator. The prompt signal W5 provided by the prompt unit 180 is a tempo prompt signal W5b with warning function. In another embodiment, the prompt unit 180 is such as a combination of an audio device and a tempo device. The prompt signal W5 provided by the prompt unit 180 includes an audio prompt signal W5a with warning function and a tempo prompt signal W5b with warning function. In another embodiment, the sport guiding device of the disclosure could omit the prompt unit 180, and when the user reaches the predetermined calorific capacity S2 or the predetermined sport time S3, the control unit 190 controls the tempo unit 150 to output a tempo prompt signal W6 with warning function to remind the user to finish sport. In another embodiment, the sport guiding device of the disclosure could provide an audio prompt signal W5a with warning function by the prompt unit 180 and provide a tempo prompt signal W6 with warning function by the tempo unit 150. In the above embodiments, the tempo prompt signal W5b and the tempo prompt signal W6 are such as a short and intermittent tempo signal which lasts for a predetermined time (such as 5 seconds), or regular and intermittent tempo signal which lasts for a predetermined time (such as 5 seconds).
In an embodiment, step S106 could be omitted, and after the determination unit 140 determines that the actual sport frequency curve A1 is deviated from the predetermined sport frequency curve C1 for the predetermined level, the method proceeds to step S107, and then outputs the first tempo guiding signal.
Referring to
In steps S101-S104, the predetermined sport frequency curve C1 is obtained by the computation unit 120 through computation, and an actual sport frequency curve A1 of the user is detected by the detection unit 130. Referring to
Then, the method proceeds to step S105, whether the actual sport frequency curve A1 is deviated from the predetermined sport frequency curve C1 for a predetermined level is determined by the determination unit 140. If the actual sport frequency curve A1 is deviated from the predetermined sport frequency curve for the predetermined level (such as the part of the actual sport frequency curve A1 corresponding to time T3-T4 as illustrated in
In step S206, when the actual sport frequency curve A1 is deviated from the predetermined sport frequency curve C1 the predetermined level (such as the part of the actual sport frequency curve A1 corresponding to the time T3-T4 as illustrated in
While the disclosure has been described by way of example and in terms of several embodiments, it is to be understood that the disclosure is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
98144317 A | Dec 2009 | TW | national |
99101114 A | Jan 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3846704 | Bessette | Nov 1974 | A |
4566461 | Lubell et al. | Jan 1986 | A |
4728100 | Smith | Mar 1988 | A |
4749180 | Boomer | Jun 1988 | A |
5724265 | Hutchings | Mar 1998 | A |
5788655 | Yoshimura et al. | Aug 1998 | A |
6213872 | Harada et al. | Apr 2001 | B1 |
6246362 | Tsubata et al. | Jun 2001 | B1 |
6450955 | Brown et al. | Sep 2002 | B1 |
7118555 | Leonard et al. | Oct 2006 | B2 |
7451032 | Brown et al. | Nov 2008 | B2 |
7645212 | Ashby et al. | Jan 2010 | B2 |
7980456 | Boezaart | Jul 2011 | B2 |
20020111737 | Hoisko | Aug 2002 | A1 |
20020128864 | Maus et al. | Sep 2002 | A1 |
20050054938 | Wehman et al. | Mar 2005 | A1 |
20060101983 | Boxer | May 2006 | A1 |
20060129308 | Kates | Jun 2006 | A1 |
20070113726 | Oliver et al. | May 2007 | A1 |
20080153671 | Ogg et al. | Jun 2008 | A1 |
20080188354 | Pauws et al. | Aug 2008 | A1 |
20080310579 | Boezaart | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
1921913 | Feb 2007 | CN |
2002024404 | Jan 2002 | JP |
2002051160 | Feb 2002 | JP |
201272 | Mar 1993 | TW |
403668 | Sep 2000 | TW |
2007-33934 | Mar 2006 | TW |
200622195 | Jul 2006 | TW |
I263488 | Oct 2006 | TW |
2008-025803 | Jun 2008 | TW |
201033587 | Sep 2010 | TW |
Number | Date | Country | |
---|---|---|---|
20110151421 A1 | Jun 2011 | US |