1. Field of Invention
The present invention relates to a sporting apparatus and, in particular, to a sporting apparatus which is rotation speed controllable.
2. Related Art
More and more people are busy in their works and social activities, so they do not have time to do exercise. Consequently, many kinds of sporting apparatuses are invented for these busy people. For example, a running machine 1 as shown in
The running machine 1 includes a motor 11 and an endless belt 12. The motor 11 can drive the endless belt 12 to rotate, so that the user can run on the rotating endless belt 12. This allows the user to work out at home or gym.
However, the running machine 1 must be powered on to enable the motor 11 to drive the endless belt 12 to rotate, and the running machine 1 is high power consumption. In addition, when the rotation speed of the endless belt 12 is set already, the user can only passively run following the set rotation speed of the endless belt 12. Since the running machine 1 can not adjust the rotation speed of the endless belt 12 according to the position of the user on the endless belt 12, the user may fall down and get hurt if the running speed of the user does not compete with the rotation speed of the endless belt 12.
Therefore, it is a subject of the invention to provide a sporting apparatus and a control method thereof that do not need the external power for driving and can adjust the rotation speed of the endless belt according to the position of the user on the endless belt so as to prevent the user from getting hurt.
In view of the foregoing, an objective of the invention discloses a sporting apparatus and a control method thereof that do not need the external power for system driving and can adjust the rotation speed of the endless belt according to the position of the user on the endless belt so as to prevent the user from getting hurt.
To achieve the above objective, the present invention discloses a sporting apparatus comprising a structure body, an endless belt, an electricity generating unit and a position sensing unit. The endless belt is disposed on the structure body. The electricity generating unit is disposed in the structure body and transforms kinetic energy, which is transmitted from the endless belt, into electric power. The position sensing unit is disposed in the structure body and senses a position of a user on the endless belt to generate a sensing signal. Then, an armature current of the electricity generating unit is adjusted according to the sensing signal for controlling a rotation speed of the endless belt.
In one embodiment of the invention, the sporting apparatus further comprises a transmission mechanism disposed in the structure body and connected with the endless belt and the electricity generating unit.
In one embodiment of the invention, the sporting apparatus further comprises a modulation unit electrically connected with the electricity generating unit and the position sensing unit. The modulation unit controls the armature current according to the sensing signal so as to change the rotation speed of the endless belt, so that the user is kept on a specific position of the endless belt. Besides, the modulation unit may control the armature current by pulse width modulation or by modulating an output power of the electricity generating unit.
In one embodiment of the invention, the sporting apparatus further comprises at least a piezo-electric element disposed in the endless belt.
In one embodiment of the invention, the sporting apparatus further comprises a start auxiliary unit, which is electrically connected with the electricity generating unit and provides a start voltage.
To achieve the above objective, the present invention also discloses a control method applied to a sporting apparatus. The sporting apparatus includes an endless belt, and the endless belt rotates to drive an electricity generating unit to generate an armature current. The method includes the following steps of: sensing a position of a user on the endless belt so as to generate a sensing signal, adjusting the armature current according to the sensing signal, and controlling a rotation speed of the endless belt according to the armature current.
In one embodiment of the invention, the step of sensing the position of the user on the endless belt so as to generate the sensing signal is performed by a position sensing unit. The step of adjusting the armature current according to the sensing signal is performed by a modulation unit. The modulation unit controls the armature current by pulse width modulation; otherwise, the modulation unit controls the armature current by modulating an output power of the electricity generating unit. Moreover, the modulation unit alters the armature current so as to change the rotation speed of the endless belt, so that the user is kept on a specific position of the endless belt. The rotation speed of the endless belt increases when the armature current decreases; on the contrary, the rotation speed of the endless belt decreases when the armature current increases.
As mentioned above, the sporting apparatus of the invention is configured with an electricity generating unit for transforming kinetic energy transmitted from the endless belt into electric power and a position sensing unit for sensing a position of a user on the endless belt so as to generate a sensing signal. Furthermore, the armature current of the electricity generating unit is adjusted according to the sensing signal for controlling a rotation speed of the endless belt. Therefore, the sporting apparatus does not need the external power and can adjust the rotation speed of the endless belt according to the position of the user on the endless belt. Accordingly, the user can be kept on the specific position of the endless belt so as to protect the user from falling down and getting hurt due to that the running speed of the user does not compete with the rotation speed of the endless belt. As a result, in the sporting apparatus and control method thereof of the invention, the external power is not necessary and the user can be protected from falling down and getting hurt.
