These and other features of the present invention are more fully set forth in the following description of exemplary embodiments of the invention. The description is presented with reference to the accompanying drawings in which:
The exemplary waterproof housing 100 of the exemplary embodiment comprises an exemplary lower housing component 10 and an exemplary upper housing component 11. In the exemplary embodiment, the exemplary lower housing component 10 and the exemplary upper housing component 11 are joined together and sealed through ultrasonic bonding at a sealed joint 101. It will be understood by someone with ordinary skill in the art that the description herein of ultrasonic bonding of the exemplary lower housing component 10 and the exemplary upper housing component 11 is exemplary and non-limiting.
It will be understood by someone with ordinary skill in the art that other methods of joining and sealing the upper housing component 11 with the lower housing component 10 could be used without departing from the spirit of the present invention. For example, the exemplary lower housing component 10 could be joined with and sealed to the exemplary upper housing component 11 using a rubber seal, such as, for example, exemplary rubber ring 7, and/or mechanical fasteners. Other permanent and non-permanent joining and sealing methods are possible, whether now known or in the future discovered.
Further, it will be understood by someone with ordinary skill in the art that the description of two housing components 10 and 11 is illustrative and non-limiting. Rather, in alternative embodiments, it would be possible to provide a single-component housing.
The exemplary device 1 is hardened against extremes in water pressure, temperature, shock, vibration, and foreign matter intrusion that are typical found in aquatic sport environments. The exemplary device 1 meets environmental specifications of at least International Standard CEI/IEC 529: 1989:IPX7.
It will be understood by someone with ordinary skill in the art that the description herein of the exemplary device 1 as meeting the specific environmental specifications of International Standard CEI/IEC 529: 1989:IPX7 is exemplary and non-limiting. In alternative embodiments of the present invention, the exemplary device may be housed in a housing that is not waterproof, watertight, submersible or otherwise ruggedized against environmental elements. In some alternative embodiments, the housing may be sealed to resist dust entering the interior of the housing.
Exemplary lower housing component 10 comprises an exemplary cylindrical shaft 45 attached to, and extending from an exemplary docking recess 10b in the bottom surface 10a of exemplary lower housing component 10.
The exemplary embodiment further comprises an exemplary body 50 of material. In the exemplary embodiment, the exemplary body 50 comprises a bodyboard of common design. An exemplary bodyboard 70 of the exemplary embodiment of the present invention is depicted in
In alternative embodiments, a body 50 may comprise a float tube or tow raft 55 an example of which is depicted in
It will be understood that the above-described examples are illustrative and non-limiting. The exemplary device 1 could be docked in various other crafts, including, by way of non-limiting example, a recess in an arm of a beach chair, cooler or other furniture, in a recess in a dashboard of a boat or car, or in a recess in the surface of a snowboard or wakeboard. The exemplary device 1 could be disengaged from one craft and docked into another craft, or even used independently.
Returning with reference to
Continuing with reference to
With reference to
In the exemplary embodiment, exemplary housing 100 depicted in
Returning with reference to
Returning with reference to
As depicted in
It will be understood by someone with ordinary skill in the art that the description herein of the exemplary graphic elements 30, 31, 32, 33, 34, 35, and 36 is illustrative and non-limiting; other graphic elements, switch configurations, materials, thickness, and geometries of exemplary user interface 5 are possible without departing from the spirit of the present invention.
In the exemplary embodiment, the bonds at the sealed joint 101 between exemplary upper housing component 11 and exemplary lower housing component 10, and between exemplary user interface panel 5 and exemplary inner rim 78 of exemplary upper housing component 11 hermetically seal within the exemplary housing 100, various audio and communications related components described further below.
