The disclosure relates generally to protective sports helmets, and more particularly to protective sports helmets having attachable modular components that can add or modify aesthetic and functional aspects of the helmet.
A physical impact to the head of a person may cause serious injury or death. To reduce the probability of such consequences, protective gear, such as a helmet, is often used in activities that are associated with an increased level of risk for a head injury. In particular, there are a wide range of non-motorized sports and activities that require or benefit from the use of a helmet. Examples of such activities include, but are not limited to, cycling, mountain biking, skiing, snowboarding, sledding, ice skating, rollerblading, rock climbing, skate boarding, surfing, skydiving, football, baseball, lacrosse, hockey, and kayaking In general, a helmet is designed to absorb and/or distribute the force of an impact to reduce ill effects on the head of a wearer.
Example embodiments described herein have several features, no single one of which is indispensable or solely responsible for their desirable attributes. Without limiting the scope of the claims, some of the advantageous features will now be summarized.
In a first aspect, an eyewear adapter is provided that includes a brim that is releasably attachable to a helmet and configured to interface with corresponding eyewear in an orientation that permits a wearer of the helmet to see through the eyewear, wherein the eyewear adapter is configured such that, in use, the eyewear adapter enhances the fit or function of the eyewear to provide, in the combination of the helmet and eyewear, one or any combination of more than one functional advantage selected from the group consisting of improved air flow across or through portions of the helmet and eyewear; improved aerodynamics of the helmet; improved sweat control; and improved fit; wherein the one or more than one functional advantage comprises an improvement compared to the use of the helmet and the eyewear without the eyewear adapter.
In some embodiments of the first aspect, the brim releasably attaches to a base portion of the helmet, the base portion comprising a shell and an inner layer coupled to the shell, the base portion configured to absorb or distribute force from an impact. In some embodiments of the first aspect, the eyewear adapter is further configured to releasably attach to the eyewear. In some embodiments of the first aspect, the eyewear adapter is further configured to be adjustable to position the eyewear adapter relative to the helmet and the eyewear to account for anatomical variations between different wearers. In some embodiments of the first aspect, the eyewear comprises goggles. In some embodiments of the first aspect, the brim comprises a first portion comprising a rigid material and a second portion attached to the first portion, the second portion comprising a flexible material, wherein, in use, the second portion of the brim is adjacent to a top portion of the eyewear. In some embodiments of the first aspect, the brim is configured to direct air downward toward an inner surface of the eyewear. In some embodiments of the first aspect, the brim is configured to extend outward beyond an outer surface of the eyewear. In some embodiments of the first aspect, the brim is configured to cover one or more openings on a front portion of the helmet.
In some embodiments of the first aspect, the eyewear adapter is configured to attach the helmet to the eyewear, the brim configured to attach to the corresponding eyewear in an orientation that permits a wearer of the helmet to see through the eyewear. In some embodiments of the first aspect, the one or any combination of more than one functional advantage consists additionally of improved securing of the eyewear to or on or in the helmet. In some embodiments of the first aspect, the brim releasably attaches to a base portion of the helmet, the base portion comprising a shell and an inner layer coupled to the shell, the base portion configured to absorb or distribute force from an impact. In some embodiments of the first aspect, the eyewear adapter is further configured to be adjustable to position the eyewear relative to the helmet to account for anatomical variations between different wearers. In some embodiments of the first aspect, the eyewear comprises goggles. In some embodiments of the first aspect, the brim comprises a first portion comprising a rigid material and a second portion attached to the first portion, the second portion comprising a flexible material, wherein, in use, the second portion of the brim is adjacent to a top portion of the eyewear. In some embodiments of the first aspect, the brim is configured to direct air downward toward an inner surface of the eyewear. In some embodiments of the first aspect, the brim is configured to extend outward beyond an outer surface of the eyewear. In some embodiments of the first aspect, the brim is configured to cover one or more openings on a front portion of the helmet. In some embodiments of the first aspect, the eyewear adapter is secured to the helmet to allow the eyewear adapter to be adjusted by sliding the eyewear adapter relative to the base portion.
In some embodiments of the first aspect, the eyewear adapter is in contact with the corresponding eyewear along the contour of the eyewear adapter. In some embodiments of the first aspect, the eyewear adapter includes additional venting ports configured to provide, in use, venting between the corresponding eyewear and the base portion.
In a second aspect, a modular helmet system is provided that includes a base portion configured to absorb or distribute force from an impact, the base portion comprising a shell and an inner layer coupled to the shell, an eyewear adapter comprising a contour that substantially matches a contour of corresponding eyewear, wherein the eyewear adapter is configured to be secured to the base portion of the helmet system such that, in use, the contour of the eyewear adapter forms a gap of less than or equal to about 0.5 inches from a top portion of the corresponding eyewear.
In some embodiments of the second aspect, the eyewear adapter is configured to be vertically adjusted relative to the base portion. In some embodiments of the second aspect, the eyewear adapter is secured to the base portion of the modular helmet system to allow the eyewear adapter to rotate about a pivot point. In some embodiments of the second aspect, the eyewear adapter is secured to the base portion of the modular helmet system to allow the eyewear adapter to be adjusted by sliding the eyewear adapter relative to the base portion. In some embodiments of the second aspect, the eyewear adapter comprising a forward biasing element configured to apply a force away from the base portion toward the corresponding eyewear. In some embodiments of the second aspect, the eyewear adapter comprising a rearward biasing element configured to apply a force toward the base portion away from the corresponding eyewear. In some embodiments of the second aspect, a range of motion of the eyewear adapter is configured to be limited so that, in use, the eyewear adapter does not cross a line of sight of a wearer. In some embodiments of the second aspect, the eyewear adapter is a non-optical component. In some embodiments of the second aspect, the eyewear adapter is opaque. In some embodiments of the second aspect, the eyewear adapter is in contact with the corresponding eyewear along the contour of the eyewear adapter. In some embodiments of the second aspect, the eyewear adapter includes additional venting ports configured to provide, in use, venting between the corresponding eyewear and the base portion. In some embodiments of the second aspect, the eyewear adapter includes a mount for a camera. In some embodiments of the second aspect, the eyewear adapter is configured to be secured to the base portion of the modular helmet system such that, in use, the eyewear adapter and the corresponding eyewear form a substantially smooth profile. In some embodiments of the second aspect, a curvature of the eyewear adapter is within a tolerance of a curvature of the base portion. In a further embodiment, a curvature of the eyewear adapter is within a tolerance of a curvature of the corresponding eyewear. In some embodiments of the second aspect, the eyewear adapter is configured to automatically adjust its position in use to maintain the contour of the eyewear adapter less than about 0.5 inches from the top portion of the corresponding eyewear. In some embodiments of the second aspect, the eyewear adapter is configured to automatically adjust its position in use to maintain the contour of the eyewear adapter in contact with the top portion of the corresponding eyewear. In some embodiments of the second aspect, the corresponding eyewear comprises goggles.
In a third aspect, a helmet is provided that includes a base portion configured to absorb or distribute force from an impact, the base portion comprising a shell having one or more module attachment points comprising a mechanical connection and a wired connection; an inner layer coupled to the shell; and an electrical layer coupled to the shell or the inner layer, the electrical layer comprising electrical conductors configured to conduct electrical power to the wired connections of the one or more module attachment points on the shell. Individual wired connections are configured to provide a wired electrical connection with an electrical module attached to the helmet at an attachment point, and the wired connections are at least one of a port and connector.
In some embodiments of the third aspect, individual mechanical connections are configured to interface with corresponding mechanical features of an electrical module to secure the electrical module to the base portion. In some embodiments of the third aspect, the base portion further comprises a reinforcement structure. In some embodiments of the third aspect, the reinforcement structure includes the electrical layer such that the electrical conductors form part of the reinforcement structure. In some embodiments of the third aspect, the reinforcement structure is at least partially contained within the inner layer. In some embodiments of the third aspect, included are one or more batteries electrically coupled to the reinforcement structure to provide electrical power to the electrical conductors. In some embodiments of the third aspect, the electrical module comprises at least one of a safety light, forward-facing illumination, GPS, computer processor, a microphone, a speaker, a sensor, eyewear, a camera, or a heads-up display.
In a fourth aspect, a helmet is provided that is configured to removably attach to eyewear, the helmet including a base portion configured to absorb or distribute force from an impact, the base portion comprising a shell and an inner layer coupled to the shell, and an eyewear adapter configured to attach eyewear to the base portion of the helmet within the field of view of the wearer of the eyewear and helmet such that the helmet and the eyewear can be positioned on the wearer's head at the same time and the user can see through the eyewear.
In some embodiments of the fourth aspect, the eyewear adapter is configured to removably attach to partial or complete earstems of the eyewear. In some embodiments of the fourth aspect, the eyewear adapter is configured to removably attach to orbitals of the eyewear. In some embodiments of the fourth aspect, the eyewear adapter comprises a plurality of struts that are each configured to attach to a corresponding earstem of the eyewear.
In a fifth aspect, a modular sports helmet is provided having one or more modules releasably attached thereto, the modular sports helmet including a base portion comprising a shell and an inner layer coupled to the shell, the base portion configured to absorb or distribute force from an impact; a helmet module configured to releasably attach to the base portion, wherein the helmet module is configured such that, in use, the helmet module enhances the fit, aesthetic, or function of the modular sports helmet to provide, in the combination of the modular sports helmet and helmet module, one or any combination of more than one functional advantage selected from the group consisting of improved air flow across or through portions of the modular sports helmet; improved aerodynamics of the helmet; improved sweat control; improved fit; improved integration of eyewear with the modular sports helmet; improved aesthetic appearance; and improved shock absorption, wherein the one or more than one functional advantage comprises an improvement compared to the use of the helmet without the helmet module.
In some embodiments of the fifth aspect, the one or more modules includes a strap guide, a decorative plate, modules that provide selective venting, shock absorbing layers, or ear pieces.
In a sixth aspect, a helmet is provided that includes a base portion comprising a shell and an inner layer coupled to the shell, the base portion configured to absorb or distribute force from an impact; an internal gutter coupled to the base portion and comprising an outer leg, an inner leg shorter than the outer leg, and a channel between the outer leg and the inner leg, the internal gutter configured to direct liquid away from a face of the wearer; a fit system comprising a flexible elongate structure having a portion that is positioned within the internal gutter, the fit system, in use, configured to secure the base portion to a head of a wearer by adjusting the flexible elongate structure; and pull at least a portion of the inner leg of the internal gutter against the head of the wearer.
In some embodiments of the sixth aspect, the internal gutter comprises a deformable material. In some embodiments of the sixth aspect, the fit system comprises a reel that is configured to adjust the length of the flexible elongate structure. In some embodiments of the sixth aspect, the base portion comprises a jog positioned above the internal gutter so that, in use, liquid drips from the jog into the internal gutter. In some embodiments of the sixth aspect, the internal gutter comprises a deformable structure that forms a channel configured to direct liquid away from a face of the wearer. In some embodiments of the sixth aspect, the internal gutter is removable from the helmet. In some embodiments of the sixth aspect, the internal gutter is configured to attach to the inner layer. In a further embodiment, the inner layer comprises a low friction layer configured to translate or rotate with respect to the shell.
Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
Helmets for use in athletic, non-motorized activities are generally designed to protect the wearer's head by absorbing and/or distributing energy during an impact with a surface, such as the ground. Helmets can include a shell and cushioning made from materials configured to attenuate forces from impact such as an exterior shell of plastic and an inner layer of padding and/or foam, wherein the impact-attenuating materials cover and contact a significant extent of the wearer's head. Helmets may also include internal reinforcement structures that may be part of the shell and/or inner layer. Such helmets may be unitary in design and/or construction such that the exterior shell and/or inner layer provide continuous coverage (allowing for discontinuities in portions of the exterior shell and/or inner layer for, e.g., ventilation or aesthetic elements) over the area of the wearer's head that the helmet is designed to protect.