The present invention will become more fully understood from the subsequent detailed description and accompanying drawings, which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
A sporting apparatus 2 according to an embodiment of the invention will be described hereinafter with reference to
The sporting apparatus 2 comprises a structure body 21, an endless belt 22, an electricity generating unit 23, and a position sensing unit 24. Moreover, the sporting apparatus 2 further comprises a transmission mechanism 25 and a modulation unit 26. To be noted, the sporting apparatus 2 of the invention is not the conventional running machine, so that the external power is not necessary for the sporting apparatus 2. In the embodiment, the kinetic energy generated by a user can rotate the endless belt 22 so as to enable the electricity generating unit 23 of the sporting apparatus 2 to generate electricity. In addition, the electricity generated by the electricity generating unit 23 can be applied to drive elements of the sporting apparatus 2 or to charge an energy storage device. Besides, it can also be applied to a load or be sold to the power company. However, the applications of the generated electricity are not limited to this embodiment.
The endless belt 22 is disposed on the structure body 21 through two rotation shafts, so that it can rotate relative to the structure body 21. In other words, the endless belt 22 is disposed on the structure body 21, and the structure body 21 stands still while the endless belt 22 rotates. In this case, the endless belt 22 is a rubber belt for example. Of course, it can also be a track.
The electricity generating unit 23 is disposed in the structure body 21, and it is used to transform kinetic energy, which is transmitted from the endless belt 22, into electric power. The electricity generating unit 23 can be, for example but not limited to, a permanent-magnet generator, an induction generator, or a DC generator (including brush and commutator).
The transmission mechanism 25 is disposed in the structure body 21 and connected with the endless belt 22 and the electricity generating unit 23. Thus, the transmission mechanism 25 can transmit kinetic energy of the rotating endless belt 22 to the electricity generating unit 23. In other words, when the user runs on the endless belt 22, the endless belt 22 is rotated and the transmission mechanism 25 can transform kinetic energy of the rotating endless belt 22 into torque and then transmit the torque to the electricity generating unit 23. Thus, the electricity generating unit 23 can generate electricity. In addition, since the electricity generating unit 23 is a generator, an armature current Ia of the electricity generating unit 23 is in positive proportion with the counter torque of the electricity generating unit 23. When the armature current Ia of the electricity generating unit 23 is altered, the counter torque of the electricity generating unit 23 is relatively changed in proportion. Accordingly, the transmission mechanism 25 can also change the rotation speed of the endless belt 22 depending on the counter torque variation of the electricity generating unit 23. In other words, when the counter torque of the electricity generating unit 23 is altered, the transmission mechanism 25 can change the rotation speed of the endless belt 22 according to the counter torque variation of the electricity generating unit 23. In this embodiment, the transmission mechanism 25 is, for example but not limited to, a set of planetary gears, a gear box, or a set of belts.
The position sensing unit 24 is disposed in the structure body 21 and senses a position of the user on the endless belt 22 so as to generate a sensing signal SS. For example, the position sensing unit 24 may comprise an ultrasonic sensor, an infrared sensor, or a piezo-electric sensor. In this embodiment, the position sensing unit 24 is an ultrasonic sensor. In addition, the armature current Ia of the electricity generating unit 23 is adjusted according to the sensing signal SS. Once the armature current Ia changes, the counter torque of the electricity generating unit 23 is relatively changed so as to control the rotation speed of the endless belt 22.