Returning to
Continuing with reference to
In the exemplary embodiment, exemplary rechargeable batteries 15 provide electrical power to various electrical components described further below. In the exemplary embodiment, rechargeable batteries 15 comprise rechargeable lithium batteries. It will be understood by someone with ordinary skill in the art that the use of rechargeable lithium batteries in the exemplary embodiment is illustrative and non-limiting; other battery technologies and methods of supplying power, whether now known or in the future discovered, could be used without departing from the spirit of the present invention. For example, in alternative embodiments, by way of non-limiting example, nickle-metal-hydride, nickel-cadmium, replaceable alkaline, or photovoltaic (solar), could be used without departing from the spirit of the present invention. In yet another embodiment, a dock (not shown) adapted for accepting the device 1 could be used that would connect the docked device 1 to a personal computer (“PC”) or other device USB port; the USB port would be adapted for downloading music files to the alternative device music file download and battery charging.
In the exemplary embodiment, as depicted in
In the exemplary embodiment, exemplary printed circuit board 18 comprises exemplary circuitry to facilitate all functions of exemplary device 1, including, but not limited to, exemplary microprocessor circuitry, exemplary microcontroller circuitry, and exemplary dedicated circuitry for controlling exemplary radio transceivers, exemplary receivers, exemplary decoders, exemplary digital interfaces, and exemplary user interfaces; exemplary printed circuit board 18 comprises exemplary circuitry for facilitating music upload and download, audio playback, signal processing, power control, and manipulation of all audio and data sources. Further, exemplary printed circuit board 18 comprises exemplary memory mass storage devices to facilitate playback of stored digitally encoded music files (e.g., MP3, WMA, etc). It will be understood by someone with ordinary skill in the art that description herein of specific types of digitally encoded music files, such as MP3, WMA, etc., is illustrative and non-limiting; other types of digital encoding, whether now known or in the future discovered, could be used without departing from the spirit of the present invention.
In the exemplary embodiment, exemplary printed circuit board 18 is mounted to exemplary lower housing component 10 using exemplary screws 28 and exemplary elastomeric isolators 27. Exemplary elastomeric isolators 27 protect exemplary printed circuit board 18 from shock, vibration and acoustic energy.
Continuing with reference to
It will be understood by someone with ordinary skill in the art that use in the exemplary embodiment of BLUETOOTH® wireless technology is illustrative and non-limiting; other wireless protocols whether now known or in the future discovered, such as, for example, 802.11, and other types of devices and messages could be used without departing from the spirit of the present invention. Alternatively, wired methods of data transfer, such as, for example, USB, could also be used without departing from the spirit of the present invention.
Continuing with reference to
In the exemplary embodiment, exemplary radio signal antenna 21 is further adapted for transmitting and receiving Radio Broadcast Data System (RBDS) signals for configuration, command, and remote control of exemplary device 1. In the exemplary embodiment, an exemplary AM, FM, and RBDS transceiver connected to exemplary radio signal antenna 21 is imbedded in exemplary printed circuit board 18.
Continuing with reference to
Continuing with reference to
In one embodiment, the waterproof device 1 would comprise a two-way FRS radio that would be operated in a “slave mode” to facilitate two-way voice communication while relieving the user of the task channel and privacy code assignments. In such an embodiment, the waterproof device 1 would enter a “slave mode” that would listen for, and that would synchronize to a “master” radio. Subsequently, the waterproof device 1, in “slave mode” would follow the master radio's channel and code commands.
In another embodiment, the waterproof device 1 would comprise a two-way FRS radio operated in a “party line” mode, whereby all local or nearby like devices would be capable of, and adapted for, monitoring and communicating with each other. In such a party line communication embodiment, the waterproof device 1 would enter/exit the “party line” mode with the touch of one button. In such an embodiment, the “party line” channel and code assignment would be fixed and hidden from the user.
It will be understood by someone with ordinary skill in the art that there are advantages to using transceivers operable to communicate within the FRS spectrum for aquatic sports communications. One advantage is that the operable FRS frequency range (between 462.5625 MHz and 467.7125 MHz) facilitates the use of small antenna and other components due to the short wavelength at these frequencies.
Another advantage of using FRS-capable transceivers is that even though the propagation of these frequencies are predominately “line-of-sight”, the propagation of these frequencies nevertheless provides for some diffraction around landscapes and fixed objects. Further, FRS utilizes an FM (F3E narrow-band) modulation scheme which provides clear reception. The Effective Radiated Power (ERP) for F3E narrow-band is 0.500 watts; this ERP facilitates a range of approximately 2 miles, but does not interfere with third-party communications systems that are far away.
