The present disclosure is related to athletic sweatbands and more specifically to those that are worn on the body, such as the wrist, head, arm, or leg, during participation in a variety of sports. An article of fabric of a generally tubular shape body having an inner skin-facing surface with a generally symmetric inner circumference and an outer-facing surface having a generally non-symmetric outer circumference.
Most known wristbands, or “sweatbands” are typically worn around the wrist or head to keep the hands, fingers, or areas around the eyes from contact by perspiration, typically by absorbing the perspiration in the fabric of the article. Such conventional bands are generally made of a terry-knit cloth with an elastic or stretch material woven or otherwise encased therein, or by other means. Typically, such bands, apart from displaying text or other indicia, are not configured so as be worn in a particular way or fashion. Further, known wristbands, or “sweatbands” are typically of symmetric thickness as shown in
In some embodiments an article of fabric comprises a tubular-like body, a first open end, a second open end; an outer surface having an outer circumference; an inner skin-facing surface having an inner circumference, the inner surface separated from the outer surface by a thickness of fabric, a first portion of a first thickness, and a second portion of a second thickness, the first thickness different from that of the second thickness along a substantially continuous length of the tubular-like body.
In one aspect, the first thickness is different from that of the second thickness along the entire length of the tubular-like body. In another aspect, alone or in combination with any of the previous aspects, a difference in the first thickness and the second thickness is substantially the same along the longitudinal length of the article.
In another aspect, alone or in combination with any of the previous aspects, the inner circumference is sized for a secure fit around a wrist and/or lower arm, head, or leg portion of a wearer.
In another aspect, alone or in combination with any of the previous aspects, the fabric comprises hydrophobic or hydrophilic fibers. In another aspect, alone or in combination with any of the previous aspects, the fabric comprises hydrophobic and hydrophilic fibers. In another aspect, alone or in combination with any of the previous aspects, the fabric comprises a metal. In another aspect, alone or in combination with any of the previous aspects, the fabric comprises copper.
In another aspect, alone or in combination with any of the previous aspects, the first portion is a Terry Loop or Pile knit and the second portion is a plain knit.
In another aspect, alone or in combination with any of the previous aspects, the fabric comprises at least one layer of hydrophobic fibers in proximity to the inner skin-facing surface and at least one layer of hydrophilic fibers or a combination of hydrophobic and hydrophilic fibers more distant from the inner skin-facing surface than the layer of hydrophobic fibers.
In some aspects, an article of fabric comprises a generally tubular shape body having an inner skin-facing surface with a generally symmetric inner circumference and an outer-facing surface having a generally non-symmetric outer circumference.
In one aspect, the non-concentricity of the inner circumference is symmetrical about a longitudinal axis of the article. In another aspect, alone or in combination with any of the previous aspects, the thickness of fabric having a first portion of a first thickness extending the length of tubular body and extending about half of a circumference of the tubular body, and a remainder portion of a second thickness less than that of the first thickness. In another aspect, alone or in combination with any of the previous aspects, the first portion is about 1.5 times to about 5 times the thickness of the remainder portion at the second thickness.
In another aspect, alone or in combination with any of the previous aspects, the first portion is a Terry Loop or Pile stitch and the remainder portion is a flat knit stitch.
In another aspect, alone or in combination with any of the previous aspects, the fabric comprises hydrophobic or hydrophilic fibers. In another aspect, alone or in combination with any of the previous aspects, the fabric comprises hydrophobic and hydrophilic fibers. In another aspect, alone or in combination with any of the previous aspects, the fabric comprises a metal. In another aspect, alone or in combination with any of the previous aspects, the fabric comprises copper.
In another aspect, alone or in combination with any of the previous aspects, the fabric comprises at least one layer of hydrophobic fibers in proximity to the inner skin-facing surface and at least one layer of hydrophilic fibers or a combination of hydrophobic and hydrophilic fibers more distant from the inner skin-facing surface than the layer of hydrophobic fibers.
In another aspect, alone or in combination with any of the previous aspects, the hydrophobic yarn has an elongation to break of less than about 30%. In another aspect, alone or in combination with any of the previous aspects, the hydrophilic yarn is nylon, polyester, or acrylic. In another aspect, alone or in combination with any of the previous aspects, the hydrophilic yarn is cotton, cotton synthetic blended, or wool.
In another aspect, alone or in combination with any of the previous aspects, the article includes an ornamental design or indicia thereon configured to be modified by a user. In another aspect, alone or in combination with any of the previous aspects, the indicia is a dropped in knitted shape of at least one segmented structure representing an Arabic number. In another aspect, alone or in combination with any of the previous aspects, at least a portion of the indicia is configured to be color blended or color contrasted with the article fabric adjacent the indicia to present a representation of at least one Arabic numeral.