It may be desirable, however, to utilize a single helmet for different activities that would benefit from different functional features. It may also be desirable to extend the range of functionality or features a helmet provides depending on the circumstances of use. For example, a helmet may be designed to be complementary with particular eyewear. If the user then changes eyewear, the change may result in an unsatisfactory outcome for the wearer due to incompatibilities between the helmet and eyewear. As another example, a helmet that is designed to keep a wearer warm may be too hot during other times, such as when a skier is ascending a slope. This may cause the user to take the helmet off exposing the user to an increased risk of injury. As another example, a user may desire to utilize certain advances in technology or design into the user's helmet. Typical helmets may be unable to incorporate such advances, requiring the user to acquire a new helmet.
Accordingly, disclosed herein are sports helmets that generally include a base portion and an eyewear adapter. The eyewear adapter is configured to interface with corresponding eyewear to integrate the eyewear into the helmet. The eyewear adapter can be configured to enhance the functionality of the combination of the eyewear and the helmet relative to the functionality of each individually. For example, the eyewear adapter can provide improved air flow through portions of the helmet and/or eyewear to improve cooling of the wearer. For example, the eyewear adapter can provide improved aerodynamic properties to the combination of the helmet and eyewear. For example, the eyewear adapter can provide a mechanical interface for stowing the eyewear out of the field of vision of the wearer. The eyewear adapter can be a brim that attaches to the base portion. The eyewear adapter may also attach or at least be in contact with the eyewear when the eyewear adapter and eyewear are in use with the helmet.
Also disclosed herein are sports helmets that include an electrical system and physical and electrical adapters. The physical and electrical adapters can be configured to receive modules or components that physically attach to the helmet and that electrically couple to the electrical system of the helmet. For example, the electrical system of the helmet can be configured to include wires that electrically couple the electrical adapters to each other and/or to a source of electrical power. A user may physically attach a helmet module to the physical adapter, and by so doing, create electrical contact between the helmet module and the electrical system through the corresponding electrical adapter. The attached helmet modules can be configured to receive power through one or more batteries coupled to the electrical system. The attached helmet modules can be configured to transmit electrical signals to each other and/or to a control system of the helmet through the electrical system.
In certain embodiments, the base portion is configured to receive one or more modules or panels that physically attach to the base portion to provide additional features to the helmet. In various implementations, the eyewear adapter can be a module that releasably attaches to the base portion. The attachable modules can be configured to provide or enhance mechanical features (e.g., impact protection, ventilation, insulation, aerodynamics, etc.), aesthetic features (e.g., decorations, desired look and feel, etc.), and/or electronic features (e.g., lights, audio, communication, etc.) of the helmet. The attachable modules can be configured to attach to the base portion and/or to each other. Thus, the user can configure the modular helmet to achieve one or more selected, desired, or targeted characteristics. In addition, the user can modify the configuration of the helmet (e.g., by adding, changing, or removing modules) to achieve benefits based on evolving desires of the user and/or changing circumstances. This can allow the helmet to be modified by the wearer to modify the helmet for use in a variety of different activities.
As used herein, the term module may refer to any physical component or device that releasably attaches to the helmets described herein. These modules may provide functional features, aesthetic features, or a combination of functional and aesthetic features to the helmet. In stating that the modules releasably attach to the helmet, it is to be understood that the modules are designed for repeated installation and removal from the helmet. In particular, a module is configured so that it generally receives little or no damage during a routine installation or removal. Installation and/or removal may be accomplished using no tools (e.g., using a friction-fit or interference fit interface). Installation and/or removal may be accomplished using common, household tools (e.g., a screwdriver and/or wrench). For example, a wearer can add and remove modules from a helmet using non-specialized tools. Installation and/or removal may be accomplished using a specialized tool that is configured specifically or specially for the module and/or helmet. The specialized tool can be provided with the helmet and/or module and may be keyed to the particular helmet or module. A module may include physical features that are configured to interface with corresponding features on the helmet to provide for attachment. The physical features may be a physical port that allows the module to physically couple to the helmet. A module may include electrical connectors that are configured to electrically couple to corresponding electrical connectors on the helmet to provide for electrical connection between the module and the helmet. In certain implementations, the physical features may be combined with the electrical connectors so that the same port or connection point can provide physical and electrical connection between the module and the helmet.
As used herein, the term modularity or modular may refer to the ability of a helmet to receive one or more modules. The modular helmets described herein can be configured to physically and/or electrically couple with a module so that the module extends the capabilities or otherwise alters the helmet in some way. Modularity of the helmet may be used to adapt the helmet for different activities. Modularity of the helmet may be used to extend or enhance the functionality of the helmet. Modularity of the helmet may be used to customize the aesthetic appearance of the helmet. Modules can be designed for a user or consumer to replace modules on the helmet with alternative modules that provide different functionality or aesthetics and/or that provide new generations of features.
As a particular example of a modular helmet, the modular helmet can be configured to mate with an eyewear adapter module. The eyewear adapter module can be interchangeable with other eyewear adapter modules. This can allow a user to select an appropriate eyewear adapter module for use with particular eyewear. The eyewear adapter modules can also be configured to be positioned or adjusted after being attached to the base portion to account for differences between facial or cranial geometries. For example, particular eyewear may be positioned differently on different users due at least in part to variations in preferences of the users, variations in their faces, etc. A compatible or complementary eyewear adapter module can be configured to be positioned to account for such differences so that the eyewear adapter module and eyewear interface satisfactorily on different users.
The base portion of the helmet can be configured to provide protective coverage for the user with the option of extending the functionality and/or protection of the helmet with the addition of a variety of modules. In some embodiments, the helmets include a base portion that satisfies one or more safety standards without the use of any additional modules.
The present disclosure generally describes a sports helmet. In certain implementations, the helmet can receive one or more modules or panels to extend or enhance capabilities or features of the helmet. In various implementations, the features and components described herein can be integrated into the helmet without the use of modules. Although some examples described herein are for a helmet for use while cycling, skiing, snowboarding, or participating in other similar sports, it is to be understood that the disclosed sports helmets can be used in conjunction with other athletic activities. For example, the disclosed helmets may be used in non-motorized activities to protect a user's head from possible impact trauma including, for example and without limitation, mountain biking, sledding, ice skating, rollerblading, rock climbing, skate boarding, surfing, skydiving, football, baseball, lacrosse, hockey, and kayaking. Accordingly, the disclosed helmets can be used in non-motorized activities where it is desirable or suitable to use a head-protective apparatus that at least partially surrounds the user's head.
The base portion 105 of the helmet 100 can be configured to include one or more layers or components that together provide the core functionality of the helmet. The base portion 105 can include an inner layer (e.g., foam padding), a reinforcement structure, an exterior shell, and/or an electrical system. The inner layer can include, for example, a low friction layer such as a multi-directional impact protection system (MIPS™) provided by MIPS AB at Kalltorpsvagen 2, SE-183 71 Taby Sweden, the low friction layer configured to provide a material that allows for movement of the inner layer relative to the exterior shell to reduce rotational forces on the head of the wearer that may be caused by certain impacts. An example of a low friction layer in a helmet is provided in U.S. Patent Publication No. 2013/0042397, entitled “Helmet,” published Feb. 21, 2013, the entire contents of which is incorporated by reference herein for all purposes. The base portion 105 of the helmet can be designed for single impact use or multi-impact use. The base portion 105 can include layers that are made of expanded polypropylene (EPP) foam and/or expanded polystyrene (EPS) foam.
The base portion 105 can include one or more mechanical attachment points that are configured to couple to the modules described herein. In some embodiments, the mechanical attachment points can also be configured to include electrical contacts to interface electrically with electronics modules 120. In this way, the same attachment point can provide mechanical and electrical connections for modules. The base portion 105 can include a power source (e.g., a battery). The power source can be configured to provide electrical power to the electrical contacts so that connected modules can be powered by a battery that is in a different location on the helmet. This can aid in reducing the size and weight of the electronics modules 120 configured for use with the helmet 100.
The electronics modules 120 can be configured to provide a variety of electrical capabilities. The electronics modules 120 can be physically and electrically coupled to the base portion through physical and electrical ports on or in the helmet 100. The electronics modules 120 can receive power through the base portion 105 or may provide their own power. The electronics modules 120 can be configured to communicate with a control system on the helmet 100 or with one another through an electrical system of the helmet 100. Examples of the electronics modules 120 are described herein with respect to
The functional add-ons 130 include modules that alter the functionality of the helmet. Examples of such modules include, for example and without limitation, face masks, strap clips, air vents, ear pads, shock absorbing layers, decorative plates, etc. Further examples are described herein with reference to
The eyewear integration modules 140 can be configured to integrate eyewear with the helmet 100. Eyewear integration modules 140 include features, such as a brim, that can be configured to attach to the base portion 105 and that are configured to interface with the eyewear to improve air flow through portions of the helmet and/or eyewear, to improve aerodynamic properties of the helmet with the eyewear, and/or to provide a targeted aesthetic to the helmet with the eyewear. Examples of eyewear integration modules 140 are described in greater detail herein with respect to
The anatomical adjustments 150 include components that alter the fit of the helmet and/or position of the eyewear integration modules 140 or the eyewear. The anatomical adjustments 150 include, for example, a fit system comprising a mechanical reel and lace that adjusts an inner diameter of the helmet to fit onto a wearer. The anatomical adjustments 150 include, for example, eyewear adjustments that adjust the position of the eyewear with respect to the base portion 105 to account for differences in anatomical structure between users. The anatomical adjustments 150 include, for example, eyewear adapter adjustments that adjust the position of the eyewear adapter with respect to the base portion 105 to account for differences in anatomical structure between users. This can be used, for example, to close or reduce a gap between eyewear and the helmet 100.
One or more of the modules described herein can provide air management functionality to the helmet. For example, the functional add-ons 130 and/or eyewear integration 140 can be configured to improve aerodynamics of the helmet 100. These modules may also be configured to provide venting through portions of the helmet 100 and/or eyewear. These modules may also be configured to block venting through portions of the helmet 100 and/or eyewear. In some embodiments, the modules can be configured to selectively block or allow venting. These modules may also be configured to provide anti-fog capabilities for the eyewear (e.g., by directing air flow between the eyewear and the user). These modules may be configured to provide temperature and/or moisture management.
One or more of the modules described herein can provide mechanisms to adjust the fit of the helmet 100. The modules can provide for different fields of view to the wearer. This may be beneficial where the user desires a wide field of view while participating in certain activities and a narrower field of view while participating in other activities. One or more of the modules described herein can be configured to increase the protection provided by the helmet 100.
Sports Helmet with Integrated Electrical Capabilities
The reinforcement structure 210 of the helmet 200 includes electrical connections that allow data and power to be transmitted over the electrical wires 215 to different parts of the reinforcement structure 210. The reinforcement structure 210 is configured to increase the strength of the helmet 200. In certain implementations, the reinforcement structure 210 is molded into the inner layer 205. The reinforcement structure 210 can be a structure of flexible linear material. In some embodiments, the reinforcement structure 210 includes a structure of composite material, preferably having unidirectional fiber orientation. In certain embodiments, the reinforcement structure 210 is a hand-laid filament. However, the arrangement of the filament can be produced using other suitable mechanisms, such as an automated lay-up process. In some embodiments, the filament includes Kevlar with an epoxy resin. In various embodiments, the filament can include carbon, fiberglass or a combination of one of these materials. For example, in some embodiments the filament can include Kevlar and carbon. In certain embodiments, the filament can include Kevlar, carbon and fiberglass. Other suitable filament materials can also be used. In some embodiments, the filament has a flexible unidirectional fiber orientation, allowing a frame to be formed by shaping a unitary filament into a desired layout structure. However, the reinforcement frame can include other suitable configurations, such as a rigid or semi-rigid frame. Other examples of reinforcement structures are provided in U.S. Pat. No. 7,698,750, entitled “Bicycle helmet with reinforcement structure,” issued Apr. 20, 2010, and U.S. Pat. No. 7,069,601, entitled “Head protection system and method,” issued Jul. 4, 2006, the entirety of each of which is incorporated by reference herein for all purposes.