Another advantage of using FRS-capable transceivers is that a large variety of hand-held FRS units are commercially available and are compatible for use with this invention. Further, due to the large volume market of FRS units, FRS-compatible components and technology are inexpensive.
Another advantage of using FRS-capable transceivers is that FRS provides 14 channels and 38 privacy codes. The high number of channels and privacy codes provides a large number of unique combinations so that a large number of users may operate privately in the same area at the same time.
Even though FRS would be used in the exemplary embodiment, it will be understood by someone with ordinary skill in the art that other frequency bands, such as, by way of non-limiting example, the General Mobile Radio Service (GMRS), could be used without departing from the spirit of the present invention.
Continuing With reference to
Another embodiment of the exemplary device 1 would include one or more pistonic voice coils of common design bonded to the acoustic interface panel 8.
Yet another embodiment would use two or more voice coil audio transducers bonded to a single, or split, acoustic interface panel 8. In such an embodiment, the dual audio transducers would facilitate true stereo playback.
In a still further embodiment of the present invention, one or more distributed mode audio transducers 12 (“exciters”) or other flat panel audio transducers are mounted directly to (on top of; above) the top surface 51 of a body 50 to acoustically drive the body 50. That is, in such an embodiment, the surface 12 of the transducers 12 would be mounted in contact with the top surface 51 of body 50. In such an embodiment, mounting one or more exciters directly to the top surface 51 of a body 50 would provide audio performance while extending only a minimal height above the top surface 51 of the body 50, and would not require a large recess to be opened into the body 50 to receive a device 1′ (see element 1′ depicted in
Yet still another embodiment of the present invention would comprise one or more flat panel audio transducers mounted to a top surface 51 and/or to a bottom 51′ surface (shown, for example, in
Continuing with reference to
In the exemplary embodiment, exemplary user interface panel 5 is also bonded by adhesives to exemplary upper housing component 11. In turn, audio energy entering acoustic interface panel 5 is propagated through exemplary upper housing component 11 to exemplary rubber ring 7 and then into the body 50. Further, sound waves are conducted through the body of audio transducer 12 and propagate through exemplary upper housing component 11, exemplary lower housing component 10, and exemplary cradle 2, into the body 50.
In an alternative embodiment, it would be possible to provide at least a second flat panel transducer housed within housing 100 that is acoustically coupled to lower housing component 10 for stronger acoustic coupling into body 50.
In the exemplary device 1, printed circuit board 25 comprises circuitry for interfacing with, and connected to, a plurality of exemplary tactile user switches 47; exemplary tactile user switches 47 underlie corresponding exemplary graphic elements 30, 31, 32, 33, 34, 35, and 36 depicted in
In the exemplary device 1, printed circuit board 25 further comprises circuitry for interfacing with, and connected to, an exemplary submersion sensor 6, and an exemplary microphone 26. When the exemplary device 1 is fully submerged in water, the submersion sensor 6 and corresponding circuitry in exemplary printed circuit board 25 automatically pauses playback of music program. When the submersion sensor 6 is no longer underwater, the submersion sensor 6 and corresponding circuitry in exemplary printed circuit board 25 automatically resumes music program playback at the point where playback was paused upon submersion. This is done in the exemplary embodiment by resuming feeding audio signals from the audio source to the audio transducer 12.
In the exemplary embodiment, exemplary microphone 26 is adapted to receive voice input; exemplary microphone 26 and corresponding microphone circuitry in exemplary printed circuit board 25 are connected to the exemplary two-way FRS transceiver imbedded in exemplary printed circuit board 18 as previously mentioned above. In the exemplary embodiment, exemplary microphone 26 and corresponding microphone circuitry in exemplary printed circuit board 25, exemplary two-way communication antenna 20, and the exemplary two-way FRS transceiver imbedded in exemplary printed circuit board 18 would be adapted for working together for receiving and transmitting two-way voice and communications and data messaging.