The modulation unit 26 is electrically connected with the electricity generating unit 23 and the position sensing unit 24, and the modulation unit 26 controls the armature current Ia according to the sensing signal SS. When the modulation unit 26 alters the armature current Ia, the counter torque of the electricity generating unit 23 and the rotation speed of the endless belt 22 are relatively changed. Thus, the user is kept on a specific position of the endless belt 22. In this embodiment, the specific position of the endless belt 22 represents the center region B of the endless belt 22 in
In other words, if the running speed of the user does not compete with the rotation speed of the endless belt 22 (e.g. when the running speed of the user is faster, or the rotation speed of the endless belt 22 is slower), the user may step forward and be located in front of the region B of the endless belt 22 as shown in
Alternatively, when the running speed of the user is slower, or the rotation speed of the endless belt 22 is faster, the user may step backward and be located in back of the region B of the endless belt 22 as shown in
The procedures of using the modulation unit 26 to adjust the armature current Ia of the electricity generating unit 23 will be described hereinafter with reference to
As shown in
For instance, if the running speed of the user is faster, the user may step forward and is located in front of the region B of the endless belt 22 (see
Referring to
For instance, if the user steps forward and is located in front of the region A of the endless belt 22 (see
Referring to
The current sensor 262 can sense the current flowing through the inductance L1, which is the armature current Ia, and output a signal to the controller (not shown in
For instance, if the user steps backward and is located in back of the region B of the endless belt 22 (see
Referring to
Moreover, if the electricity generating unit 23 is a three-phase generator, the outputted armature current Ia is a three-phase current. Referring to
The three-phase full-bridge rectifying unit 263 and the switch Q can be integrated for both rectifying and controlling the armature current Ia. Referring to
In addition, the sporting apparatus 2 may further comprise at least one piezo-electric element (not shown), which is disposed on the endless belt 22. The configuration of the piezo-electric element can transform the instant impact as the user steps on the endless belt 22 into voltage. The piezo-electric element can utilize the piezo-electric effect to transform mechanical energy into electricity. In other words, the piezo-electric element can generate extra electricity due to the piezo-electric effect, so that the total generated electricity of the sporting apparatus 2 can be increased.
The sporting apparatus 2 may further include a start auxiliary unit 27, which is electrically connected with the modulation unit 26. The start auxiliary unit 27 provides a start voltage Vstart before the sporting apparatus 2 is started, so that the armature current Ia can be inhibited while the sporting apparatus 2 is just started and/or is in a low speed. This configuration can decrease the counter torque of the electricity generating unit 23, so that the user can easily drive the endless belt 22 to start rotating. The start voltage Vstart can be provided from the city power, battery, or other energy storage device. In addition, it is possible to enable the start auxiliary function by using a sensor to detect the user and/or by pressing a button before the running exercise.
Before the user starts to run on the sporting apparatus 2, the electricity generating unit 23 is controlled to stop providing electricity to the load, and a capacitor of the modulation unit 26 can be charged to a value of the start voltage Vstart. When the user starts to run on the sporting apparatus 2, the electricity generating unit 23 is in low speed so that the generated electricity is lower than the start voltage Vstart of the capacitor. In this case, the electricity generating unit 23 does not output the armature current Ia, so that the counter torque of the electricity generating unit 23 is not induced. Accordingly, the user can feel that the load for running on the endless belt 22 is lower, so the user can easily drive the endless belt 22 to rotate. After the endless belt 22 is rotated, the electricity generating unit 23 starts to output the electricity to the load.
In other aspects, the electricity generating unit 23 can be used as a start motor (not shown). In more specific, when the user starts to run on the sporting apparatus 2, the current is generated and flows into the electricity generating unit 23 so as to drive the electricity generating unit 23 to rotate. Accordingly, the endless belt 22 is driven to rotate. This configuration can also make the user feel it is easy to run on the endless belt 22.
The other elements of the sporting apparatus 2 and their technical features are described hereinabove, so the detailed description thereof is omitted.
In summary, the sporting apparatus of the invention is configured with an electricity generating unit for transforming kinetic energy transmitted from the endless belt into electric power, and a position sensing unit for sensing a position of a user on the endless belt so as to generate a sensing signal. Furthermore, the armature current of the electricity generating unit can be adjusted for controlling a rotation speed of the endless belt. Therefore, the sporting apparatus does not need the external power and can adjust the rotation speed of the endless belt according to the position of the user on the endless belt. Accordingly, the user can be kept on the specific position of the endless belt so as to protect the user from falling down and getting hurt due to that the running speed of the user does not compete with the rotation speed of the endless belt. As a result, in the sporting apparatus and control method thereof of the invention, the external power is not necessary and the user can be protect from falling down and getting hurt.
Although the present invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the present invention.
The non-provisional patent application claims priority to U.S. provisional patent application with Ser. No. 61/504,012 filed on Jul. 1, 2011. This and all other extrinsic materials discussed herein are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61504012 | Jul 2011 | US |