Disclosed is a specially-configured board for gliding along terrain, such as a snowboard, snow ski, water ski, wake board, kite board, surf board, skateboard and the like. Although described herein in the context of snowboarding, it should be appreciated that a “board” described herein will refer generally to any of these sorts of boards as well as to other board-type devices which allow a rider to traverse a solid or fluid surface.
A snowboard includes a tip, a tail, and opposed side edges. The width of the board typically tapers inwardly from both the tip and tail towards the central region of the board, facilitating turning and edge grip. A rider typically has an asymmetrical position with respect to the board and with respect to the slope. The rider has two support points on the board, and, by a differential action of both boots, the rider can effect flexural or torsional shape changes to the board to aid in control.
Size, shape and materials used in construction of the board vary depending upon the desired riding qualities. Since snowboarding is a very dynamic sport, material characteristics and interactions play a significant role in determining overall performance as well as suitability for specific applications.
Although it is difficult to optimize all of the many different parameters in a board to obtain optimum gliding, maneuverability and operational qualities, materials can be added to the board during construction to mitigate forces that adversely impact board structure and operating qualities. For example, materials can be inserted which facilitate the attachment of bindings or provide strength to the board at the sites of binding attachment. Other materials can be inserted to reduce vibration traveling through the board. However, the resulting parameters are mutually connected and variation of one parameter due to the use of a particular material can directly or indirectly modify another parameter of the board, often to the detriment of the operating qualities.
Board construction techniques known in the art originate from the construction of conventional skis, and include various methods including the use of injected cores and the lamination of various structural components. These techniques all require some type of “active” pressing and curing of the structure under pressure. Such techniques of board construction can lead to shifting of materials added for their particular structural characteristic. This can result in points of weakness, inconsistency from one finished item to the next and/or an unpredictable operational quality of the board.
In view of the foregoing, there is a need for a board core structure that provides desired structural characteristics localized to select regions of the board while maintaining predictable produceability and optimum operating qualities of the board.
In one aspect, there is disclosed a sports board, comprising a plurality of layered elements or segments, of which certain elements or segments are joined using interlocking elements. In another aspect, there is disclosed a sports board, comprising: an elongated base; and an interlocking structure including: (a) a central bridge; and (b) interlocking segments positioned on opposed regions of the central bridge, the interlocking segments adapted to interlock with the opposed regions of the central bridge so as to maintain the central bridge and interlocking segments in a substantially fixed orientation with respect to one another.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Provided herein is a board with an interlocking design of certain structural elements that are used to localize structural and dynamic properties to regions of the board. Certain regions of the board benefit from a particular structural characteristic, whereas the presence of that same structural characteristic at other regions of the board can have a negative or undesired impact on the board's performance. As described in more detail below, provided herein is a board that is tuned to one or more specific, localized stresses or to a combination of such localized stresses by way of an interlocking structure containing a plurality of materials.
The central zone 140 also includes an interlocking structure 180. The various shear, compressive, tensile and torsional stresses a board undergoes during a ride may not be applied uniformly across the board but, rather, localized regions may be subject to a greater magnitude of a particular load. Thus, the interlocking structure 180 can be constructed of a plurality of materials with different structural characteristics that are particularly well-suited for their location in the board. The interlocking structure includes two or more elements that interlock with one another. In addition, at least a portion of the interlocking structure can interlock with any other component of the board's construction.
As described above, the size and shape of a board as well as the materials used in the construction of the board can vary depending on the qualities needed for the board and the different snowboarding activities to be performed. It can therefore be desirable to insert an interlocking structure that is constructed of a plurality of materials, wherein the materials can be selected and positioned on the board to provide localized structural characteristics to the board.
The bridge 205 and interlocking segments 210 can be comprised of different materials. As mentioned above, the material chosen for each segment of the interlocking structure 180 is selected based on the structural property desired such that one structural quality is localized to a particular region of the board.
As mentioned above, the materials of the bridge 205 and interlocking segments 210 are selected to provide localized structural characteristics to particular regions of the board. The structural characteristics of one segment do not necessarily affect the structural characteristics of an adjacent segment. For example, the bridge 205 can be manufactured of a material that is particularly suited for the central region of the board. The bridge material desirably has characteristics that support a lively feel in the central region of the board. The bridge material can be highly resilient and can exhibit high rebound characteristics. In one embodiment, the bridge is made of a woven fiberglass material.
Still with reference to
The board including the structure described herein provides advantages over other boards. The core structure described herein provides a board with both strength and flexibility in a localized fashion to meet desired performance parameters.
Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and scope of the disclosure should not be limited to the description of the embodiments contained herein.
This application is a continuation and claims the benefit of priority under 35 USC §120 of co-pending U.S. patent application Ser. No. 11/743,452, filed May 2, 2007, which claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 60/797,113, filed May 2, 2006. Priority of the aforementioned filing dates are hereby claimed and the disclosures of the applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60797113 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11743452 | May 2007 | US |
Child | 12692956 | US |