In the exemplary embodiment, a microcontroller (e.g., element 204 depicted in
With reference to
To disengage the exemplary device 1 from exemplary cradle 2, the process is reversed, rotating exemplary lower housing component 10 of the exemplary device 1 counterclockwise until exemplary device 1 is freed from exemplary cradle 2.
It will be understood by someone of ordinary skill in the art that the use in the exemplary embodiment of exemplary cylindrical shaft 45 located in the recess 10b in the bottom surface 10a of exemplary lower housing component 10, to engage exemplary quarter turn fastener 40 located in the center of exemplary cradle 2 is illustrative and non-limiting. Various alternatives could be used to fasten exemplary device 1 in body 50 without departing from the spirit of the invention. For example, a TY-WRAP™ cable tie fastened to the bottom of exemplary device 1 could be threaded through a whole in the bottom of recess 71 and fastened with a washer on the opposite side of body 50. As a further alternative, the exterior circumference of lower housing component 10 could be threaded to screw into corresponding threading of the interior walls of recess 71, or of the interior walls of a cradle bonded in recess 71, or a threaded shaft that goes through the board. In a yet further alternative embodiment, exemplary device 1 could be fully integrated into body 50 without a cradle. In a still further alternative embodiment, exemplary device 1 could be mounted on the surface 51 of body 50.
The exemplary device 1 further comprises exemplary analog switches 203. Exemplary analog switches 203 correspond to the various exemplary graphic elements 30, 31, 32, 33, 34, 35, and 36 on exemplary user interface panel 5 as depicted in
The exemplary device 1 further comprises a battery charger 208, and a power supply 209 that converts Battery voltage (from e.g., rechargeable batteries, element 15, and as depicted in
The exemplary device 1 further comprises a microcontroller (microprocessor) 204, an MP3 Decoder 205, an audio DACS/Signal processor 206, and a microphone (Mic) interface 215.
The exemplary device 1 further comprises a USB port 207.
In the exemplary embodiment, compressed music files may be downloaded from, for example, a personal computer, into Mass Storage 200 by the microcontroller (microprocessor) 204 via the USB port 207 (or alternatively, a wireless 802.11 port).
In the exemplary device, music playback is facilitated by the microcontroller (microprocessor) 204 transferring compressed music files from Mass Storage 200 to the exemplary MP3 Decoder 205 for decompression. Decompressed digital music data is transferred into the Audio DACs 206 and converted into analog audio signals (mono or stereo). Analog audio is passed through the Analog Switches 203, through the Power Amps 210 which drives exemplary Speakers 216. One or more Power Amp 210 and Speaker 216 elements may be employed.
In the exemplary device 1, direct current (DC) power can be passed through the USB port 207 to the Charger 208 (or alternatively through a coupled inductive link), which recharges batteries 15. Battery voltage is converted to regulated voltage levels by Power Supply 209 for use by system circuits.
Further, in an alternative embodiment, audio from an external source, such as, for example, a radio or digital music player, could be entered through a USB port, or other wired or wireless connection(s); of a type whether now known or in the future discovered, that connect to the analog switches 203, the power amps 210 and the audio exciter 216. For example, with reference to
It will be understood by those with ordinary skill in the art that in such an alternative embodiment, a separate recess 120 could be provided in the body 50 of the craft for receiving and enclosing a separate music, audio or communication device 120, such as, by way of non-limiting example, an IPOD™, cellular phone, or other separate audio device that is external to, but that communicates with, exemplary device 1. In such an embodiment, the separate audio device 120 would, would use exemplary device 1 for audio amplification of the audio received by the separate device 120 in the separate recess 121.
In such an alternative embodiment, it would be possible for exemplary device 1 to receive or produce a first type of audio signals, for example, radio; separate audio device 120 could receive or produce a second type of audio signal, for example, digital music. Device 120 could also produce a third kind audio signal, for example, two-way communication. Exemplary device 1 in such an embodiment would amplify the audio produced or received by itself, and would also be adapted to amplify the audio received from the separate audio device 120. Alternatively, exemplary device 1 could be adapted for audio amplification, but would not itself produce audio; in such an embodiment, separate audio device 120 could be the sole source of audio for amplification using exemplary device 1.