A method of making non-symmetrical tubular-like article of fabric in a circular knitting machine, the method comprising the steps of: knitting a tubular -like body having a first section of a first thickness; transitioning to a second section having a second thickness less than the first thickness; and joining opposing ends of the tubular-like body. In one aspect, the method comprises the steps of (a) knitting a makeup of elastic fiber; (b) knitting a plain or flat knit comprising hydrophobic fibers; (c) knitting a Terry Loop or Pile welt comprising hydrophobic fibers; (d) transitioning the knitting of step (c) to hydrophilic fibers; (e) transitioning the knitting of step (d) to hydrophobic fibers; and (f) repeating step (b). In another aspect, the method comprises the steps of (a) knitting a makeup of elastic fiber; (b) knitting a plain or flat knit comprising hydrophobic fibers; (c) knitting a Terry Loop or Pile welt comprising hydrophobic fibers; (d) optionally transitioning the knitting of step (c) to hydrophobic fibers; and (e) repeating step (b). In some embodiments, the method further includes the step of knitting a color contrasting design in the knit.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Unless otherwise expressly stated, comparative, quantitative terms such as “less” and “greater”, are intended to encompass the concept of equality. As an example, “less” can mean not only “less” in the strictest mathematical sense, but also, “less than or equal to.”
As used herein, the term “fabric” refers to any material made through weaving, knitting, spreading, crocheting, or bonding. In one aspect, fabric is inclusive of any material made through knitting or crocheting that may be used in production of an article i.e., garment.
As used herein, the terms “welt” and “knit” as well as their grammatical equivalents are used herein interchangeably.
As used herein, the term “tubular-like” is inclusive of a tubular structure. In certain aspects, the term “tubular-like” is exclusive of a tubular structure having a wall thickness that is essentially the same along the length of the tube.
As used herein, the term “layer” is used to describe at least two courses of knitted fiber yarn and includes fibers interwoven with a layer adjacent thereto. In general, layers of different fibers are readily discernible in magnified cross-sectional views and/or using dyes.
As the subject matter generally refers to fabrics, slight variation in wall thickness due to the nature of knitted welts is to be expected, but generally, a wall thickness variation of less than 10%, would be considered “symmetrical.” Whereas, the term “non-symmetrical” as used herein relates to an inner and outer wall thickness change of greater than about 1.5 times, preferably about 1.5 to about 5 times or more, and more specifically, defined sections of longitudinal length having such difference in inner and outer wall thicknesses.
The present disclosure is a unique approach to an athletic “sport band,” providing a readily apparent and observable decreased thickness (a thick and a thin section). The article includes plain-knit, relatively snug welt areas and a Terry loop or pile knit which also provides a surface for the knitting in, printing, or other application of an ornamental decorative area or other indicia. In some embodiments, the indicia is configured for modification by the end-user to provide at least one Arabic number and/or letter. The article of the present disclosure can be a welt prepared as a combination of plain knit or single knit with distinct right and wrong sides, with fine ribs running lengthwise on the article's face, and semicircular-like loops running across the reverse face or “skin-facing” side, and Terry loop or pile knit. Other knitting styles and techniques can be used.
In some embodiments, the article comprises a tubular-like construction that is of a stretchable, crosswise plain-knit welt symmetrical with a crosswise Terry loop or pile knit construction of approximately three to seven (3-7) inches in diameter and about one to eight (1-8) inches in length. In some embodiments, the article is configured having a first portion of a first thickness about the circumference and/or the length, and a second portion of a second thickness is different from that of the first thickness about the circumference and/or the length. In such a configuration, the article can be worn with a thinner portion predominately on one side of the wrist or arm and a thicker portion on the opposite side of the wrist or arm. In some embodiments the thinner portion is worn on the inner side of the wrist e.g., adjacent the palm side of the hand. In this configuration, the thinner portion of the sports band allows for greater clearance so as to not obstruct an object held in the user's hand, such as a ball, football, bat, stick or other sporting equipment. In addition, the thinner inside of the wrist of the presently disclosed sweatband may be more comfortable to an athlete wearing a glove, mitt, or a brace, as it may reduce pressure against the glove, mitt or brace as well as the wrist area. Thus, the present article, when configured as a wristband would provide for more range of motion than conventional wristbands that are of a substantially uniform thickness.
The tubular-like article 100 can be knit on a circular knitting machine of the type which permits selected courses to be plain knit and selected courses to be Terry loop or pile knit, to the completion of a seamless tubular article of desired circumference and length. In some embodiments, the tubular-like article is manufactured in a circular knitting machine that creates a tubular -like welt which is shed from the needles in a completed welt state and where at least a portion of the tubular-like welt has a thick and a thin section having a transition region between the thick and thin sections.