In some embodiments, the electrical wires 215 form connection points within the helmet 200. At each connection point, the helmet 200 may include a module or integrated electronic component. For example, the helmet 200 can include a battery, sensors, data processing system, a system controller, data storage, etc. Electrical modules that connect to the electrical system formed by the wires 215 can include, for example and without limitation, a safety light, an illuminating light, a GPS, a processor, a microphone, a speaker, an earphone, a heads-up display, and the like.
Each of the modular units 380 can include one or more systems. For example, the modular units 380 can include one or more systems such as a processing system 381, a signal conversion system 382, a sensor system 383, an input/output (I/O) system 384, a user interface system 385 and a power system 386. Processing system 381, signal conversion system 382, sensor system 383, input/output (I/O) system 384, user interface system 385 and/or power system 386 can include the same or similar components to those discussed in connection with processing system 320, signal conversion system 330, sensor system 340, input/output (I/O) system 350, user interface system 360, and/or power system 370.
The modular units 380 can include a forward facing camera, a solar cell, a GPS antenna, GPS, microphone, speaker, battery, data processing system, a sensor, eyewear, and the like. The modular units 380 can acquire data and transmit this data to other modular units 380 either wirelessly or through a wired connection that connects through the helmet unit 310.
In some embodiments, a modular unit 380 can include eyewear with electronics integration similar to the electronics integration described herein with respect to the helmet unit 310. The helmet unit 310 can be configured to communicate with the eyewear modular unit 380.
In some embodiments, a remote unit 390 can include eyewear with electronics integration similar to the electronics integration described herein with respect to the helmet unit 310. The helmet unit 310 can be configured to communicate with the eyewear remote unit 390.
Each system can be in communication, wired and/or wirelessly, with one or more other systems. In some embodiments, some or all communications between systems can be two-way communication such that a first system may transmit data to and receive data from a second system. For example, two-way communications may be established between the processing system 320 and the signal conversion system 330. The processing system 320 may transmit data to a speaker of the signal conversion system 330 and receive data from a microphone of the signal conversion system 330. In some embodiments, some or all communications between systems can be one-way communications such that a first system may transfer data to a second system whereas the second system does not transfer data to the first system. For example, the user interface system 360 may transmit data to the processing system 320 and the processing system 320 may not transmit data to the user interface system 360. It should be understood that one or two-way communication can be maintained between any systems described herein. Moreover, it should be understood that, when taken in its entirety, multiple systems can be in communication to each other via other system. For example, the sensor system 340 can be in communication with the signal conversion system 330 via intermediary communications with the processing system 320.
As another example, wired and/or wireless two-way communications may be established between the helmet unit 310 and one or more modular units 380, such as via input/output systems 350, 384. The helmet unit 310 may transmit data to one or more modular units 380 and receive data from one or more modular units 380. In some embodiments, some or all communications between the helmet unit 310 and one or more modular units 380 can be one-way communications such that the helmet unit 310 may transfer data to one or more modular units 380 whereas one or more modular units 380 do not transfer data to the helmet unit 310 or vice-versa. It should be understood that one or two-way communication can be maintained between one or more modular units 380 and the helmet unit 110. For example, two-way communications may exist between helmet unit 310 and a first modular unit 380 whereas one-way communications may exist between helmet unit 310 and a second modular unit 380. Moreover, it should be understood that, when taken in its entirety, multiple systems can be in communication to each other via other system. For example, a first modular unit 380 can communicate with a second modular unit 380 either directly via an input/output system 384 and/or through the helmet unit 310 as an intermediary via input/output system 350.
The systems can be in communication via a wired connection and/or via a wireless connection as illustrated by the solid connecting lines. One or more systems, such as those for the helmet unit 310 and the modular unit 380, can receive power from the power system 370 as shown by the dash-dot-dash lines. Of course, one or more systems, such as those for the helmet unit 310 and the modular unit 380, can receive power from the power system 386 either in addition to that received from the power system 370, or solely from the power system 386. Although the systems are shown as communicating to each other through the processing system 320, it should be understood that the systems may bypass the processing system 320 and communicate directly with each other.
In some embodiments, one or more systems of the helmet unit 310 can be integrated into or with a headworn wearable device, such as a helmet. For example, one or more of the components of the systems of the helmet unit 310 can be located on and/or within one or more components of the helmet such as one or more of the exterior shell, reinforcement structure, and/or inner layer. In some embodiments, a plurality of components of the one or more systems can be distributed to different components of the helmet to help distribute volume and/or weight in the helmet, thereby enhancing performance and user comfort when utilizing the helmet with the helmet unit 310.
In some embodiments, the one or more modular units 380 can be positioned such that a majority of the modular unit 380 is positioned outside the helmet unit 310. In some embodiments, the one or more modular units 380 can be positioned such that a majority of the modular unit 380 is hidden within a component of the helmet, such as one or more of the exterior shell, reinforcement structure, and/or inner layer.
The modular unit 380 can be a standalone device which can function without being connected to helmet unit 310 or any other electronic devices. For example, the modular unit 380 can include a processing system 381, a sensor system 383, and a power system 386 and can be capable of recording information even while disconnected from another device. When attached to the helmet unit 310, the modular unit 380 can provide this data to the helmet unit 310. In some embodiments, the modular unit 380 can be a standalone device which provides timing functionality to the helmet unit 310. When removed from the helmet unit 310, the modular unit 380 can beneficially be used as a timing device (e.g., stopwatch, timer) in other settings. For example, such a modular unit 380 can be used at home, attached to another part of one's person such as a user's wrist, and/or attached to another structural component such as a bike handle. Moreover, the modular unit 380 can supplement the capabilities of the helmet unit 310 such as by supplementing an existing processing system 320, sensor system 340, and/or power system 370 of the helmet unit 310 or, in embodiments of helmet unit 310 without one or more of these systems, wholly adding new functionality to the helmet unit 310.
The modular unit 380 may not be a standalone device. For example, the modular unit 380 may not include a power system 386 to provide power to electronics contained within the modular unit 380. In some embodiments, the modular unit 380 can receive this power via connection to the helmet unit 310 or another electronic device.
The helmet unit 310 and/or the modular units 380 can be in communication, wired and/or wirelessly, with a remote unit 390. As shown in the illustrated embodiment, the remote unit 390 can include one or more systems such as a processing system 391, a signal conversion system 392, a sensor system 393, an input/output (I/O) system 394, a user interface system 395, and a power system 396. As discussed in further detail below, processing system 391, signal conversion system 392, sensor system 393, input/output (I/O) system 394, user interface system 395 and/or power system 396 can include the same or similar components to those discussed in connection with processing systems 320, 381, signal conversion systems 330, 382, sensor systems 340, 383, input/output (I/O) systems 350, 384, user interface systems 360, 385, and/or power systems 370, 386.
The remote unit 390 can be a standalone device or can be operational only when in communication with the system 300 such as the helmet unit 310 and/or the modular unit 380. Examples of remote units 390 can include one or more electronic devices such as, but not limited to, standalone devices such as cell phones, smart phones, watches, smart watches, PDAs, tablets, laptops, desktops, game consoles, MP3 players, iPods, cameras, fitness or gym equipment, sensors, and the like. For example, the one or more electronic devices can include, bike computers and other on-board vehicle sensors or systems, activity trackers such as a Fitbit, and other wearable and smart devices such as an Apple iWatch, an Apple iPhone, Android-based phones, and other such devices.
In some embodiments, the helmet unit 310 and/or one or more of the modular units 380 can receive data from the remote units 390 and present or communicate this data to the user of the system 300. For example, the helmet unit 310 and/or one or more of the modular units 380 can be used to stream music from a remote unit 390, such as a smart phone or MP3 player, and present that to the user. In some embodiments, the helmet unit 310 and/or one of the modular units 380 can communicate with a remote unit 390, such as a smart phone or cell phone, such that the user of the communication unit 300 can use the helmet unit 310 and/or one of the modular units 380 for a phone call and/or for sending text messages. In some embodiments, the helmet unit 310 and/or one or more of the modular units 380 can communicate with multiple remote units 390.
Use of a modular unit 380 with the helmet unit 310 can advantageously supplement the features and functionality of the helmet unit 310. This can be particularly beneficial as it can allow a user to upgrade the device over time. In this manner, the usable lifespan of the helmet unit 310 can be expanded thereby reducing waste and reducing total costs to the user who need not replace the helmet unit 310 with a newer version of the helmet unit 310 if newer functionality is desired. Moreover, in circumstances where the desired functionality may change depending on the activity being performed by the user, this system can beneficially allow the user to more effectively configure the system 300 depending on the activity.
In some embodiments, the helmet unit 310 can omit systems such as a processing system 320 and/or signal conversion system 330, which might include components which are expensive to manufacture and are quickly antiquated or rendered incompatible with other components by new developments in technology. The user can then purchase one or more modular units 380 to provide one or more of the upgraded, repaired, or missing systems, or to provide improvements or enhancements to the system. For example, in some embodiments, the helmet unit 310 can omit the wireless system 352 and the user can connect one or more modular units 380 to provide an input/output system 350 which includes wireless systems. This can be particularly advantageous as wireless protocols often vary for remote units 390 from different manufacturers and, in some instances, from the same manufacturer. The one or more modular units 380 can provide one or more wireless protocols. In some embodiments, the helmet unit 310 can omit the processing system 320, signal conversion system 330, the sensor system 340, and/or the wireless system 352 and the user can connect one or more modular units 380 to provide the missing systems.
Moreover, it is contemplated that due to advances in technology, systems on the helmet unit 310 can eventually become antiquated by newer technology. The modular unit 380 can be used to supplement or replace existing systems on the helmet unit 310. For example, the modular unit 380 can be used to assist in providing faster, more efficient, and/or otherwise enhanced operation of the device by including one or more supplemental components, such as a power system 386 and/or supplement storage of data by including a memory with processing system 381. This ability to supplement or improve the existing systems of the device can also be beneficial as the user need not be inconvenienced with purchasing an entirely new helmet unit 310 to upgrade certain features and functionality. Rather, the user can purchase modular units 380 to add or upgrade components, features and/or functionality of the system 300.
As should be understood from the discussion of the multiple systems below, it should be appreciated that any of the components can be omitted from one or more of the systems of the helmet unit 310 and/or modular unit 380. Accordingly, it should be understood that any combination of such components between the helmet unit 310 and/or modular unit 380 can be achieved as desired by the user.
For example, in some embodiments, the modular unit 380 can include systems and/or components which are not present on the helmet unit 310 or vice versa. For example, in some embodiments, the helmet unit 310 can include solely a power system 370 and the modular unit 380 can include one or more of a processing system 381, a signal conversion system 382, a sensor system 383, an input/output (I/O) system 384, and a user interface system 385. The helmet unit 310 can provide power to the modular unit 380 via a port or connector of the helmet unit 310 similar to those described in connection with I/O system 350 below. In this manner, a user can specifically choose modular units 380 which provide the functionality that the user desires. This can beneficially reduce total costs to the user as the user need not purchase modular units 380 with functionality that the user does not desire. Moreover, selection of specific functionality can further reduce size and/or weight of the system 300.