Continuing with reference to
In the exemplary device 1, user voice is converted by Mic Interface 215 into an analog signal and passed to the FRS Radio transceiver 214, which modulates the signal on the FRS transmit channel. Alternatively, the microcontroller (microprocessor) 204 can process this voice signal for clarity before being transmitted. FRS Radio transmission is controlled by User Interface 201 input (e.g., Push-to-Talk button). FRS Radio channel and privacy code usage is controlled by default settings, and altered by Master Radio input.
In the exemplary embodiment, pressing the Push-to-Talk button pauses audio playback signals fed to the audio transducer 12 (see, e.g.,
In the exemplary embodiment, the exemplary device 1 operates FRS Radio as a “Slave” to a detected “Master” radio. The Slave monitors a default channel and privacy code and “slaves” itself to the first detected Master to transmit an assignment signal. Once “slaved”, the Master can reassign the channel and/or privacy code assignment so that optimum FRS Radio traffic is attained. The slaved FRS radio follows the master's commands until power is cycled or User Interface 201 commands otherwise.
The BLUETOOTH® Radio transceiver 211 (or similar system) is used to facilitate wireless file transfer from PC's or other external devices to the exemplary device 1, or between two or more devices of the same type, or compatible with, exemplary device 1.
Exemplary microprocessor 204 facilitates music file downloads to Mass Storage 200, and/or, music file uploads to external devices. Alternatively, downloaded music files can also be directed by Microprocessor 204 into exemplary MP3 Decoder 205, bypassing Mass Storage 200. Doing so would allow instantaneous file sharing for real-time playback.
The embodiment depicted in
In the exemplary device 1, a plurality of sensors 202 connected to the microcontroller (microprocessor) 204 helps the unit maintain optimum configuration and provides the user with information about the user's environment. For example, the submersion sensor 202a pauses music playback when the exemplary device 1 is underwater. Music playback continues when the exemplary device 1 is again above water. The exemplary temperature sensor 202b allows temperature to be verbally announced to the user. Acceleration information sensed by the acceleration sensor 202c can be used to plot velocities and accelerations and can also be used to “dead reckon” a user's course on the water. Global Positioning System (GPS) information from the GPS sensor 202d can provide information to the user about course, speed, direction, and positioning.
The exemplary embodiment of the device 1 being mechanically connected to bodyboard 50 acoustically couples sound waves into the surface 51 of the bodyboard 50. In the exemplary embodiment, acoustic coupling into the surface 51 of a body 50 is accomplished in at least two ways. First, exemplary rubber ring 7 contacts surface 51 of body 50. It will be understood by someone with ordinary skill in the art that the description of exemplary rubber ring 7 is illustrative and non-limiting. Rather, as will be understood by someone with ordinary skill in the art, it would be possible to use other ways and materials for coupling an audio-excited panel, e.g., exemplary user interface panel 5, to a surface 51 of a body 50 into which an exemplary device 1 is imbedded. For example, members made of various flexible and/or elastomeric materials other than rubber could be used to couple an audio-excited panel, e.g., exemplary user interface panel 5, to a surface 51 of a body 50 into which an exemplary device 1 is imbedded. Further, such members could be formed in various geometries other than a ring.
Another way in the exemplary embodiment that acoustic coupling into the surface 51 of a body 50 is accomplished is by the conducting of sound waves that are propagated by the audio transducer 12 through exemplary upper housing component 11 and exemplary lower housing component 10, then through exemplary cradle 2, then into the body 50, and then through the surface 51 of the body 50.
As mentioned previously above, it would be possible in alternative embodiments, to fasten the audio device directly into a recess in body 50 (e.g., by “screwing” threaded exterior walls of the housing of device 1 into the threaded interior walls of a recess, such as recess 71. In such an embodiment, no cradle would be provided. The direct contact between the housing in such an embodiment, with the interior walls and/or the floor of the recess, e.g., recess 70, in body 50 results in further acoustic sound level that emanates through surface 51. In such an embodiment, a thin coating of the interior walls of the recess, e.g., recess 70 could be applied to protect the body from environmental factors when the device 1 is removed.