Embodiments of the present disclosure now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the present disclosure are shown. This present disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the claims to those skilled in the art. Like numbers refer to like elements throughout.
Preferred fibers used in constructing the tubular-like article are selected from natural fibers such as cotton because of its durability and absorbency, but, cotton blends can be used, such as cotton/polyester, cotton/nylon, cotton/acrylic, or many other such blends of natural and manmade fibers. One or more elastic yarns can be incorporated in the welts to improve stretchability and a snug fit on the wearer. The yarns can of 100% cotton, cotton/synthetic, or other combinations of natural or synthetic yarn blends. One hundred percent cotton yarn provides the greater absorbency and durability, but any desired blend of natural and/or synthetics fiber yarn is satisfactory. As with any selection of yarn to be worn on the body, it is desirable to lay in or knit in a spandex or other elastic yarn in the welt to improve the stretch fit. Although the plain knit stitch will provide some stretch, the introduction of an elastic yarn will substantially improve fit and performance of the welt.
In some embodiments, combinations of hydrophilic and hydrophobic yarns are used. In other embodiments, combinations of elastomeric, hydrophilic, and hydrophobic yarns are used. Hydrophilic yarns include nylon, polyester, acrylic, and polylactide, and the like or other natural or synthetic fibers that are treated so as to have a hydrophilic surface. Hydrophobic yarns include polypropylene, polyethylene and/or their blends. Elastic yarns include spandex, polyurethane and their blends, and the like.
With reference to
As no single fiber technology can attract and repel moisture at the same time, in some embodiments, two different fiber technologies interwoven together to form inner and outer layers can be used. Such combinations of fibers can include hydrophobic (or superhydrophobic) sweat repelling fibers in combination with water absorbing fibers more distantly positioned from the sweat producing skin. While not to held to any theory, such (super) hydrophobic fibers are technically not “wicking” fibers as they repel rather than transport water. At the molecular level, moisture doesn't adhere to the inner layer of certain hydrophobic fiber terry loop knits. Because sweat (moisture) does not adhere to the hydrophobic fiber, it can be analogized to mechanically lifting the sweat off the skin like a squeegee (as the article is under elastic stress during use, into a moisture attracting outer layer comprised of the hydrophilic fiber without retaining substantial amounts of moisture keeping the wearer's wrist for example, dry and comfortable in or in contact with all types of sports gear, in cold, hot and even wet conditions.
Thus, with reference to
With reference to
With reference to
To make the outside surface of the article thicker, the terry loops/pile loops can be substantially hydrophilic yarns, which may improve the performance attributes of the article for certain applications while reducing cost and manufacture complexity.
In some embodiments, on completion of the desired plain knit courses, the make-up fiber is looped over dial jacks that run on either side of the terry needles so that after a length of fabric is knit, the dial jacks can transfer the make-up, essentially folding the fabric inward and back on itself.
In
By way of example, a wristband as disclosed and described can be manufactured in a circular knitting machine that creates a tubular-like welt 100b, which is shed from the circular knitting machine needles in a completed state, and where at least a portion of the tubular-like welt has a thick section 106 and a thin section 107. To create the thick/thin sections, in some embodiments, a terry lever is deactivated and centrifugal force causes the sinkers to move to an outward position, the fibers knit on the lowest point of the sinkers that are located on either side of the needles creating transition region 113 between the thicker first section 106 to the thinner section 107.
To complete the formation of the wristband, makeup end 140, which is formed during a second step in the makeup is joined with opposing end 150. For example, the fiber is looped over dial jacks that run on either side of the needles so that after a length of fabric is knit, the dial jacks can transfer the makeup end 140, essentially folding the fabric inward and knitting the looped dial jack fiber end 150 back into the needles where it becomes permanently stitched together. Finish line 160 is performed using the needles holding single stitches of fabric that is cast off the needles using a combination of dial jacks and needle cams manipulations without un-raveling the finished welt 100b. Other methods of joining the opposing ends can be used.
Referring now to
Thus, with reference to
With reference to
With reference to
Any aspect or features of any of the embodiments described herein can be used with any feature or aspect of any other embodiments described herein or integrated together or implemented separately in single or multiple components.
It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this present disclosure belongs.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art appreciate that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiments shown and that the present disclosure has other applications in other environments. This application is intended to cover any adaptations or variations of the present disclosure. The following claims are in no way intended to limit the scope of the present disclosure to the specific embodiments described herein.
This application claims the benefit of U.S. Provisional Application No. 62/130,366, filed on Mar. 9, 2015, the contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62130366 | Mar 2015 | US |