As another example, in some embodiments, the helmet unit 310 can include an I/O system 350 and the modular unit 380 can include an I/O system 384 and one or both of the helmet unit 310 and the modular unit 380 can include a power system. This can beneficially provide for a greater degree of connectivity with other devices. For example, the I/O system 384 can be a more up-to-date wireless protocol capable of communicating with newer devices. In some embodiments, the helmet unit 310 can include a processing system 320 and power system 370 in addition to the I/O system 350. In some embodiments, the modular unit 380 can include one or more other systems, such as a processing system 381, a signal conversion system 382, a sensor system 383, a user interface system 385, and/or a power system 386 in addition to the I/O system 350. In some embodiments, the modular unit 380 can provide one or more of the following functionality: additional processing capabilities such as a second microprocessor, image capture (e.g., still camera and/or video camera), audio input devices (e.g., microphones, such as a bone conduction microphone), audio output devices (e.g., in-ear speakers, bone conduction speakers, directional audio speakers, outwardly facing speakers), physiological sensing (e.g., heart rate sensors, blood-oxygen sensors, and the like), environmental sensing (e.g., air temperature sensors, air humidity sensors, air quality sensors, pressure sensors, wind speed sensors which can be used in calculating power, and the like), motions sensors (e.g., accelerometers, gyroscope, and the like), biometric calculations (e.g., skin temperature and air temperature to calculate hydration, biochemical sensors to determine sweat characteristics, EEG sensors), provision of directions (e.g., audio and/or visual indicators such as a turn signal and/or haptic feedback, GPS), additional wireless capabilities (e.g., receivers, transmitters, and/or transceivers) which can add new protocols or supplement existing protocols (e.g., a second Bluetooth connection), Wi-Fi, or any other protocol described herein, wind noise reduction (e.g., windscreens, specific housing shapes), enhanced audio (e.g., enhanced speakers), enhanced booms (e.g., built-in power sources such as batteries, different sizes such as smaller sizes designed to better fit women), user interfaces (e.g., touch controls or buttons), power charging (e.g., one or more ports or connectors which allow for charging of the system while still allowing a user to listen to the boom), safety features (e.g., LED lights, radar system which can be rear-facing, peer-to-peer communications), and other functionality.
Use of a remote unit 390 with the system 300 can also advantageously enhance the features and functionality of the system 300. For example, the remote unit 390 can include systems and/or components which are not present on the system 300 or vice versa. Similar to the description in connection with modular unit 380, the user can purchase one or more remote units 390 to provide additional components, features and/or functionality. As should be understood from the discussion of the multiple systems below, it should be appreciated that any of the components can be omitted from one or more of the systems of the system 300 and/or remote unit 390. Accordingly, it should be understood that any combination of such components between the system 300 and/or remote unit 390 can be achieved as desired by the user.
Although the discussion of the multiple systems is primarily in reference to the helmet unit 310, it should be understood that such discussion also pertains to systems of the modular unit 380 and the remote unit 390. For example, it should be understood that any or all of the components discussed in connection with processing system 320, signal conversion system 330, sensor system 340, I/O system 350, user interface system 360, and/or power system 370 can also be included instead of or in addition to those described and/or illustrated in processing systems 381, 391, signal conversion systems 382, 392, sensor systems 383, 393, I/O systems 384, 394, user interface systems 385, 395, and/or power systems 386, 396.
Processing System
The support structure such as helmet unit 310 of the system 300 can include a processing system 320 which can be designed to process and/or store data received from one or more of the other systems of the system, such as the helmet unit 310, modular unit 380, and/or remote unit 390. As shown in the illustrated embodiment, the processing system 320 can include one or more components, such as a processor 322, a memory 324 and program 326. The processor 322 can be a microprocessor or central processing unit (CPU) designed to receive data from one or more of the other systems and transmit this processed data to one or more of the other systems. In some embodiments, the processor 322 can be designed to process this data in accordance with an algorithm from program 326. The functionality of processor 322 and/or any other component of the helmet unit 310, modular unit 380, and/or remote unit 390 can be modified and/or enhanced by utilizing a different program 326. The processed data can also be stored in the memory 324 for later use. For example, the data stored in memory 324 can be retrieved at a later time for further processing by the processing system 320 and/or viewing by the user. In some embodiments, the program 326 can be software stored in memory 324 and/or firmware stored in hardware, such as the processor 322 and/or other components of the helmet unit 310. The program 326 can be updated, modified, fixed, and/or replaced, such as by receiving a new or modified program 326 through the system 300, and/or by attaching the component in which the program 326 is stored or some other portion of the system to another computing device, either in a wired or wireless manner, to convey new or modified program information into the program 326, or by replacing the component in which the program 326 is stored with another component containing a different program 326.
Program 326 can include software which can provide one or more different features or user experiences when utilizing the system 300. For example, such software can include one or more applications which provide one or more features and/or functionality such as, but not limited to, tracking designed to track and store a user's activity such as number of steps taken, amount of time the user was active, environmental conditions in which the system 300 has been used, and the like. The software can also include one or more features and functionality related to user operation of the helmet unit 310, modular unit 380, and/or remote unit 390, such as voice command functionality allowing for hands-free operation of the units 310, 380, 390. In some embodiments, the software can enable one or more other types of features and functionality such as conversion of text messages to voice messages and vice versa.
In some embodiments, the program 326 can include software found on mobile devices such as, but not limited to, cell phones, smart phones, PDAs, and tablets running Android, iOS, and/or Windows operating systems, etc. For example, the helmet unit 310 can include an Android, iOS, and/or Windows operating system to enable compatibility with such software. In some embodiments, program 326 can include software found on other types of electronic devices including, but not limited to, laptops and desktops. Advantageously, in embodiments where such functionality is enabled in the helmet unit 310, the helmet unit 310 of the system 300 can include one or more functions of other stand-alone mobile devices.
Although program 326 is illustrated as forming part of the processing system 320, as noted above program 326 can include firmware which is built into any aspect of the system, such as in the processor 322 and/or any other components of the helmet unit 310. For example, program 326 can be used to control the operation of components of the helmet unit 310 such as the various components of the signal conversion system 330, sensor system 340, I/O system 350, user interface system 360 and/or the power system 370 or similar systems on the modular unit 380 and/or remote unit 390. For example, the program 326 can be used to control the operation of the wireless system 352 of the I/O system 350 which can include a receiver, transmitter, and/or transceiver designed to communicate with other devices typically within a personal area network distance from the helmet unit 310 using a wireless protocol such as, but not limited to, Bluetooth, Bluetooth Low Energy (Bluetooth Smart), ANT, ANT+, ZigBee, Wi-Fi, GSM, CDMA, and MMS. The program 326 can also be used to monitor the statuses of the one or more sensors of the system 300.
In some embodiments, the modular unit 380 and/or remote unit 390 can include processing systems 381, 392 having components, features and/or functionality similar to that described above in connection with processing system 320. In some embodiments, the helmet unit 310 can omit one or more components of the processing system 320 such that a user can provide such components with processing systems 381, 391. For example, the helmet unit 310 can omit the processor 322, memory 324 and/or program 326 allowing the user to supply one or more of such components by connecting the helmet unit 310 with a modular unit 380 and/or remote unit 390 via a wired connection and/or wirelessly. The helmet unit 310 can include components which overlap with those of processing systems 381, 391 of the modular unit 380 and/or remote unit 390. This can advantageously supplement and/or enhance the functionality of the processing system 320. For example, the helmet unit 310 can be provided with a power-efficient processor 322 to conserve battery life and a modular unit 380 and/or a remote unit 390 can include a more powerful processor. As another example, the modular unit 380 and/or remote unit 390 can have a processing system 381, 391 designed to decode MP3s or other audio files and can provide such additional features and/or functionality to the helmet unit 310 when connected. Of course, in some embodiments, one or more components of the processing systems 381, 391 of the modular unit 380 and/or remote unit 390 can be omitted.
Signal Conversion System
The helmet unit 310 of the system 300 can include a signal conversion system 330 which can be designed to convert signals from one form to another. The signal conversion system 330 can be designed to convert analog and/or digital electrical signals into signals more readily perceptible by the user of the helmet unit 310 such as audio, visual, and/or tactile signals, etc. The signal conversion system 330 can be designed to convert audio, visual, and tactile signals into analog and/or digital electrical signals for processing by a processing system such as processing system 320. Accordingly, as shown in the illustrated embodiment, the signal conversion system 330 can include one or more of a visual component 332, an audio component 334 and a tactile component 336.
In some embodiments, the visual component 332 can include a display device which can convert analog and/or digital signals into visual images and display them to the user. This may be accomplished by projecting an image or other data directly on the retina (i.e., retinal projection) and/or by displaying an image on an image plane such as a surface or screen within the wearer's field of view such as, but not limited to, an LCD screen, an OLED screen, a projector onto a surface such as a prism having an opaque surface, any other display screen, or a combination of such devices. The display device may be driven by any of a wide variety of source materials, either carried on board the helmet unit 310, or in communication with the eyeglasses from another source, such as the modular unit 380 and/or the remote unit 390, either via wired communication such as via a wired connection 358 such as a port and/or connector and/or wirelessly such as via the wireless system 352.
In some embodiments, to provide such functionality, the display device can include a variety of components. In some embodiments, the visual component 332 can include an image capture device which can convert visual images into analog and/or digital signals. For example, the image capture device can be a camera which can capture pictures and/or video. One or more visual components 332 can be removably coupled to one or more components of the system 300 to enable selective use of one or more of the visual components 332. For example, in some embodiments, a user can attach a visual component 332 when needed to receive or transmit visual data, but then remove such visual component 332 when not needed, to reduce the weight and bulk of the eyewear and/or to change the appearance of the eyewear. The removable attachment between the visual component 332 and any other component of the system 300 can be accomplished using any suitable structures or methods, including but not limited to any of the wired or wireless structures or methods described and/or illustrated in this specification.
The visual component 332 can be used to provide the user with visualizations of data desired by the user. For example, the visual component 332 can be used to provide the user with a visualization of data received from one or more of the systems such as the sensors of the sensor system 340. The visual component 332 can provide the user with a visual indicator of parameters being detected and/or measured by the sensors of the sensor system 340 such as, but not limited to, the user's heart rate, body temperature, velocity, acceleration, pace, distance traveled, power expended, energy expended, ambient temperature, pressure, altitude, body orientation and other such parameters and data. By providing a visual indication of such parameters, the user of the device can track such parameters on an ongoing or continuous or constant basis. Other visual indicators of parameters from other systems can also be shown such as the status of such systems. Other types of data, such as pictures and/or videos, can be displayed using the visual component 332. Moreover, the visual component 332 can be used as a camera to capture pictures and/or videos which can be advantageous to increase the safety of the user of the device. For example, the camera can be directed behind and/or laterally to provide the user with images of user's blind spots.
In some embodiments, the audio component 334 can include a speaker device which can convert analog and/or digital signals into sound waves and direct them to the user. This may be accomplished by generating pressure waves and directing these pressure waves to the user's ears, such as via a speaker, and/or by generating vibrations, such as via a bone-conduction speaker. In some embodiments, the audio component 334 can include an audio capture device which can convert sound waves into analog and/or digital signals. For example, the audio capture device can be a microphone.
The audio component 334 can be used to provide the user with audible representations of data desired by the user. For example, the audio component 334 can be used to provide the user with an audible representation of data received from one or more of the systems such as the sensors of the sensor system 340. The audio component 334 can provide the user with intermittent and/or continuous audio updates of parameters being detected and/or measured by the sensors of the sensor system 340 such as, but not limited to, the user's heart rate, body temperature, velocity, pace, distance traveled, power expended, energy expended, ambient temperature, pressure, altitude and other such parameters and data. Other audio updates of parameters from other systems can be shown such as the status of such systems. Other types of data, such as music, voice calls, can also be audibly presented using the audio component 334. The audio component 334 can be used as a microphone which can be used in conjunction with operating the helmet unit 310, modular unit 380, and/or remote unit 390, voice calls, and similar functions. In some embodiments, the microphone can be used in conjunction with a speaker for purposes of noise cancellation.