It will be understood by someone with ordinary skill in the art that the extent of audio sound level enhancement may be affected by the material composition of body 50. For example, a body 50 comprising STYROFOAM® may tend to better conduct audio sound waves than a body 50 comprised of a solid plastic.
The above-mentioned acoustic coupling enhances many facets of the aquatic sport participant's listening experience. One of the enhancements is overall audio sound level.
Empirical testing shows the audio sound level produced by exemplary device 1, and reinforced by the surface 51 of the exemplary body 50, and the overall exemplary body 50, provides an increase in sound level of approximately 20 db.
In
Another enhancement that results from the exemplary device 1 being mechanically and acoustically coupled to bodyboard 50 and bodyboard surface 51, is that the audio spectral response of exemplary device 1 is equalized. That is, bass audio response is increased due to the low frequency resonance of bodyboard 50, and the bodyboard surface 51.
Yet another enhancement that results from the exemplary device 1 being mechanically and acoustically coupled to bodyboard 50 and bodyboard surface 51, is that the entire surface 51 of the exemplary bodyboard 50 acts as a distributed mode sound board or speaker. That is, the audio image presented to the aquatic sport participant 75 sounds like it is fully encircling the participant 75. The entire surface 51 of the exemplary bodyboard 50 acting as a distributed mode sound board or speaker contrasts to a loudspeaker of common design where audio sound emanates from a driver and sounds to the participant as if the audio sound is emanating from a point source.
In the exemplary embodiment, the exemplary device 1 is mounted into exemplary bodyboard 50 so that the top of the exemplary device 1 is flush, or nearly flush, with the top surface 51 of the exemplary bodyboard 50. Thus, in the exemplary embodiment, the exemplary device 1 being recessed into the bodyboard 50 does not interfere with the exemplary bodyboard's 50 normal function. Further, it does not encroach into the participant's 75 domain on the exemplary bodyboard 50.
It will be understood by someone with ordinary skill in the art that recessing exemplary device 1 so that the top of exemplary device 1 is flush, or nearly flush with the top surface 51 of the exemplary bodyboard 50 is illustrative and non-limiting. Without departing from the spirit of the present invention, it would be possible to recess the exemplary device 1 further into the exemplary bodyboard 50 so that a well would be formed in the exemplary bodyboard's surface 51. As a further alternative, exemplary device 1 could be mounted on top of (above) the exemplary bodyboard's surface 51.
As depicted in
In such a top-mounted embodiment, audio waves generated by exemplary device 1 are conducted into exemplary cradle 2. Cradle 2 in turn, conducts the audio waves into exemplary form recess surface 90 of the exemplary form recess 85. Audio waves conducted into exemplary form recess surface 90 are then conducted into exemplary form 80 and are then conducted into exemplary surface 51 and then into exemplary body 50.
In the alternative embodiment depicted in
It will be understood by someone with ordinary skill in the art that the alternative embodiment depicted in
In the further alternative embodiment depicted in
Continuing with reference to
In a further alternative embodiment of the invention depicted in
Other features of the invention are implicit in the above-provided description and/or are depicted and/or are implicit in the accompanying Figures.
A portion of the disclosure of this patent document contains material which is subject to copyright protection by the copyright owner, Whobody, Inc., its successors and assigns. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Although this invention has been described in certain specific embodiments, many additional modifications and variations would be apparent to those skilled in the art. It is, therefore, to be understood that this invention may be practiced otherwise than as specifically described. Moreover, to those skilled in the various arts, the invention itself herein will suggest solutions to other tasks and adaptations for other applications. Thus, the embodiments of the invention described herein should be considered in all respects as illustrative and not restrictive, the scope of the invention to be determined by the appended claims and their equivalents rather than the foregoing description.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/848,877 titled “Waterproof Audio Player & 2-Way Voice/Data Communication Device”, filed on Oct. 3, 2006, the entire contents and disclosure of which is incorporated herein in full by reference as if stated in full herein.
Number | Date | Country | |
---|---|---|---|
60848877 | Oct 2006 | US |