In some embodiments, the haptic component 336 can include a force or vibration device which can convert analog and/or digital signals into tactile feedback and direct them to the user. This may be accomplished by generating forces or vibrations, such as via one or more of an imbalanced motor, linear actuators, voice coils, piezoelectrics, electrostatics, and/or electroactive polymers, etc. In some embodiments, the haptic component 336 can include a tactile capture device which can convert tactile forces into analog and/or digital signals. For example, the tactile capture device can comprise one or more piezoelectrics, electrostatics, electroactive polymers, any other device as desired, or a combination of any of these devices.
The haptic component 336 can be used to provide the user with tactile representations of data desired by the user. For example, the haptic component 336 can be used to provide the user with a tactile representation of data received from one or more of the systems such as the sensors of the sensor system 340. Accordingly, the haptic component 336 can provide the user with intermittent and/or continuous tactile updates of parameters being detected and/or measured by the sensors of the sensor system 340 such as, but not limited to, the user's heart rate, body temperature, velocity, pace, distance traveled, power expended, energy expended, ambient temperature, pressure, altitude and other such parameters and data. In some embodiments, the haptic component 336 can vibrate to provide the user with notifications of trigger events. For example, the haptic component 336 can vibrate when an email or text message has been received, when a call is being received, and other types of trigger events.
In some embodiments, one or more haptic components 336 can be positioned on multiple components of the helmet unit 310 and/or modular unit 380. For example, haptic components 336 can be placed on lateral components of the helmet unit 310 and on anterior components of the helmet unit 310. The different haptic components 136 can be activated separately or together based on the specific trigger event. For example, if an email or text message is received, a lateral haptic component 336 can be activated. If a call is being received, an anterior haptic component 336 can be activated. Separate activation of different haptic components 336 can help the user to more easily identify different trigger events.
In some embodiments, use of multiple haptic components 336 can be used to assist the user in navigation. For example, a haptic component 336 located to the left of the user's head can be activated to indicate to the user to turn left, a haptic component 336 located to the right of the user's head can be activated to indicate to the user to turn right, and a haptic component 336 located to the front of the user's head can be activated to indicate to the user to continue proceeding forward. Use of haptic components 336 for navigation can be particularly beneficial for users of the helmet unit 310 and/or modular unit 380 who are blind and/or deaf. This can also be particularly beneficial, even for those with full vision and/or hearing capabilities, when use of visual indicators and/or audio indicators may be intrusive or impractical during a particular activity, such as when other visual or audio indicators are already being utilized by a user. In some embodiments, the haptic components 336 can be used to inform a user of objects and/or persons in a user's blind spot. This can beneficially enhance the safety of the user of the device. As another example, visual indicators could potentially make the user more visible to others as a result of the light output in providing such indicators. Audio indicators can potentially be heard by others.
In some embodiments, the modular unit 380 and/or remote unit 390 can include signal conversion systems 382, 392 having components, features and/or functionality similar to or the same as any of those described above in connection with signal conversion system 330. In some embodiments, the helmet unit 310 can omit one or more components of the signal conversion system 330 such that a user can provide such components with signal conversion systems 382, 392. For example, the helmet unit 310 can omit the visual component 332, audio component 334 and/or haptic component 336 thereby allowing the user to supply one or more of such components by connecting the helmet unit 310 with a modular unit 380 and/or remote unit 390 via a wired connection and/or wirelessly. In some embodiments, an audio component such as an in-ear, on-ear, near-ear, over-the-ear, and/or an outwardly facing speaker can be provided on a modular unit 380 and/or remote unit 390. For example, the remote unit 390 can have an outwardly facing speaker and serve as an external speaker. The helmet unit 310 can include components which overlap with those of the signal conversion systems 382, 392 of the modular unit 380 and/or remote unit 390. This can advantageously supplement and/or enhance the functionality of the signal conversion system 330. For example, the helmet unit 310 can be provided with a speaker and a modular unit 380 and/or remote unit 390 can be provided with a microphone. In some embodiments, one or more components of the signal conversion systems 382, 392 of the modular unit 380 and/or remote unit 390 can be omitted.
Sensor System
The helmet unit 310 of the system 300 can include a sensor system 340 which can be designed to obtain sensory data from the environment (e.g., an ambient or environmental sensor) and/or the user (a biometric and/or physiological sensor). Accordingly, as shown in the illustrated embodiment, the sensor system 340 can include a plurality of sensors including, but not limited to, one or more motion sensors 342, one or more biometric and/or physiological sensors 344, and one or more ambient or environmental sensors 346. By utilizing data from the sensor system 340, the helmet unit 310 can provide beneficial data regarding the user's condition and/or the surrounding environment. The data received from the sensor system 340, can be further processed by the processing system 320 to provide the user with general data about the user's activities, such as number of steps taken and duration of time the user was active.
The one or more motion sensors 342 can be designed to detect and/or measure movement or motion. The one or more motion sensors 342 can include any type of sensor which can detect and/or measure such movement or motion including, but not limited to, an accelerometer to detect and/or measure acceleration and a gyroscope to detect and/or measure orientation. Other types of sensors motion sensors 342 can also be used such as, but not limited to, a cadence sensor for measuring the rotational speed of a crank arm of a bicycle, a speed sensor for measuring the speed of a bike, a pedometer for measuring the number of steps taken by a user and similar sensors. It should be understood that some of these sensors may be more advantageously placed, for example, on one or more remote units 390 due to the positioning of such sensors relative to the user. For example, a cadence sensor and/or pedometer may be more advantageously placed proximate a user's feet.
The one or more physiological sensors 344 can be designed to detect and/or measure one or more physiologic parameters of the user. As such, the one or more physiological sensors 344 can include any type of sensor which can detect and/or measure such physiological parameters including, but not limited to, sensors for monitoring cardiovascular parameters such as a heart rate sensor, a blood pressure sensor, a blood sugar sensor, and a blood-oxygen and/or blood CO2 sensor, sensors for monitoring hydration levels and temperature of a user such as a perspiration sensor, a skin resistivity sensor, a hydration sensor, a dermal moisture sensor, an electrolyte sensor, and a body temperature sensor, and/or any other types of sensors, such as a lactic acid sensor and pO2 sensor. Other types of physiological sensors 344 can be used as desired. It should be understood that some of these sensors may be more advantageously placed, for example, on one or more remote units 390 due to the positioning of such sensors relative to the user. For example, a heart rate sensor may be more advantageously placed in contact with or adjacent a user's chest.
The one or more ambient or environmental sensors 346 can be designed to detect and/or measure parameters of the surrounding environment. As such, the one or more ambient or environmental sensors 346 can include any type of sensor which can detect and/or measure such parameters including, but not limited to, an air temperature sensor, an air humidity sensor, a pressure sensor, an altitude sensor (such as an altimeter), an oxygen sensor, an air quality sensor, a wind speed sensor (such as a pitot tube), a solar irradiance sensor, a proximity sensor such as a sonar device, a magnetometer, and any other sensor which can detect parameters of the surrounding environment. In some embodiments, the ambient or environmental sensor 346 can include a range finder which can detect a distance to an object.
In some embodiments, the modular unit 380 and/or remote unit 390 can include sensor systems 383, 393 having components, features and/or functionality similar to that described above in connection with sensor system 340. In some embodiments, the helmet unit 310 can omit one or more components of the sensor system 340 such that a user can provide such components with sensor systems 383, 393. For example, the helmet unit 310 can omit the motion sensor 342, physiological sensor 344 and/or ambient or environmental sensor 346 thereby allowing the user to supply one or more of such components by connecting the helmet unit 310 with a modular unit 380 and/or remote unit 390 via a wired connection and/or wirelessly. In some embodiments, a heart rate sensor, gyroscope, accelerometer and/or magnetometer can be provided on a modular unit 380 and/or remote unit 390. Of course, the helmet unit 310 can include components which overlap with those of the sensor systems 383, 393 of the modular unit 380 and/or remote unit 390. This can advantageously supplement and/or enhance the functionality of the sensor system 340. For example, the helmet unit 310 can be provided with an accelerometer, gyroscope, and a modular unit 380 can be provided with a heart rate sensor and a remote unit 390 can be provided with a cadence sensor. In some embodiments, one or more components of the sensor systems 383, 393 of the modular unit 380 and/or remote unit 390 can be omitted.
Input/Output (I/O) System
The helmet unit 310 of the system 300 can include an I/O system 350 which can interface with one or more modular units 380 and/or one or more remote units 390. As shown in the illustrated embodiment, the I/O system 350 can include a wireless system 152 as well as one or more wired connections 358, such as ports and/or connectors, for removable mechanical and/or electrical coupling with another device such as one or more modular units 380. As shown in the illustrated embodiment of
The wireless system 352 can include one or more receivers 354 to receive wireless signals from another device such as one or more remote units 390 and one or more transmitters 356 to send wireless signals to another device such as one or more remote units 390. The wireless system 352 can include one or more transceivers which can perform both functions. The one or more receivers 354, one or more transmitters 356, and/or one or more transceivers can include one or more antennas. The one or more antennas can be configured to receive one or more electronic signals including, but not limited to, Bluetooth, Bluetooth Low Energy (Bluetooth Smart), ANT, ANT+, ZigBee, Wi-Fi, GSM, CDMA, MMS, and/or any other type of signal. The one or more antennas can be positioned on any portion of the helmet unit 310. In some embodiments, the antennas can be positioned along bottom, top, outer, and/or inner surfaces of any portion of the helmet unit 310. In some embodiments, the antennas can be positioned along interior and/or exterior surfaces of the helmet unit 310. The one or more antennas can include movable antennas. For example, in some embodiments the movable antenna can be an articulating antenna which is coupled to the helmet unit.
The one or more receivers 354 and/or one or more transmitters 356 can be designed to wirelessly communicate with other devices using one or more protocols. For example, the receiver 354 and/or transmitter 356 can include protocols such as Bluetooth, Bluetooth Low Energy (Bluetooth Smart), ANT, ANT+, ZigBee, Wi-Fi, GSM, CDMA, and MMS. The receiver 354 can be designed such that the helmet unit 310 is viewed as an ANT+master unit when communicating with other ANT+devices. In some embodiments, the one or more receivers 354 and/or one or more transmitters 356 (or transceivers) can include two or more protocols such that the helmet unit 310 can advantageously be used with a wider variety of devices such as modular units 380 and/or remote units 390. In some embodiments, the one or more receivers and/or one or more transmitters (or transceivers) can utilize the two or more protocols simultaneously. In some embodiments, the receiver 354 can be designed to receive signals from a global positioning satellite (GPS). As shown in the illustrated embodiment, the wireless system 310 can be designed to wirelessly communicate with the one or more remote units 390.
The one or more wired connections 358, such as ports and/or connectors, can allow for removable mechanical and/or electrical coupling with other devices such as one or more modular units 380. The one or more wired connections 358 can be designed to be universally compatible with a variety of devices. For example, in some embodiments, the one or more wired connections 358 can include a Universal Serial Bus (USB) port and/or connector, such as USB 1.0, USB 2.0, USB 3.0, USB 3.1, and including microUSB and type-C ports and/or connectors, an IEEE 1394 (FireWire) port and/or connector, an Ethernet port and/or connector, a Thunderbolt port and/or connector, a Displayport port and/or connector, a DVI port and/or connector, an HDMI port and/or connector, an optical port and/or connector, a coaxial port and/or connector, and/or other ports and/or connectors. In some embodiments, the one or more wired connections 358 can have different mechanical and/or electrical connectors to allow for an even wider range of devices to be used. For example, a first wired connection 358 can be a USB 3.0 port or connector whereas a second wired connection 358 can be a Thunderbolt port or connector. As shown in the illustrated embodiment, the one or more wired connections 358 can be designed to mechanically and/or electrically couple with the one or more modular units 380. The wired connections 358 can be positioned on any portion of the helmet unit 310. In some embodiments, the wired connections 358 can be positioned along bottom, top, outer, and/or inner surfaces of any portion of the helmet unit 310. In some embodiments, the wired connections 358 can be positioned along interior and/or exterior surfaces of the helmet unit 310.
The one or more modular units 380 can have different shapes, appearances, features, and/or functionality, but the modular units 380 can include generally the same mechanical and/or electric connectors to wired connections 358 to enable interchangeability. In some embodiments, a vendor can provide a selection (simultaneously or over time) of a plurality of different interchangeable modular units 380 with multiple different shapes, sizes, and/or colors, and/or with different features and/or functionality. In this way, a user can purchase different modular units 380 to customize the user's system 300, to upgrade the user's system 300, and/or to replace broken or damaged components in the user's system 300. In some embodiments where the modular unit 380 includes a universally compatible wired connection, such as a USB connector, the modular unit 380 can be connected to other devices which have a similar connector. For example, the modular unit 380 could be attached to devices such as, but not limited to, a computer, a smartphone, an audio/video player, and a vehicle entertainment system. In some embodiments, each or all of the modular units 380 can be standalone devices which can be removed from the helmet unit 310 and function separately from the helmet unit 310 or any other electronic devices.
In some embodiments, the modular units 380 are mounted in close proximity to the helmet unit 310. The helmet unit 310 and modular unit 380 can be coupled to form a relatively compact, combined unit. This can be particularly advantageous in many situations as this can reduce the burden on the user of the system 300. By placing both the helmet unit 310 and the modular unit 380 in an eyewear, the user need not be inconvenienced with using such remote devices.
In some embodiments, the modular unit 380 and/or remote unit 390 can include I/O systems 384, 394 having components, features and/or functionality similar to that described above in connection with I/O system 350. For example, in some embodiments, the modular unit 380 can include a wireless system having a receiver, transmitter and/or transceiver similar to that discussed in connection with I/O system 350. In some embodiments, the helmet unit 310 can omit one or more components of the I/O system 350 such that a user can provide such components with I/O systems 384, 394. For example, the helmet unit 310 can omit the wireless system 352 including the receiver 354 and/or transmitter 356, and/or wired connection 358 thereby allowing the user to supply one or more of such components by connecting the helmet unit 310 with a modular unit 380 and/or remote unit 390 having one or more of such components. In some embodiments, a port and/or connector can be provided on a modular unit 380 and/or remote unit 390 to allow additional modular units 380 to be attached to the system 300. The helmet unit 310 can include components which overlap with those of the I/O systems 384, 394 of the modular unit 380 and/or remote unit 390. This can advantageously supplement and/or enhance the functionality of the I/O system 350. For example, the helmet unit 310 can be provided with a wireless system 352 having Bluetooth and/or ANT+ protocols and the modular unit 380 can be provided with a wireless system having different protocols such as ZigBee or Wi-Fi. In some embodiments, the helmet unit 310 can be provided with no wireless system 352 and the modular unit 380 can be provided with a wireless system having one or more different protocols. This can be particularly beneficial when wireless protocols are often updated thereby reducing the likelihood that the helmet unit 310 will have an antiquated wireless protocol. In some embodiments, one or more components of the I/O systems 384, 394 of the modular unit 380 and/or remote unit 390 can be omitted.
While the input/output system 350 have been generally described as having a wireless system 352 for communication with remote units 390 and one or more wired connections 358 for communication with modular units 380, in some embodiments communications between the helmet unit 310 and one or more modular units 380 can be via the wireless system 352 and/or wired connections 358 and/or communications between the helmet unit 310 and the remote units 390 can be can be via the wireless system 352 and/or wired connections 358. In some embodiments, communications between the modular unit 380 and the remote unit 390 can be via wireless systems of input/output systems 384, 394. In some embodiments, communications between the modular unit 380 and the remote unit 390 can be via one or more wireless systems and/or wired connections of the input/output systems 384, 394.
User Interface System
The helmet unit 310 of the system 300 can include a user interface system 360 which can be designed to allow the user to operate the helmet unit 310, modular unit 380, and/or remote unit 390. As shown in the illustrated embodiment, the user interface system 360 can include one or more actuators 362 and/or one or more sensors 364.
In some embodiments, the one or more actuators 362 can include mechanical switches such as, but not limited to, toggle, rocker, button, and/or rotary switches. One or more actuators 362 can advantageously be used to provide tactile feedback when operating the switch such that the user can easily operate the device without having to view the actuators 362 directly. The actuators 362 can be used to control one or more operating parameters such as the on-off state of the helmet unit 310, modular unit 380, and/or remote unit 390, audio volume control, and/or video brightness control, etc.
In some embodiments, the one or more sensors 364 can include sensors which detect contact such as capacitive and/or resistive sensors. In some embodiments, the capacitive and/or resistive sensors can be designed to detect contact with a user's finger. For example, the user interface system 360 can include a touch screen having capacitive and/or resistive sensors on which the user can use different gestures to modify parameters of the helmet unit 310, modular unit 380 and/or remote unit 390. Such gestures can include, but are not limited to, a frontward swipe, a rearward swipe, an upward swipe, a downward swipe, one or more taps such as a double or triple tap, pressing the screen for a specific duration of time, a multiple position tap, and any combination of the above. The touch screen can be sized to fit along any portion of the helmet unit 310.
In some embodiments, the modular unit 380 and/or remote unit 390 can include user interface systems 385, 395 having components, features and/or functionality similar to that described above in connection with user interface system 360. In some embodiments, the helmet unit 310 can omit one or more components of the user interface system 360 such that a user can provide such components with user interface systems 385, 395. For example, the helmet unit 310 can omit the actuator 362 and/or sensor 364 thereby allowing the user to supply one or more of such components by connecting the helmet unit 310, via a wired connector and/or wirelessly, with a modular unit 380 and/or remote unit 390 having one or more of such components. This can be beneficial as it can allow a user to select a type of user interface that the user prefers and/or switch the type of user interface. For example, a user may find it advantageous to use a user interface having tactile buttons for certain activities and may find it more advantageous to utilize a user interface having touch capabilities for other activities. Accordingly, the user may wish to swap between a tactile button user interface with a touch user interface based on the specific activity. Of course, the helmet unit 310 can include components which overlap with those of the user interface systems 385, 395 of the modular unit 380 and/or remote unit 390. This can advantageously supplement and/or enhance the functionality of the user interface system 360. Of course, in some embodiments, one or more components of the user interface systems 385, 395 of the modular unit 380 and/or remote unit 390 can be omitted.
Power System
The helmet unit 310 of the system 300 can include a power system 370 which can be designed to provide energy to the one or more systems of the helmet unit 310, modular unit 380 and/or remote unit 390. As shown in the illustrated embodiment, the power system 370 can include an energy storage component 372 and/or an energy generation component 374.
The energy storage component 372 can be a device designed to store energy for use with the helmet unit 310, modular unit 380 and/or remote unit 390. For example, the energy storage component 372 can be a battery device such as primary cell (non-rechargeable) and/or a secondary cell (rechargeable) such as, but not limited to, a Li-ion battery, LiPo battery, NiCad battery, and Ni-MH battery. The battery device can be designed to provide between about 50 mAh to about 500 mAh, about 150 mAh and/or any other energy storage capacity as desired. In some embodiments, the energy storage component 372 can be a capacitor, fuel cell, or other device which can store energy for later use.
The energy generation component 374 can be a device designed to generate energy from another source. The energy generation component 374 can be a device designed to convert kinetic energy, solar energy and/or thermal energy to electrical energy for powering the systems of helmet unit 310, modular unit 380 and/or remote unit 390. The energy generation component 374 can be a device designed to convert electromagnetic energy to electrical energy. In such an embodiment, the helmet unit 310, modular unit 380 and/or remote unit 390 can be wirelessly powered and charged.
In some embodiments, the modular unit 380 and/or remote unit 390 can include power systems 386, 396 having components, features and/or functionality similar to that described above in connection with power system 370. In some embodiments, the helmet unit 310 can omit one or more components of the power system 370 such that a user can provide such components with power systems 386, 396. For example, the helmet unit 310 can omit the energy storage component 372 and/or energy generation component 374 thereby allowing the user to supply one or more of such components by connecting the helmet unit 310 with a modular unit 380 via a wired connection and/or wirelessly. In some embodiments, the modular unit 380 can be provided with an energy storage component such as a battery. The helmet unit 310 can include components which overlap with those of the power systems 386, 396 of the modular unit 380 and/or remote unit 390. This can advantageously supplement and/or enhance the functionality of the power system 370. For example, the modular unit 380 can include an energy storage component to supplement the energy storage component 372 of the helmet unit 310 thereby increasing the duration of operation of the helmet unit 310, modular unit 380 and/or remote unit 390. In some embodiments, one or more components of the power systems 386, 396 of the modular unit 380 and/or remote unit 390 can be omitted.
Brim and Eyewear for a Sports Helmet with Modular Components
In some embodiments, the distal ends of the earstems 525 can be adjusted on the eyewear adapter 500 to adjust the length of the earstem 525. This can be done to customize the fit for the wearer. In some embodiments, the eyewear adapter 500 cooperates with the pads 504 to adjust the orientation and/or position of the eyewear 520 to compensate for anatomical differences between wearers. Similar to the eyewear adapter 400 described herein with reference to
The eyewear adapter 600 can be configured to be positioned forward of the eyewear 620 when attached to the helmet. Accordingly, the eyewear adapter 600 can be configured to not contact the eyewear 620 while still closing the gap between the top of the eyewear 620 and the helmet. The eyewear adapter 600 can be configured to push wind away from the wearer. In some embodiments, the eyewear adapter 600 includes vents for selectively passing air through the eyewear adapter 600. In certain implementations, the vents may be able to be opened and closed as the wearer desires. In some embodiments, the eyewear adapter 600 is made of a material that is at least partially transparent to allow the wearer to see through the eyewear adapter 600. This may be beneficial when the wearer desires to look over the eyewear 620 because then the eyewear adapter 600 would not significantly obstruct the vision of the wearer.
In some embodiments, the eyewear adapter 700b may differ from the eyewear adapter 700a in that the eyewear adapter 700b may be configured to contact a rear portion of a frame of the eyewear 720. This can advantageously increase the anti-fogging functionality provided by the eyewear adapter 700b, for example.
Sports Helmet with Modular Attachment Having Stem Tunnels
Sports Helmet with Modular Components
As an example,
For example, the eyewear adapter module 1210a is tailored for the eyewear 1220a based at least in part on the contour 1212a of the eyewear 1210a matching the contour 1222a of the eyewear 1220a. This can advantageously control the flow of air around the eyewear 1220a as well as provide a desirable aesthetic appearance. In certain implementations, a profile of the eyewear adapter module 1210a can be tailored to create a substantially seamless transition between the helmet 1200 and a profile of the eyewear 1220a. For example, a curvature profile of the eyewear adapter module 1210a can provide a smooth transition from the curvature profile of the base portion 1205 to the eyewear 1220a wherein the eyewear adapter module 1210a has a base curvature that is within a tolerance of the eyewear 1220a and/or within a tolerance of the base portion 1205. The curvature profile can be considered along a longitudinal plane (e.g., a plane that vertically divides a head of the wearer into left and right sides), along a transverse plane (e.g., a plane that vertically divides a head of the wearer into front and back sides), a horizontal plane, or any combination of these planes. The curvature can be circular, parabolic, hyperbolic, toroidal, a progressive curve, an accelerated curve, or any other smooth curving surface. The surfaces of the base portion 1205, eyewear adapter module 1210a, and/or eyewear 1220a may also include flat portions in addition to curved portions. Matching the profiles of the helmet and eyewear can advantageously improve aerodynamics of the helmet 1200 and eyewear 1220 when worn by a user as well as provide a desirable aesthetic appearance. Matching the profiles of the helmet 1200 and the eyewear 1220a may also advantageously reduce the risk of injury that may occur when a wearer is sliding down a slope (e.g., after falling down) or moving rapidly through vegetation or other obstacles by reducing edges that may catch on a surface and cause an undesirable torsion on the neck of the wearer.
The eyewear adapter modules 1210a, 1210b can be designed to integrate with eyewear so that it can improve air flow, to remove gaps between the eyewear and the helmet for design and functional reasons, and to provide additional functionality to the helmet 1200. The eyewear adapter modules 1210a, 1210b can be configured to be vertically adjustable (e.g., to reduce or eliminate gaps between the eyewear and the helmet), to include adjustable vents (e.g., to integrate air flow), to reduce or to prevent eyewear bash, to reduce or to prevent undesirable nose pressure, to include an extra-long brim (e.g., for protection from sun and/or precipitation), to include LEDs or lights, to extend over the eyewear, to provide an attachment point on the helmet for eyewear (e.g., when not being worn by the user), to provide a flip-up visor, to provide a mount and/or case for a camera, to provide attachment points for eyewear (e.g., to eliminate the need for earstems or a strap on the eyewear), to provide features on the side of the eyewear adapter module to decrease or to eliminate gaps between the helmet and the sides of the eyewear, to create a secondary eyewear attachment point, and the like.
In some embodiments, the eyewear adapter modules 1210a, 1210b include electronics configured to provide additional functionality to the user of the helmet 1200, as described in greater detail herein. For example, the eyewear adapter modules 1210a, 1210b can include active cooling mechanisms such as, for example and without limitation, fans, pumps, blowers, thermoelectric devices, or the like.
The eyewear adapter module may be provided with one or more motion sensors designed to detect and/or measure movement or motion. The one or more motion sensors can include any type of sensor which can detect and/or measure such movement or motion including, but not limited to, an accelerometer to detect and/or measure acceleration and a gyroscope to detect and/or measure orientation. Other types of sensors motion sensors can also be used such as, but not limited to, a cadence sensor for measuring the rotational speed of a crank arm of a bicycle, a speed sensor for measuring the speed of a bike, a pedometer for measuring the number of steps taken by a user and similar sensors. It should be understood that some of these sensors may be more advantageously placed, for example, on different modules due to the positioning of such sensors relative to the user.
One or more physiological sensors may be provided to detect and/or measure one or more physiologic parameters of the wearer. As such, the one or more physiological sensors can include any type of sensor which can detect and/or measure such physiological parameters including, but not limited to, sensors for monitoring cardiovascular parameters such as a heart rate sensor, a blood pressure sensor, a blood sugar sensor, and a blood-oxygen sensor, sensors for monitoring hydration levels and temperature of a user such as a perspiration sensor, an electrolyte sensor, and a body temperature sensor, and/or any other types of sensors, such as a lactic acid sensor. Other types of physiological sensors can be used as desired. It should be understood that some of these sensors may be more advantageously placed, for example, on different modules due to the positioning of such sensors relative to the user.
One or more ambient or environmental sensors can be provided in the eyewear adapter module 1210a, 1210b to detect and/or measure parameters of the surrounding environment. As such, the one or more ambient or environmental sensors can include any type of sensor that can detect and/or measure such parameters including, but not limited to, an air temperature sensor, an air humidity sensor, a pressure sensor, an altitude sensor (such as an altimeter), an oxygen sensor, an air quality sensor, a wind speed sensor (such as a pitot tube), a solar irradiance sensor, a proximity sensor such as a sonar device, a magnetometer, and any other sensor which can detect parameters of the surrounding environment. In some embodiments, the ambient or environmental sensor can include a range finder which can detect a distance to an object.
Sensor data may be exported wirelessly to a remote device by way of an input / output system which can include a receiver, transmitter, and/or transceiver designed to communicate with other devices using a wireless protocol such as, but not limited to, Bluetooth, Bluetooth Low Energy (Bluetooth Smart), ANT, ANT+, ZigBee, Wi-Fi, GSM, CDMA, or MMS.
Returning to
The helmet 1100a can be configured to provide protection through a combination of the shell 1107, which can be a hard shell, and the cushioning 1109, which can be a compressible inner liner or one or more compressible elements configured to absorb and/or distribute impact forces. The shell 1107 can be configured to provide a structural base of the helmet 1100a. The shell 1107 may be hard and rigid, and its outer surface may be adapted to be painted, resurfaced, or refinished, potentially to accommodate graphic elements. The cushioning 1109 can be configured to line the inside of the shell 1107 or to be placed at a plurality of locations on an interior surface of the shell 1107 to form an impact absorbing layer between the head 1102 of the wearer and the hard surface of the shell 1107. As illustrated, the shell 1107 forms the exterior surface of the helmet 1100a, and is contiguous with the cushioning 1109. However, the shell 1107 need not constitute the outermost layer of the helmet 1100, but may be located elsewhere to accomplish energy absorption. Similarly, one or more additional layers may be configured to be between the shell 1107 and the cushioning 1109 or one or more additional layers may be configured to be between the cushioning 1109 and the head 1102 of the wearer.
In some embodiments, the shell 1107 may be made with materials such as ABS plastic, polycarbonate plastic, or the like. However, the shell 1107 may be made of any number of plastics, energy-absorbing materials, or composite materials. Further, the physical characteristics of the shell 1107, such as flexibility, hardness, weight, and shape, may be varied to accomplish desired, selected, or targeted performance characteristics. Such variations are to be understood to fall within the scope of the present disclosure.
The cushioning 1109 can be configured to further absorb and distribute energy caused by an impact with the helmet 1100a. The cushioning 1109 can be configured to be more energy-absorbent than the shell 1107. The cushioning 1109 can include foam lining, one or more foam pads, one or more air pads, or any combination thereof. The cushioning 1109 may also include any apparatus or material that effectively absorbs and distributes impact energy and/or that generally cushions the user's head 1102. The cushioning 1109 can include foam lining and/or foam pads made of polystyrene foam, vinyl nitrile foam, thermoplastic urethane foam, or the like. The cushioning 1109 can include air pads that include bladders adapted to be filled with air and may be made of vinyl or a similarly flexible plastic material. In certain embodiments, the cushioning 1109 is arranged in a fixed or removable manner inside the shell 1107, for example by means of adhesives, fasteners, and/or self-gripping straps (e.g., using a hook-and-loop fastening material).
The base portion 1105a can include depressions or apertures in the shell 1107 and/or the cushioning 1109. Such apertures and depressions may decrease the weight of the base portion 1105a, enhance performance, provide elements of aesthetic design, provide air flow to the user's head 1102, enhance aerodynamic properties of the helmet 1100a, or may be adapted or provide other functions. For example, one or more vents can be provided on the base portion 1105a for cooling and/or removal of moist air. As another example, a base portion 1105a may be comprised of multiple depressions to increase aesthetic quality and provide a distinct visual appeal.
In some embodiments, the helmet 1100a may further include other features such as chin straps for securing the helmet to the wearer, passive and/or active vents in the base portion 1105a, a retention system for securing eyewear to the helmet 1100a, a contoured front opening for receiving eyewear, additional layers on or in the base portion 1105a for insulation and/or comfort, or the like. These features may be provided by one or more modules 1110. For example, features may be added to the helmet 1100a or existing features of the helmet 1100a can be enhanced with the addition of modules 1110, such as rear panels, ear pieces, visors, vents, earstem guides, goggle strap guides, or the like, that are releasably attached to the base portion 1105a. In certain implementations, the modules 1110 can provide additional areas of energy absorption, thereby potentially decreasing the incidence of injury. In some implementations, the modules 1110 can provide aesthetic and functional advantages such as an improved interface between the base portion 1105a and eyewear. In certain implementations, the modules 1110 can provide electronic capabilities such as LED lights, speakers, accelerometers, environmental sensors, physiological sensors, GPS, or the like.
In some embodiments, modules 1110 can be configured to be compatible with a particular base portion 1105a. For example, the modules 1110 can have a similar aesthetic as a compatible base portion 1105a. As another example, the modules 1110 can have a similar structure as a compatible base portion 1105a, having a similar shell 1107 and cushioning 1109 construction. As another example, the modules 1110 can include electrical connections configured to receive power from and/or to communicate with electronics in the base portion 1105a.
The modules 1110 can be releasably attached to the base portion 1105a of the helmet 1100a or to one another to accomplish any of several functions. A module 1110 may be releasably attached to the shell 1107, the cushioning 1109, or a combination of both using any suitable attachment mechanism. Suitable attachment mechanisms can be adapted to hold a module 1110 securely in place on the shell 1107, but to intentionally release the module 1110 with application of sufficient force or the use of an appropriate tool, and thereafter, to optionally receive the same or different module 1110, again holding it in place. The modules 1110 can be configured to break away, for example, under certain circumstances that correspond to a potential impact experienced by the wearer. For example, a ski helmet 1100a can include modules 1110 that are configured to break away when the wearer falls down and slides down a slope to reduce potential injuries. The modules 1110 can be attached using fasteners, adhesives, or other attachment mechanisms that are designed to fail or detach under certain sheer or impact forces. Attachment mechanisms can also include channel supports adapted to attach a module 1110 to the base portion 1105a or to another module 1110. The channel support members may be semi-rigid and adapted to interlock with one another upon application of sufficient force. The channel support members are further adapted to release upon subsequent applications of sufficient force. In other embodiments, attachment mechanisms can include a slide-locking mechanism, a hook and slot mechanism, a magnetic mechanism, an adhesive, or the like. It will be appreciated that, although an exhaustive list is not included herein, one skilled in the relevant art will appreciate that various attachment mechanisms may be used, all of which fall within the scope of the present disclosure. Furthermore, the attachment mechanisms can be designed to detach under targeted or selected conditions to reduce the potential of injury to the wearer. In some embodiments, the modules 1110 are configured to be compatible with a particular helmet configuration. In certain embodiments, the modules 1110 can be configured to be compatible with a range of helmet configurations.
The helmet 1100a thus described provides a number of advantages. For example, modules 1110 may be optionally removed and replaced after severe impacts, permanent deformation, or ordinary wear and tear. Modules 1110 may be optionally added, removed, or replaced to extend the capabilities of the helmet 1100a, such as by adding new electronic capabilities that were previously unavailable to the user. Modules 1110 may be changed to alter the aesthetic and functional qualities of the helmet 1100a. This may be done to satisfy the user's desire for change or to enhance the interface between the helmet 1100a and other pieces of equipment, such as eyewear. This modular design may improve cost efficiencies by decreasing the cost of helmet refurbishment and the frequency of helmet replacement.
Another advantage provided by the disclosed modular helmets includes the ability to break a helmet down into smaller pieces, making it easier and more space-efficient to pack the helmet. This can be beneficial, for example, when travelling or when packing the helmet from one location to another during a ski or snowboard session.
Advantageously, the modules 1110 can include interchangeable pieces that allow a user to swap one piece that provides particular features for another similar piece that provides one or more different features. For example, the user can replace an eyewear adapter module with a long brim with an eyewear adapter module with a shorter brim when lighting or precipitation conditions change.
As disclosed herein, components of the helmet 1100a (e.g., the shell 1107, the cushioning 1109, modules 1110) may be made of various materials and composites, including polycarbonate plastic, ABS plastic, carbon fiber, fiberglass, metals, ceramics, polystyrene foam, expanded polypropylene, vinyl nitrile foam, rubber, TPE, and thermoplastic urethane foam. Additionally, various materials may be combined to obtain attractive or desirable characteristics of existing (or as yet unknown) plastics, energy-absorbing materials, and composite materials, and may be incorporated into the helmet 1100a. Although an exhaustive list of materials is not included herein, one skilled in the relevant art will appreciate that various conventional plastics, rubbers, and energy-absorbing materials may be used, all of which fall within the scope of the present disclosure.
As illustrated in
Examples of the coverage provided by base portions 1105 will now be described with reference to geometries of selected standard headforms. For purposes of some of these examples, the geometry of the selected headforms is according to the definitions for the ‘A’, ‘C’, ‘E’, T, ‘M’, and ‘O’ headforms described in International Standards Organization (ISO) Draft Standard ISO DIS 6220-1983. However, coverage can be described relative to any other standard headform or other non-standard headforms. As illustrated in
For ease of description, additional planes can be defined. The S0 plane is parallel to the basic plane and lies above it at a distance determined by the size of the headform: 46.8 mm, 50 mm, 53 mm, 55.2 mm and 57.2 mm for the ‘A’ through ‘O’ headforms respectively. The S3 plane is parallel to the S0 plane and the basic plane and lies between them at a distance of 26.1 mm, 28.2 mm, 30 mm, 31.5 mm and 32.2 mm below the S0 plane for the ‘A’ through ‘O’ headforms respectively. The S4 plane is also parallel to the S0 plane and lies below it a distance of 52.2 mm, 56.4 mm, 60 mm, 63 mm and 64.5 mm for the ‘A’ through ‘O’ headforms respectively. The rear plane divides the rear third of the head from the front two thirds. It is parallel to the coronal plane and lies at a given distance behind the point where the reference plane and longitudinal planes intersect with the front surface of the headform. The distance from this point, hereafter called the reference point, is determined by the size of the headform: 128.6 mm, 139 mm, 148.4 mm, 155.8 mm and 161.5 mm for the ‘A’ through ‘O’ headforms respectively. The fore plane is also parallel to the coronal plane. It lies behind the reference point at a distance determined by the size of the headform: 39 mm, 42.2 mm, 45.2 mm, 47.4 mm and 49.2 mm for the ‘A’ through ‘O’ headforms respectively.
In the example illustrated in
Example Helmet with an Adjustable Eyewear Adapter Module
Due at least in part to differences between users' heads and faces, the same eyewear would be positioned differently on the face of each user. The eyewear may be higher or lower on the head, for example. In addition, the positioning of a helmet on a head of the wearer will differ between different wearers. In some instances, a gap 1304 between the helmet 1300 and the eyewear 1320 can be at least about 0.25 inches and/or less than or equal to about 2 inches, at least about 0.5 inches and/or less than or equal to about 1.5 inches, or at least about 0.75 inches and/or less than or equal to about 1 inch. Even with the eyewear adapter module 1310, the gap 1304 may still persist for some users. Accordingly, even though the eyewear adapter module 1310 is tailored to the eyewear 1320, there may still be an undesirably large gap or space 1304 between the eyewear adapter module 1310 and the base portion 1305 of the helmet 1300 when worn by some users. The adjustable eyewear adapter module 1310 allows the user to adjust the position of the eyewear adapter module 1310 so that it can be positioned adjacent to the eyewear 1320. For example, the eyewear adapter module 1310 can be adjusted to reduce the gap 1304 between a bottom portion 1312 of the eyewear adapter module 1310 and a majority of a top portion 1322 of the eyewear 1320 to be less than or equal to about 0.5 inches, to be less than or equal to about 0.25 inches, to be less than or equal to about 0.125 inches, or to be in contact with one another.
As described herein, the eyewear adapter module 1310 can be positioned so that an interface between the eyewear adapter module 1310 and the eyewear 1320 provides one or more advantages. For example, a bottom portion 1312 of the eyewear adapter module 1310 can be adjusted until it contacts a majority of a top portion 1322 of the eyewear 1320. The bottom portion 1312 of the eyewear adapter module 1310 can be a surface of the eyewear adapter module 1310. The eyewear adapter module 1310 can be plastic, metal, rubber, TPE, foam, a combination of these or some other materials that are displaceable, compressible, and/or deflectable. In particular, the bottom surface 1312 can be displaceable, compressible, and/or deflectable to facilitate contact between a majority of the bottom surface 1312 and a majority of the top surface 1322 of the eyewear 1320. The bottom surface 1312 can include securing mechanisms such as adhesives, loop-and-hook material, snaps, magnets, or the like so that the eyewear adapter module 1310 remains substantially attached to the eyewear 1320 during use. The top portion 1322 of the eyewear 1320 can similarly be a rigid edge or surface of the eyewear 1320 or it can include foam, rubber, plastic, TPE, or the like as well. The eyewear 120 can be configured to include securing mechanisms such as adhesives, hook-and-loop material, snaps, magnets, or the like that are compatible with the eyewear adapter module 1310 to help secure the eyewear adapter module 1310 in position against the eyewear 1320.
In some embodiments, the eyewear adapter module 1310 includes a locking mechanism that secures the eyewear adapter module 1310 substantially in place relative to the base portion 1305. For example, a friction-based locking device can be engaged to increase the friction between the eyewear adapter module 1310 and the base portion 1305 so that it becomes more difficult to move the eyewear adapter module 1310. As another example, a ratchet locking device can be engaged to lock the eyewear adapter module 1310 in place. As another example, a locking device can be used to limit movement of the eyewear adapter module 1310 to a certain point (e.g., in the upward or downward direction), allowing a limited range of movement of the eyewear adapter module 1310 when the locking device is engaged. In certain embodiments, the eyewear adapter module 1310 can be adjusted, locked, and unlocked without the use of tools (e.g., by hand).
The eyewear adapter module 1510a can be configured to be tailored to the eyewear 1520a and the helmet 1500a. To accommodate different users, a range of sizes of eyewear adapter module 1510a can be created for a particular helmet 1500a and eyewear 1520a combination. This can allow different users to use the eyewear adapter module 1510a with the particular helmet 1500a and eyewear 1520a combination even where the fit of each would differ for different users. For example, a user may buy a helmet 1500a and eyewear 1520a and then try on a number of different eyewear adapter modules 1510a to find the eyewear adapter module 1510a that provides the best fit, look, and/or feel. This may advantageously allow a user to use a suitable eyewear adapter module 1510a without having to adjust the position of the eyewear adapter module 1510a. This may advantageously allow the eyewear adapter module 1510a to be non-adjustable or to have a limited range of adjustments available, potentially reducing costs and complexity associated with manufacturing the eyewear adapter module 1510a. Thus, the user can select an appropriate eyewear adapter module 1510a to maintain a desirable relationship between the helmet 1500a and the eyewear 1520a (e.g., by reducing or eliminating a gap between them) without adjusting a position of the eyewear adapter module 1510a.
Alternatively, the illustrated eyewear adapter module 1510b can be used with eyewear 1520b with earstems or straps. For example, the eyewear adapter module 1510b can be configured to attach to the eyewear 1520b wherein the combined eyewear adapter module 1510b and eyewear 1520b can be worn with the helmet 1500b using the eyewear earstems or strap to secure the combined adapter 1510b and eyewear 1520b on the head of the wearer rather than attaching the eyewear adapter module 1510b to the base portion 1505b. This can advantageously reduce the forces imposed on the bridge of the nose of the wearer that may arise from a fixed brim on a helmet as well as ensure that the eyewear adapter module and eyewear are close to one another during use, reducing tendencies for eyewear and a helmet to separate during use due to helmet posterior creep.
The eyewear adapter module 1610 can be configured to secure to an external surface of the base portion 1605, covering a substantial fraction of the base portion 1605. The eyewear adapter module 1610 can be configured to rotate around a pivot point to rotate into position relative to the eyewear 1620. Thus, the movement and positioning of the eyewear adapter modulel 610 can be similar to a face shield of other helmets, except that the eyewear adapter module 1610 is configured to be a non-optical component and/or the eyewear adapter module 1610 is configured to not cross a line of sight of the wearer.
Example Mechanical Modules for a Helmet with Modular Components
Sports Helmet with Internal Gutter
The helmet 3900 can include a fit system comprising a mechanical reel 3922 that changes the length of a lace 3921. Any suitable fit system may be used including a reel and lace system, a ratchet system, a non-cable system that uses flexible pieces to tighten an internal headband, and the like. Examples of reel-based closure systems are provided in U.S. Pat. No. 7,954,204, entitled “Reel Based Closure System,” issued Jun. 7, 2011, the entire contents of which are incorporated herein by reference for all purposes. The lace 3921 includes a portion 3923 that lies within the channel 3918 of the internal gutter 3915. When the mechanical reel 3922 cinches the lace 3921, it applies an inward force that causes the shorter or inner leg 3917 of the internal gutter 3915 to remain in contact with the head of the wearer while also causing the channel of the internal gutter 3915 to remain open to receive and to direct liquid (e.g., sweat) away from the wearer's face. In some embodiments, the outer or first leg 3916 is attached to the inner layer 3910 and/or the shell 3905 so that when the force is applied on the second leg 3917, the channel remains open due at least in part to the first leg 3916 being attached to the helmet 3900. In some embodiments, the internal gutter 3915 is attached to the inner layer 3905. In some embodiments, the internal gutter is attached to a MIPS layer, if provided. For example, in some embodiments, the internal gutter 3915 can be configured to include flexible hooks 3914 extending from the first leg 3916 or other mechanical fasteners and the inner layer 3905 can be configured to include corresponding openings 3907 or corresponding engagement portions in the inner layer 3905, where the hooks 3914 can be inserted (not shown as inserted) through the openings 3907 to connect the internal gutter 3915 to the inner layer 3905. In some embodiments, the internal gutter 3915 can be attached to the portion 923 of the lace 921 using features 3919. In some embodiments, a periphery 3908 of the inner layer 3905 sits within the channel 3918 of the internal gutter 3915. This can aid in keeping the channel 3918 open. In certain embodiments, the internal gutter 3915 may be a modular feature that can be added and removed from a helmet system. In some embodiments, the internal gutter 3915 is integrated with the helmet 3900, the shell 3910, and/or the inner layer 3905.
The internal gutter 3915 can be made of any suitable material that is flexible and impermeable, such as silicone. The material can be configured to conform to a surface, such as a forehead of a wearer, and may create a seal against the forehead of the wearer. The internal gutter 3915 can be configured to direct the liquid to different parts of the wearer's head. For example, the internal gutter 3915 can direct liquid behind the ears of the wearer, in front of the ears, just behind the eyes of the wearer, or at the back of the head of the wearer.
The shell 3905 or inner layer 3910 can include one or more features that enhance sweat collection in the internal gutter 3915. For example, the shell 3905 and/or inner layer 3910 can include a jog 3906 above the internal gutter 3915. As liquid flows down the interior of the shell 3905 and/or inner layer 3910, it drops from the jog 3906 into the internal gutter 3915. Similarly, the inner layer 3910 can include features that facilitate sweat collection in the internal gutter 3915. For example, the inner layer can include openings 3911 that allow sweat to drip into the gutter and/or break out moisture in the helmet 3900 so that it collects in the internal gutter 3915.
In some embodiments, the internal gutter 3915 can be configured to allow movement between the shell 3905 and the inner layer 3910. The internal gutter 3915 can be configured to be spaced from the jog 3906 to allow the shell 3905 to move relative to the inner layer 3910 without impeding the movement up to the distance between the jog 3906 and the first leg 3916 of the internal gutter 3915.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without other input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Disjunctive language such as the phrase “at least one of X, Y, Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it can be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. Any structure, feature, step, or process disclosed herein in one embodiment can be used separately or combined with or used instead of any other structure, feature, step, or process disclosed in any other embodiment. Also, no structure, feature, step, or processes disclosed herein is essential or indispensable; any may be omitted in some embodiments. The scope of certain embodiments disclosed herein is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims priority to U.S. Prov. Pat. App'n No. 62/182,332, entitled “MODULAR SPORTS HELMET,” filed Jun. 19, 2015, the entire contents of which is incorporated by reference herein for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/038250 | 6/17/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62182332 | Jun 2015 | US |